
A Technique for High-Speed, Fine-Resolution Pattern

Generation and its CMOS Implementation

Gary C. Moyer�, Mark Clements, Wentai Liuy, Toby Scha�erz, Ralph K. Cavin, III

Department of Electrical and Computer Engineering

North Carolina State University
Raleigh, NC 27695-7911
gcmoyer@eos.ncsu.edu
Voice: (919) 515-7610
FAX: (919) 515-5523

Abstract

This paper presents an architecture for generating a high-speed data pattern with precise
edge placement (resolution) by using the matched delay technique. The technique involves
passing clock and data signals through arrays of matched delay elements in such a way that
the data rate and resolution of the generated data stream are controlled by the di�erence
of these matched delays. This di�erence can be made much smaller than an absolute gate
delay. Since the resolution of conventional designs is determined by these absolute delays,
the matched delay technique yields a much �ner resolution than traditional methods and,
in addition, generates high data rate patterns without the need of a high-speed clock. The
matched delay technique lends itself to high-precision and high-speed applications such as
fast network interfaces or test pattern generators. This paper also describes a matched
delay data generator submitted for fabrication in a MOSIS 1.2�m CMOS technology. This
implementation uses biased delay elements to internally compensate for temperature and
process variations. Simulations indicate the implementation described in this paper can
generate data signals with on-chip bit rates of 833Mb/s and resolutions of 100ps.

1: Introduction

The ability to handle very high-speed data is a signi�cant issue in high-performance
computing and communications systems. The importance of this issue has increased with
the advent of powerful distributed processing systems and �ber-optic communications stan-
dards such as SONET, of which even a mid-level (OC-12) implementation requires data
rates of 622 Mb/s. Currently, there is a strong trend toward implementing these high-
performance systems with a network of processors rather than a single very expensive pro-
cessor. A fundamental component of such a system is a high-bandwidth network interface
for each processor. Such interfaces require multiplexors to combine multiple data streams
at the transmitter and demultiplexers to recover the individual streams at the receiver.

�This research is partially supported by MIP-9212346
yThis research is partially supported by MIP-9212346
zThis material is based upon work supported under a National Science Foundation Graduate Research

Fellowship

1

Typical realizations of these high-speed multiplexors/demultiplexers require high-speed,
well-controlled clocks [1] [4] [11]. Due to the complexities of generating and distributing
high-speed clocks, such circuits are di�cult to implement. In addition, the data resolutions
of these multiplexors/demultiplexers are limited by absolute gate delays. A new circuit
technique is needed to achieve high-speed and �ne-resolution operation without the need
of high-speed clocks.
One innovative design methodology is thematched delay technique [7]. Based on the wave

pipelining timing methodology [5], this technique can be used to design circuits whose speed
is limited by the di�erence of matched delay elements rather than their absolute delays. This
technique also permits high-speed operation without the need of a high-speed clock. The
matched delay technique can be implemented in any technology, however, it is particularly
attractive with regard to CMOS since it allows the construction of high-speed circuits that
can bene�t from CMOS's advantages: low cost, low power, and high density.
The matched delay technique was employed in developing a high-performance digital

sampler with 1 Gb/s bandwidth and 25ps resolution in a MOSIS 1.2�m CMOS process [6].
This matched delay sampler implements the demultiplexing function of a network interface
by performing a serial-to-parallel conversion on an incoming data stream. The inverse of
the sampler, therefore, implements the multiplexing function by generating a serial stream
from parallel data. The matched delay generator described in this paper performs this
function. Use of the generator and sampler together makes a high-speed CMOS network
interface realizable and also forms the basis of a more general high-speed transceiver.
Another advantage of the generator's matched delay structure is that it can place edges

very precisely in the data stream. This makes the generator attractive for designs requiring
accurate edge placement, such as pulse-width modulation (PWM) systems [9]. This high-
resolution pulse width control would also be useful for the pin electronics in high-end VLSI
testers, which are currently done in expensive technologies such as GaAs and ECL [12].
This paper describes the technique and CMOS implementation of a high-speed, �ne-

resolution generator [3]. First, the generator's serializing technique using matched delay
structures is described. This description covers both basic operation and practical continu-
ous pattern generation. Limitations of the implementation are discussed next. A high-level
overview of the architecture is then given, followed by detailed circuit descriptions. Simu-
lation results are then presented before the conclusions.

2: Matched delay pattern generation technique

2.1: Pattern generation technique

The basic architecture of the generator is illustrated in Fig. 1. Data is fed to the inputs
of an array of T-type
ip-
ops. A clock pulse is then sent down a chain of delay elements,
all of which have delay �C . Each
ip-
op's clock input (except the �rst one's) taps this
chain at the output of the corresponding delay element, so that the
ip-
ops are clocked in
sequence 1; 2; � � �N with an interval of �C . Each
ip-
op that has a high T input will toggle
its output at the arrival of the clock pulse's rising edge. This, in turn, toggles the output of
the corresponding XOR gate, which has a delay of �X . This output then propagates down
the XOR chain to the output. In this way edges are inserted into the serial data stream.
XOR gates are used in the data delay chain since a transition on either input switches

the output. When a
ip-
op output is held constant, the corresponding XOR functions
simply as a delay element; the output from the previous XOR is passed through (inverted

Q

T

Q

T

Q

T

Clock

Stage 1 Stage 2 Stage 3

Q

T

Output

Stage N

x x x x

c c c

T T T T
2 3 N1

Figure 1. Pattern Generation Technique

or not depending on the value of the
ip-
op) after a delay �X . Alternatively, when the

ip-
op toggles, it inserts an edge onto the data chain as discussed above.
To �nd the resolution of the generator, it helps to view the generator as a cascade of

stages, each consisting of a T
ip-
op, XOR gate, and clock delay element. The clock pulse
arrives at stage i at time i�C , at which point the
ip-
op can toggle its output. Since the

ip-
op's delay a�ects each stage equally, it can be ignored. This switching output causes
XORi to switch �X later, at time i�C + �X . Similarly, the clock arrives at stage i + 1
at time (i + 1)�C , so XORi+1's output changes state at time (i + 1)�C + �X . However,
the edge created \upstream" by XORi arrives at XORi+1 at time i�C +�X . This causes
XORi+1 to switch at time i�C + 2�X . It can be seen that the time di�erence between
edges, �XC , is

�XC = [i�C + 2�X]� [(i+ 1)�C +�X] (1)

= �X ��C (2)

The above sequence is illustrated in Fig. 2, which shows the output of the �rst three
stages superimposed on the clock seen at each stage. In this example, all T
ip-
ops are set
to toggle on every clock pulse. Each stage is clocked �C after the previous stage. An edge
is generated at each stage �X after the clock arrives. An edge propagating down the chain
causes a transition at the following \downstream" stage �X later. This is illustrated by
the diagonal arrows on the right-hand of the �gure. It is clear graphically that the width
of a generated pulse is �X ��C .
The resolution, then, depends on the di�erence of two elements' propagation delays

rather than their intrinsic delays. This is a characteristic of the matched delay technique
and gives two immediate bene�ts: 1) �ner resolution, since the di�erence between two
elements can easily be made smaller than the inherent delay of a single element, and 2)
some immunity to gradient process variation, since the matched elements can be physically
close on the chip.

data t

Stage 1

Stage 2

Stage 3

= -

x x

c
xc x c

x

clock

Figure 2. Creation of Pattern Using Generation Technique

2.2: Continuous pattern generation

For the generator to be useful in a practical application, it must able to generate a
continuous data pattern. Since each stage can create one edge per clock period, an N -stage
generator can only create edges over an N�XC interval for each clock pulse. To make data
patterns larger than this interval, the generator must be repeatedly clocked. There are two
major constraints introduced by repetitive clocking: ensuring that the resolution remains a
constant �XC between edges created by di�erent clock pulses, and guaranteeing that setup
time requirements for the T
ip-
ops are met.
First, consider two clock pulses, p1 followed by p2, traveling down the clock chain of an

N -stage generator. Since �C < �X , the edge generated at the �rst stage by a clock pulse
is actually the last edge to reach the output, while the edge generated at stage N is the
�rst one out. To maintain a constant data stream, the time between the last edge e1 due
to p1 and the �rst edge e2 due to p2 must be the same as the time between any two edges,
which is the resolution �XC . Since an N stage generator has N � 1 clock delay elements
and N XORs, the output times of edges e1 and e2 are N�X and (N � 1)�C + �X + T ,
respectively, where T is the time between clock pulses, that is, the clock period. This leads
to the equation:

�XC = [(N � 1)�C + �X + T]�N�X (3)

T = N(�X ��C) (4)

which shows the relationship between the number of stages, the resolution and the clock
period. Our design goal was 100ps resolution. For practical reasons �X and �C can be
neither too large nor too small, so 500ps and 400ps respectively were chosen as reasonable
values. With the resolution �xed, T and N were chosen to satisfy Eq. 4. The largest
possible value for N , given the available die area, was chosen to maximize T , which reduces
problems associated with driving a high-speed clock onto the chip. The values for N and
T for this implementation are 64 stages and 6.4ns (156.25MHz) respectively.
The second part of maintaining a constant �XC resolution requires that the input data

be presented to the T
ip-
ops in the fashion explained below. First, note from the above
parameters that T < N�C . This indicates that multiple clock pulses are present at any

given time, which e�ectively wave pipelines [5] the clock chain. The number of pulses
present is given by

p = N�C=T (5)

= 64� 400ps=6:4ns (6)

= 4 (7)

There is one pulse per N=p = 16 stages. Each 16 stages de�nes a section.
Now consider two stages i and j in adjacent sections, where j = i + 16. Since i and

j are 16 stages apart, and T = 16�C , the edges created at stages i and j are generated
simultaneously by two consecutive clock pulses. The edge generated at stage j arrives at the
generator's output at tj = j�C+(N � j)�X , while the edge generated at stage i arrives at
ti = i�C+(N�i)�X+T . The T accounts for the fact that the two clock pulses are separated
in time by one clock period. The di�erence in arrival times, then, is ti�tj = (j�i)�XC+T .
However, maintaining constant resolution requires that ti� tj = (j� i)�XC . It can be seen
now that this occurs if and only if both edges are generated by the same clock pulse, which
happens if the data sent to the second section is skewed by one clock period relative to the
data sent to the �rst section. This one-cycle delay is accomplished by using simple static
D-type
ip-
ops. Continuation of this reasoning leads to requiring one additional layer of
these delays per section, as illustrated by the unshaded
ip-
ops in Fig. 3.

Pattern Bits

8 8 8 8 8 8 8 8

64 Stage Generator

Section 1 Section 2 Section 3 Section 4Clock
Output

Figure 3. Latch Configuration for Continuous Pattern Generation

Setup time for the �rst half of each section is met by clocking the above delays on the
opposite phase of the generator's clock, as shown in Fig. 3. However, the clock pulse will
only be halfway through the section when the delay
ip-
ops are clocked again, causing
the data in the second half of the section to be lost. This loss is avoided by the insertion
again of one layer of delay
ip-
ops which are clocked in phase with the generator's clock.
These delays are shaded in Fig. 3.

2.3: Limitations on resolution and data rate

Using the above technique, we have shown that the resolution of the generator is deter-
mined by the di�erence of delays, �XC . It is theoretically possible to get an arbitrarily
small resolution by setting �X and �C su�ciently close together. However, in reality, the
actual values of �X and �C , and thus the resolution, will di�er from their nominal values
because of fabrication variations, noise, jitter, and temperature changes. Severe discrepan-
cies between actual and nominal delay values will cause incorrect operation. This sets a
lower limit on the resolution. It also suggests that �X and �C should be kept large relative
to the possible delay changes due to process variations to minimize the percentage change
in delay due to these variations.
The maximum frequency of the generated data pattern is also limited. The XOR gates'

�nite analog bandwidth causes them to act as low-pass �lters on the generated data pat-
tern. Generated data pulses that have a width below a threshold value will be attenuated
completely and not make it down the XOR chain. This restricts how close edges can be
placed to each other in a generated pattern, which impacts the speci�cation of the genera-
tor's maximum output frequency. In addition, the output driver (see section 4.3) and the
package itself also attenuate the output pattern, further restricting the maximum frequency.

3: Functional description of generator implementation

Data Delay Elements

Dummy Stage of 12

Compensation

 Delay

cFine
Adjustment

DLL for

cCoarse
Adjustment

DLL forDLL for

Adjustment
x

64 Stage Generator

64 x 8 Memory

Clock

Output

Figure 4. Block Diagram of Generator Implementation

A block diagram of the generator implementation is shown in Fig. 4. The 64 stage
generator made up of clock and XOR delay lines as well as the T
ip-
ops was described in
the preceding sections. This section describes two blocks used for controlling the generator:
the delay-locked loops and data memory.

3.1: Delay-locked loops

As mentioned above, the actual and designed values of �X and �C will di�er to some de-
gree due to process and environmental variations. This indicates the need for a continuously-

operating self-correcting circuit that maintains constant delay values across varying oper-
ating conditions. The generator uses delay-locked loops (DLLs) to accomplish this. Each
DLL examines two taps on a delay chain and adjusts the delay between these two taps via
a bias voltage. This adjustment locks the phase of the two taps together. By appropriate
placement of the taps, the average delay of the elements between the taps, and on the
entire chain, can be controlled. The connections between taps and DLL are carefully laid
out symmetrically to assure that the propagation delays from both taps to the DLL are
equalized.
There are two DLLs for controlling the clock chain's delay. The �rst does coarse adjust-

ment, then the second does �ne adjustment. The �rst one examines two taps 16 stages
apart. As discussed previously, 16�C = T . Therefore, the DLL locks when the average
delay �Cavg = T=16 = 400ps, the desired value.
The second DLL examines taps that are 64 stages apart. This DLL makes a more

accurate adjustment to �C . Having the taps further apart reduces the e�ect of the DLL's
inherent phase error, which is the phase di�erence in two signals that appear to be in phase
to the DLL. Simulations have shown this error to be less than 100ps. By using taps that
are further apart, the error's e�ect on the �C adjustment is reduced since it is divided
among more delay elements. The DLL should lock two clock pulses that are 64=16 = 4
edges apart, but it is possible that it could lock a clock edge to one that is 3 or 5 edges away,
which generates an incorrect �C . To avoid this problem, the �rst DLL coarsely adjusts
�C while the second DLL is disabled. The �rst is then disabled, at which point the second
DLL turns on and makes �ne adjustments to achieve a more accurate �C .
The third DLL controls the delay of the data delay chain. Since the data on this chain

is unknown during operation, taps on it cannot be used for phase locking. Instead, since
16�X = 20�C , a tap at the 20th clock delay is compared to the output of an (e�ective)
16 data delay element chain. \E�ective" means that the 16 element delay is achieved by a
dummy chain of 12 data delay elements and a variable delay [8] controlled o�-chip. In the
layout, the wiring from the dummy chain to the DLL and from the clock delay chain to the
DLL could not be done in the same metal layer and geometric shape, so a variable delay is
used to compensate for any wiring delay mismatch. This compensation delay is calibrated
to equal the delay through four data delay elements. The dummy chain is driven by the
same clock that drives the clock delay chain. Since this DLL a�ects only �X and has no
e�ect on �C , the stability of the clock chain DLLs is unchanged.

3.2: Input data memory

The data which are input to the generator are stored on-chip in an 8x64 memory array,
organized as one 8-bit circular FIFO per stage. On-chip memory, while costly in area, is
necessary since it is very di�cult to input 64 bits in parallel at 156MHz. Though a larger
memory would enable the generation of longer and more complex patterns, area constraints
limited the number of bits per stage to eight. The storage element used to implement the
FIFOs is based on that found in [10]. Bits in adjacent FIFOs represent 100ps intervals in
the generated pattern, with a \1" indicating the presence of an edge, i.e., the data to be
transmitted goes through an encoding stage o�-chip prior to being loaded. Data bits are
loaded in parallel into the FIFOs. The FIFOs circulate their contents one position and
present a new bit to the generator every clock period. Changing the generated pattern
requires disabling the generator and loading new data into the memory. It should be noted
that it is our implementation, not the generator technique itself, that requires the generator
to be disabled when changing the data memory contents.

4: Circuit design of generator and control

This section describes the circuits used in implementing the parts of the generator that
most heavily in
uence performance: the generator stages (XOR and clock delay elements),
DLLs, and output drivers.

4.1: Generator stage

As mentioned earlier, a generator stage consists of a rising-edge triggered toggle
ip-
op,
clock delay element, and data delay element. A gate-level representation of a stage is shown
in Fig. 5.

T

Q Q

clk_in

clk_in clk_out

clk_out

data_out

data_out

data_in

data_in

Figure 5. One Stage of Pattern Generator

The clock delay for each stage consists of two di�erential delay elements. Another pair
of these delay elements following a di�erential XOR gate form each stage's data delay. Two
delay elements were used in each case to increase the range of each line's adjustable delay,
which improves the ability to compensate for process and environmental variations. The
clock line delay was designed to be adjustable from 300ps { 500ps, which is centered around
the desired �C = 400ps. The data line's delay was designed to be 400ps { 600ps, which
centers around �X = 500ps. The two components of the clock and data delay, the XOR
gate and the di�erential delay element, are described below.
The XOR gate was implemented as illustrated in Fig. 6. It is the bottleneck component

of the data delay, since, as the slowest gate in the data delay line, it limits the maximum
bit rate of the generated pattern. High bandwidth is therefore of critical importance.
Two other important factors were noise immunity and the ability to pass both rising and
falling edges with equal delay, i.e., gate delay independence from the input data pattern. A
di�erential implementation was chosen over single-ended since di�erential logic is superior
in all three respects.
The output swing of the XOR was set to be approximately 1.2V - 4.9V (when biases

VXP = VXN = 2:5V). This swing gives better bandwidth than full-swing and is wide
enough to provide good noise immunity. The pull-down path is symmetrically balanced so
that there is an equal capacitance to discharge regardless of the a and b inputs, resulting
in less data dependence.
The biases VXP and VXN provide very coarse adjustment of the XOR's delay and are

intended to stay constant during generator operation. The primary means of adjusting �X

are the delay elements described below.

XP
V

GND GND

b b

a ab

aa

b

Vdd

Xout Xout

V
XN

Figure 6. Differential XOR Gate

The di�erential delay element is used in both the clock and data delay chain. The
main criteria for the delay element's design were delay range, controllability of delay, and
noise immunity. These requirements led to the design shown in Fig. 7. This gate, like the
XOR gate, is di�erential to increase noise immunity and bandwidth. Its delay is adjusted
by biases VDP and VDN . Having two biases increases the delay range while keeping its
output swing of approximately 1.2V - 4.9V. Decreasing (increasing) VDP and increasing
(decreasing) VDN decreases (increases) the gate's delay. To ease the di�culty of having to
control two biases, an automatic bias-controller [8] was used. This circuit, illustrated in
Fig. 8, uses a comparator to equalize the voltages Vdiv and Vdd=2 by increasing (decreasing)
VDN in response to decreases (increases) in VDP . With this bias-controller, the DLL need
only adjust one voltage, VDP , to change the delay. The e�ect of VDP on both the clock and
data delay of a single stage is shown in Fig. 9.

V
DN

dout

din

Vdd

GNDGND

din

dout
V

DP

Figure 7. Differential Delay Element

V

V

V

Vdd / 2

DN

div

DP

Figure 8. Automatic Bias-Controller

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
250

300

350

400

450

500

550

600

Vp, Bias Voltage (V)

D
el

ay

(p
s)

Data Delay

Clock Delay

Figure 9. Bias Voltage’s Effect on Delay

4.2: DLL controllers

A schematic of the DLL controller appears in Fig. 10. The DLL consists of a phase
detector, a charge pump and a loop �lter.

1

2

1

2

first

firstD Q

D Q
add

rmv

V

V

add_bias

rmv_bias

Control
Logic

Phase Detector Charge Pump

charge_rmv

charge_add
M1

M2

VoutLoop
Filter

M3

M4

M5

M6

Figure 10. Diagram for DLL Delay Controller

The phase detector is composed of two
ip-
ops connected as shown in Fig. 10. The
ip-

ops are based on those described in [10]. The detector determines the phase relationship
between two signals by examining their rising edges and indicates which edge arrived �rst
by setting �1first and �2first as shown in Table 1.

Input Signals Detector Outputs
�1first �2first

�1 " before �2 " 1 0
�2 " before �1 " 0 1

�1 ", �2 " together 0 0
invalid case 1 1

Table 1. Phase Detector Operation

The detector sets both outputs low when both inputs appear to be in phase. Edges
whose arrivals di�er by 100ps or less appear in phase to the detector. The resolving time
for the
ip-
ops used in the edge detector is 2.24ns, and inverters following the
ip-
ops
are used to �lter out metastable states.
The �1first and �2first outputs of the phase detector pass through control logic which

�lters out any erroneous \1{1" states and creates the add and rmv signals to operate the
charge pump. These signals are converted within the charge pump to charge add and
charge rmv, which control the
ow of charge into and out of the loop �lter via pull-up M1
and pull-down M2. This then adjusts the output voltage Vout up and down. Though these
control signals might seem redundant, their use becomes clear after examining transistor
pairs M3{M4 and M5{M6.
When add is o�, M3 sets charge add = Vdd, which turns the PMOS M1 o�. However,

when add is on, charge add = Vadd bias, which is set o�-chip. When Vadd bias is 0V, M1
adds charge at the maximum rate. As Vadd bias is increased and charge add approaches

Vdd � Vth(M1), the rate of charge addition is reduced. This permits �ner adjustment of
Vout. Another bene�t is that the charge
ow through M1 is more constant since M1 stays in
the saturation region over a wider range of Vout. Transistor pair M5{M6 control the NMOS
M2 similarly by generating charge rmv from rmv and bias voltage Vrmv bias. Figure 11
shows the e�ect of Vadd bias and Vrmv bias on the rates of charge addition and removal.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

1

2

3

4

5

6

7

Charge Pump Biases - Vadd_bias or Vrmv_bias (V)

R
at

e
of

 C
ha

ng
e

in
 V

ou
t

 (
V

/u
s)

Rate of Vout increase due to Vadd_bias

Rate of Vout decrease due to Vrmv_bias

Figure 11. Effects of Vadd bias and Vrmv bias on Vout’s rate of change

The loop �lter is con�gured o�-chip and takes one of two forms [2]. The �rst is a simple
RC �lter, which is easy to implement and permits Vout to take a wider range of values.
Since this is only a �rst-order �lter, it is fairly susceptible to noise. The second possible
�lter is a more complex active �lter, which greatly reduces noise in Vout. However, the
range of the bias voltage is dependent on the performance of the op-amp.

4.3: Output drivers

There is one cascaded chain of sized single-ended bu�ers for each of the generator's di�er-
ential outputs. High bandwidth through the output pins and low power consumption were
the main goals in sizing the drivers. These goals con
ict, though, since power consumption
increases as bandwidth rises. Power consumption is limited by the number of power pins
available per driver and the size of the power busses connected to the driver. This limit on
the maximum power in turn limits the maximum bandwidth. Due to a limited number of
power pins per driver and the need to avoid possible electromigration e�ects, the drivers
were sized to drive a 200pF load at bit rates up to 80Mb/s.
To fully exploit the generator's bandwidth, a pair of output pads suitable for use with

high-speed, low-impedance micro-probes was also placed on-chip. The drivers for the probe
pads are the same type as those used to drive the package pins. The loading on the probe
pad drivers, about 10pF, is signi�cantly lower than that on the pin drivers, so they can
drive data at rates up to 833 Mb/s, the generator's maximum internal bit rate.
Either set of drivers can be disabled to eliminate any noise caused by their switching.

5: Simulation results

The generator and supporting test structures were implemented in a full-custom layout,
and simulations were run on the extracted circuits with CAzM, a Spice-like simulator. The
chip has 32,071 transistors and occupies a die area of 2.71mm � 6.15mm. A chip plot of
the generator's implementation appears in Fig. 12.

Figure 12. Chip Plot of Generator’s Implementation

Fig. 13 shows the generation of the maximum bit rate pattern by examining the taps
on the data delay chain at the output of the �rst, sixteenth, thirty-second and last stages.
Edges are added as the data
ows downstream, culminating in a 833 Mb/s bit rate pat-
tern. This corresponds to a 1.2ns minimum pulse width, meaning an edge is inserted into
the generated waveform every twelve stages. This pattern is represented in memory by
continuous repetition of the bits 100000000000.

63.35 72.82 82.30 91.77 101.241.00e-09

v(x1,x1b)

-4.01

4.00

v(x16,x16b)

-4.00

4.00

v(x32,x32b)

-4.00

4.00

genout

-4.00

4.00

63.35

4.00

0.00

3.99

0.00

4.00

0.00

3.97

0.00

63.35

4.00

4.00

4.00

3.97

dt= 0.00

Runs: chip3.out

Figure 13. Generation of Maximum Frequency Pattern

Fig. 14 illustrates the generator's edge placement ability by showing two 1.2ns pulses
followed by two 1.3ns pulses. These pairs di�er in width by the maximum resolution,
100ps.

1.2ns 1.3ns

133.01 135.62 138.24 140.85 143.461.00e-09

genout

-4.10

4.11

133.94

0.00

0.03

135.14

-0.04

dt= 1.20

Runs: chip.out

Figure 14. Illustration of Maximum Resolution

6: Conclusion

A technique for generating high-speed, �ne-resolution data patterns without the need for
a high speed clock has been presented. The technique can be used to generate continuous
data patterns suitable for use in a data transmitter. The resolution in the generated patterns
is determined by the di�erence of delay in two delay elements, rather than an absolute delay.
Jitter and noise set an upper limit on maximum resolution, and the maximum bit rate is
limited by the analog bandwidth of the data delay chain gates.
An implementation of this technique has been submitted for fabrication in a MOSIS

1.2�m CMOS technology. Simulation results of the extracted layout show patterns can be
generated with bit rates up to 833Mb/s and edges placed with 100ps resolution. Using
a more advanced CMOS process should push this rate up to the SONET OC-48 level
(2.56 Gb/s). The generator also has self-correcting circuitry to compensate for process and
environmental variations.

References

[1] R. J. Bayruns, E. A. Hofstatter, and H. T. Weston. A Fine-Line NMOS 3-Gbit/s 12-Channel Time-
Division Multiplexer-Demultiplexer Chip Set. IEEE Journal of Solid-State Circuits, 24:814{812, 1989.

[2] R. Best. Phase-Locked Loops: Theory, Design, and Applications. McGraw-Hill, Inc., New York, 1984.

[3] M. Clements, W. Liu, R. Cavin, G. Moyer, and J. Kang. The Matched Delay Data Generator, April
1994. NCSU Patent Disclosure No. 94-68.

[4] A. E. Dunlop, T. J. Gabara, and W. C. Fischer. A 9 Gbit/s Bandwidth Multiplexer/Demultiplexer
CMOS Chip. In 1992 Symposium on VLSI Circuits Digest of Technical Papers, pages 68{69, 1992.

[5] C. T. Gray, W. Liu, and R. K. Cavin III. Wave Pipelining: Theory and Implementation. Kluwer
Academic, 1993.

[6] C. T. Gray, W. Liu, W. A. M. van Noije, T. A. Hughes, and R. K. Cavin. A Sampling Technique and
Its CMOS Implementation with 1 Gb/s Bandwidth and 25ps Resolution. IEEE Journal of Solid-State

Circuits, 29:340{349, March 1994.

[7] W. Liu, M. Clements, and R. K. Cavin III. The Matched Delay Technique: Theory and Practical
Issues. Technical Report NCSU-VLSI-93-23, North Carolina State University, 1994.

[8] G. Moyer, W. Liu, R. K. Cavin III, and T. Scha�er. A High Speed CMOS Clock Shaper Using Wave
Pipelining. Technical Report NCSU-VLSI-93-11, North Carolina State University, 1993.

[9] K. Nogami and A. El Gamal. A CMOS 160Mb/s Phase-Modulation I/O Interface Circuit. In ISSCC

Digest of Technical Papers, pages 160{161, February 1994.

[10] R. Rogenmoser et al. 1.16 GHz Dual-Modulus 1.2 �m CMOS Prescaler. In Proceedings of the IEEE

1993 Custom Integrated Circuits Conference, pages 27.6.1{27.6.4, 1993.

[11] R. G. Swartz. Ultra-High Speed Multiplexer/Demultiplexer Architectures. International Journal of
High Speed Electronics, 1:73{79, 1990.

[12] S. Taylor. A High-Performance GaAs Pin Electronics Circuit for Automatic Test Equipment. IEEE

Journal of Solid-State Circuits, pages 1023{1029, October 1993.

