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Abstract: Transient simulation of narrowband bandpass filters used in microwave circuits is chal-
lenging because of matrix ill-conditioning. Here, such filters are modelled as the equivalent
discrete-time form developed using a bilinear z-transform. The technique has been implemented
in a general purpose transient circuit simulator and validated using a 1.7 GHz 5-section coaxial
filter with a 0.9% bandwidth.
1 Introduction

Transient circuit simulation is becoming increasingly
important in modelling RF and microwave circuits where
pulsed operation, large transistor count circuits and compo-
site signals including multi-channel and chirped signals,
tight specifications and high-level noise and interference
are increasingly prevalent. The ability to model RF and
microwave systems in conventional transient circuit simu-
lation is limited by the difficulty of modelling high-order,
narrow-band filters. In transient circuit simulators filters
are traditionally modelled using Laplace inverse pole-zero
descriptions or using compact models of circuit elements.
Accurate modelling typically requires small time-steps
and the simulation problem is analogous to capturing
small differences of large numbers [1].
The range of filters that can be modelled in a typical com-

mercial transient simulator is shown in Fig. 1 for a
Butterworth bandpass filter modelled using all-pole
elements. This figure indicates regions where valid results
are obtained with results valid for lower orders and higher
bandwidths. When driven by a linear FM chirp source [2],
a generic radar signal, for example, a convergent solution
can only be obtained for a filter with a fractional bandwidth
.3% and when the order of the low-pass prototype of the
filter order is,10 or so. The valid operating region is some-
what wider for sinusoidal excitation. The root cause of the
problem is ill conditioning of the modified nodal admittance
matrix (MNAM) developed from the associated discrete
model during iterative simulation [3]. The problem is
exacerbated by the large range of voltage and current
levels in high Q filters.
Even though higher-frequency operation of modern cir-

cuits increases the possibility for ill-conditioned MNAMs,
the potential for a given circuit to have an ill-conditioned
MNAM was known to the creators of Spice [4]. For
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example, consider the simple two-stage ladder circuit
shown in Fig. 2. Here, a 50 MHz sinusoidal voltage
source drives the ladder, which is terminated in a 50-ohm
load. In this circuit, the first stage has element values
L1 ¼ 1 mH and C1 ¼ 1 pF, and the second stage element
values are multiplied by a scale factor, h, which ranges
over several orders of magnitudes. The frequency-domain
MNAM for this illustrative circuit is easily obtained using
the techniques described in [5]. Fig. 3 shows (the logarithm
of) the condition number of the MNAM for this circuit as a
function of (the logarithm of) the scaling factor h. For large
scaling factors – indicating especially stiff circuits – the
condition number grows without bound leading to invalid
simulation results. Note that the character of the curve
here does not change significantly with a change in
driving point frequency; the knee of the curve simply
moves to the left or right.
The matter of ill-conditioning is arguably worse in the

time domain. This can be seen by considering how the con-
struction of the time-domain MNAM entries unavoidably
involves entries with largely varying orders of magnitude.
To see this, consider a single second-order factor of a
tenth-order low-pass prototype Butterworth filter

HLP(s) ¼
k0sþ k1

s2 þ b0sþ 1
(1)

where k0 and k1 are the residues of each of the rational frac-
tions resulting from a partial fraction expansion and the b0
factors can be found in [6] for a variety of filter types.
This filter is subsequently converted to a bandpass filter
through the substitution HBP(S) ¼ HLP((S

2
þ v0

2)/BS),
where B is the 3-dB bandwidth and v0 is the centre fre-
quency. When this substitution is made, the result is

HBP(S) ¼
k0BS

3
þ B2k1S

2
þ k0Bv

2
0S

S4 þ b0BS
3 þ (2v2

0 þ B2)S2 þ b0Bv
2
0S þ v4

0

(2)

Creation of the time-domain MNAM entries for the filter is
accomplished via analytic Laplace transform inversion of
(2) and the addition of state variables to account for the
extra time-domain derivatives. As a result, the unit coeffi-
cient of S4 in (2) and the very large factor v0

4 occupy separ-
ate MNAM entries with no way of resolving large
disparities in their magnitudes. Thus, the ill-conditioning
within the time-domain MNAM is induced by the intrinsic
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centre frequency of operation and is unrelated to whether
or not the overall system is stiff because of the interaction
of other components. As an example of the atrocious ill-
conditioning that can occur, a conventional implementation
in f REEDATM of a tenth-order Butterworth bandpass filter
with a centre frequency of 1 MHz and a passband band-
width of 100 kHz (i.e. 10%) yielded an MNAM with a
condition number of 2.9 � 1043!
In this paper, a strategy is presented for modelling filters

of high order (up to order 83) and fractional bandwidths as
low as 0.1%. The central concept is using a (pre-warped)
z-domain approximation. The filter model makes only unit
entries in the MNAM while filling in the right–hand side

Fig. 2 Two-stage ladder circuit with ill-conditioned MNAM

Fig. 1 Synthesis limitations of a leading commercial simulator
compared with the model developed here and implemented in
fREEDATM

Fig. 3 Condition number of MNAM for the two-stage ladder
circuit for various ladder scale factors at 50 MHz
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known vector of the matrix-vector circuit equation, thus
avoiding the creation (or exacerbation) of MNAM ill-
conditioning. This technique was implemented in an open-
source general purpose circuit simulator [7] modified to
accommodate Spice-like transient circuit simulation for
some elements and z-domain simulation for others. The pro-
cedure is described for a bandpass filter and results pre-
sented for transient simulation.

2 Z-Domain filter transformation

With the Bilinear z-Transform (BZT) [8] and uniform time
discretisation (i.e. equal time-steps), a linear continuous
time filter can be replaced by a discrete-time [9] equivalent
filter provided that the Nyquist criterion [10] is observed.
Although transient circuit simulation is intended to model
continuous-time systems, simulation actually proceeds
using discretised time models [11]. Thus, the behavioural
modelling of analogoue filters using equivalent discrete-
time filters is a natural fit for transient simulation
environments.
The process of modelling a bandpass filter begins with

the specification of passband and stopband frequencies,
passband flatness, stopband attenuation and often insertion
loss. The bandpass specifications are then transformed to
low-pass specifications, and well-defined [12] steps using
BZT yield an equivalent discrete-time bandpass filter.

1. Determine the pre-warped frequency specifications from
the analogoue filter specifications.
2. Determine the low-pass transfer function in the s-domain
using the pre-warped frequency specifications, then apply
the lowpass-to-bandpass frequency transformation

s(
S2 þ v2

o

S
(3)

which translates the filter behaviour into a passband in S
geometrically centred at vo.
3. Perform the bilinear transformation

S(
z� 1

zþ 1
(4)

to convert the filter from the S-domain to the discrete-time
frequency domain (i.e. z-domain) and algebraically reduce
the transfer function to a form that can be realised.

Steps 2 and 3 will be described in detail in Section 3.
Step 1, frequency pre-warping, converts a continuous-time
frequency va to its discrete-time equivalent vp through
the application of the formula

vp ¼ tan
vat

2

h i
(5)

Here t is the fixed step time in circuit simulation. However,
from the discrete-time filtering perspective, t also functions
as the sampling interval and is related to the sampling fre-
quency vs of the discrete-time filter by

t ¼
2p

vs

(6)

Substituting (6) into (5) leads to

vp ¼ tan p
va

vs

� �
(7)
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Application of the Nyquist criterion requires that
max(va) , vs/2, and after applying the criterion it can be
seen that a one-to-one relationship exists betweenva andvp.

3 Bandpass filter model

Construction of a particular instance of a discrete-time filter
begins with the netlist parameters passed to the simulator
engine. These parameters specify frequencies correspond-
ing to the s-domain, that is, frequencies that are not
pre-warped. The parameters may explicitly specify the
centre frequency and number of poles of the filter; otherwise
the passband and stopband edge frequencies implicitly
specify the centre frequency and number of poles, which
are then pre-warped and used to compute the number of
poles, N, by following steps described in [12, 13]. From
here forward, all frequencies will be assumed to be
pre-warped.
The transfer function H(s) of an N-pole low-pass filter is

given by

H(s) ¼

A
Q(N=2)�1

k¼0

1

(s� pk)(s� pk)
, for N even

A
(sþpr)

Q((N�1)=2)�1

k¼0

1

(s� pk)(s� pk)
, for N odd

8>>><
>>>:

(8)

In (8), pk and pk are complex conjugate pole pairs, pr is the
magnitude of a pole that occurs on the negative real axis and
A is a constant that sets the filter gain. For unity gain

A ¼

Q(N=2)�1

k¼0

jpk j
2, for N even

pr
Q((N�1)=2)�1

k¼0

jpkj
2, for N odd

8>>><
>>>:

(9)

The pole locations pk are given in [14] for Butterworth and
Chebychev filters.
The process is illustrated by considering the transfer

function of the pole pair of a low-pass filter

Hk(s) ¼
1

aks
2 þ bksþ ck

(10)

Now, applying the frequency transformation (3) to (10) the
bandpass Hk(S) response is derived from Hk(s)

Hk(S) ¼
S
2

akS
4 þ bkS

3 þ CkS
2 þ DkS þ Ek

(11)

where Ck ¼ 2vo
2akþ ck, Dk ¼ bkvo

2 and Ek ¼ akvo
4. Next,

the BZT S ( (z2 1)/(zþ 1) is applied to (11) yielding

Hk(z) ¼
1� 2z�2

þ z�4

Fk þ Gkz
�1 þ Hkz

�2 þ Kkz
�3 þMkz

�4
(12)

with Fk, . . . ,Mk in Table 1. A low-pass pole singleton trans-
formation can be derived similarly with ak set to zero

Hk(z) ¼
1� z�2

Fk þ Gkz
�1 þ Hkz

�2 þ Kkz
�3 þMkz

�4
(13)

with Fk . . . Mk in Table 1. Realisation of (12) and (13) in
canonical form [15] requires normalisation of the Fk, and
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so for purposes of realising the filter, the canonical form
of Hk(z) is given by Hck(z)¼ Hk(z)/Fk so that

Hck(z) ¼
ak0 þ ak1z

�2
þ ak2z

�4

1þ bk1z
�1 þ bk2z

�2 þ bk3z
�3 þ bk4z

�4
(14)

The coefficients in (14) are given in Table 2 and are
obtained by collecting the scaled terms from (12) and
(13). The 1/Fk scaling factors are combined into a discrete-
time multiplier coefficient Ad, where

Ad ¼

A
Q(N=2)�1

k¼0

1

Fk

, for N even

A
Q((N�1)=2)�1

k¼0

1

Fk

, for N odd

8>>><
>>>:

(15)

The discrete-time form of the filter, in a block cascade
implementation, is shown in Fig. 4. Following the develop-
ment given in [15], the canonical form of a filter block that
implements (14) is the form that requires the fewest storage
elements to implement. This form is created by introducing
an intermediate function Wk(z). If Xk(z) and Yk(z) are the
input and output, respectively, of the kth cascaded block
of the filter, then the intermediate function Wk(z) is intro-
duced by

Hck(z) ¼
Yk(z)

Xk(z)
¼

Yk(z)

Wk(z)
�
Wk(z)

Xk(z)
(16)

Table 1: Transfer function denominator coefficients

Low-pass

pole pair

Low-pass

pole singleton

new

coefficient

k, N even or

k = K, N odd

k ¼ K, N odd

Fk akþ bkþ CkþDkþ Ek bkþ ckþ bkvo
2

Gk 24ak2 2bkþ 2Dkþ 4Ek 2bk(vo
2 2 1)

Hk 6ak2 2Ckþ 6Ek bk2 ckþ bkvo
2

Kk 24akþ 2bk2 2Dkþ 4Ek 0

Mk ak2 bkþ Ck2Dkþ Ek 0

Table 2: Bandpass filter block coefficient definitions

Low-pass

pole pair

Low-pass

pole singleton

canonical

coefficient

k, N even or

k = K, N odd

k ¼ K, N odd

ak0 1 1

ak1 22 21

ak2 1 0

bk1 Gk/Fk Gk/Fk

bk2 Hk/Fk Hk/Fk

bk3 Kk/Fk 0

bk4 Mk/Fk 0
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where, by substitution of the numerators and denominators
of (14), the following relationships are obtained

Yk(z)

Wk(z)
¼ ak0 þ ak1z

�2
þ ak2z

�4 (17)

Wk(z)

Xk(z)
¼

1

1þ
P4

i¼1 bkiz
�i

(18)

Rearranging (17) and (18), the final z-domain form of the
equations implementing the canonical form of the filter
block is given by

Yk(z) ¼ [ak0 þ ak1z
�2

þ ak2z
�4]Wk(z) (19)

Wk(z) ¼ Xk(z)�
X4
i¼1

bkiz
�iWk(z) (20)

and, after inversion from the z-domain to the time-domain,
the final form of the block filter equations are obtained

yk(n) ¼ ak0wk(n)þ ak1wk(n� 2)

þ ak2wk(n� 4) (21)

wk(n) ¼ xk(n)�
X4
i¼1

bkiwk(n� i) (22)

In (21) and (22), the index variable n refers to the discre-
tised time increment, that is, t ¼ nt. In order to facilitate
Newton iteration at a given time step, it is necessary to
subject the present values of the variables xk(n), wk(n),
and yk(n) to Newton iteration. Let a superscripted ( j)
denote the iterates, then (21) and (22) are modified as
follows

y
(j)
k (n) ¼ ak0w

(j)
k (n)þ ak1wk(n� 2)

þ ak2wk(n� 4) (23)

w
(j)
k (n) ¼ x

(j)
k (n)�

X4
i¼1

bkiwk(n� i) (24)

The block diagram of the kth cascaded block of the filter,
reflecting (23) and (24) and in canonical [15] form, is
shown in Fig. 5. One new element in Fig. 5 (and not
present in [15]) is the storage element Dj required to store
values of the Newton iterates of wk

( j)(n) within a time
step. Upon convergence at a particular time step, the Z21

storage elements holding wk(n2 1), . . . ,wk(n2 4) are
updated at the initial iterate of the next time step.
One drawback to the discrete-time filter implementation

concerns entries that must be made in the Jacobian matrix
to facilitate Newton iteration [16]. In conventional
implementations of device models, Jacobian entries [17,
18] are determined through the evaluation of equations
resulting from the analytic partial differentiation of
continuous-time constitutive equations. Given the inher-
ently discrete-time nature of the filter described here, that
method is not available. Instead, the Jacobian entries are
formed from a ratio of the difference of the current and pre-
vious output iterates to the current and previous input iter-
ates – effectively an implementation of the Secant
method. This has the effect of reducing the rate of

Fig. 4 Discrete-time bandpass Butterworth filter in cascade form
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convergence of the Newton iterations from quadratic (i.e.
error reduced at a quadratic rate) to superlinear with a
resulting rate of (1þ

ffiffiffi
5

p
)=2 ’ 1:62 [19].

4 Experimental results and discussion

A discrete-time Butterworth bandpass filter was
implemented in fREEDATM [7] using the methodology of
the previous section. Validation used a 5-section (having a
fifth order low-pass prototype) filter with coaxial resonators
having a maximally flat transfer characteristic. The filter has
a 23 dB passband of 15.6 MHz, a centre frequency of
1.7 GHz (a fractional bandwidth of 0.9%), and an insertion
loss of 1.2 dB. The passband and stopband edge frequencies
and insertion loss were extracted from the S21 magnitude of
the measured filter. These were used as model netlist
parameters.
The first step in validation is verifying the frequency

response of the simulated filter. This was accomplished by
running a series of transient simulations with sinusoidal
sources at 0 dBm power levels, then transforming the
results to the frequency domain and collecting the filter
response for the series at the excitation frequencies.
Simulations were run for a time period long enough to
assure that initial transients had died out, and the fast
Fourier transform (FFT) was taken on 8192 points of ‘trail-
ing data.’ Fig. 6 compares the results achieved by

Fig. 6 Simulated (referenced to 0 dBm) and measured frequency
response results for a 5-section coaxial filter

Fig. 5 Typical discrete-time filter block in canonical form
1027
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fREEDATM with analytic frequency response calculations
and the measured S21 magnitude data for the coaxial filter.
Agreement is seen in the vicinity of the passband and
down the stopband edges to about 280 dBm where the
noise floor of the measuring equipment dominates.
Next, the filter was excited by a linear FM chirp signal

with a 200 MHz chirp range centred at 1.7 GHz, and the
FFT of the result was taken. The power level of chirp
source was normalised such that the flat portion of the
chirp was at 0 dBm. The linear FM chirp signal is the
type of waveform used in radar [2], a system that is difficult
to characterise using harmonic balance and traditional
circuit simulators. Fig. 7 shows that excellent agreement
is seen between the response of the simulated filter to the
simulated chirp signal and the measured S21 magnitude
data for the coaxial filter. The filter order and fractional
bandwidth are noted in Fig. 1 where it is seen that the
filter characteristics cannot be simulated using a conven-
tional transient circuit simulation technique. Furthermore,
the high-dynamic range [20] of fREEDATM enables the
filter response to be modelled over a very wide dynamic
range.

5 Conclusion

A simulation model for a maximally flat discrete-time band-
pass filter suitable for transient circuit simulation was pre-
sented. The model is effectively implemented in the
z-domain so that a much higher-order filter can be modelled
than that achievable with a more conventional implemen-
tation based on a pole-zero s-domain transfer function.
Owing to the robustness of the fREEDA

TM

transient simu-
lator engine, Newton iteration convergence is achieved
using a fixed time step, making the simulation of a discrete-
time behavioural filter model possible. In order to deploy

Fig. 7 Response of simulated filter to a linear FM chirp signal
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discrete-time filter models in other transient simulator
environments, it is necessary to use a fixed time step and
avoid the default adaptive time stepping of the Spice
engine [21]. More information on fREEDATM is available
at http://www.freeda.org.
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