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Abstract: The effective signal-to-noise and distortion ratio (SNDR) at the output of a nonlinear
amplifier is defined through the decomposition of the nonlinear output into correlated output and
uncorrelated distortion. The analysis is based on the orthogonalisation of the nonlinear behavioual
model that allows the accurate estimation of the effective in-band (or co-channel) distortion and
hence determination of SNDR. Fundamental issues regarding the evaluation of the effective
in-band distortion and its effect on digitally modulated signals are discussed. Simulations of
in-band distortion and SNDR of WCDMA signals are verified experimentally using feed-forward
cancelation.
1 Introduction

Nonlinear distortion from wireless transmitters results in
two system impairments: the first is co-channel interference
and the second is adjacent channel interference (ACI). ACI
distortion has received much attention in analysis and
measurement of wireless components mainly because of
the ease in which it is measured from directly comparing
out-of-band distortion to the desired signal. Co-channel dis-
tortion is more difficult to quantify because it is not directly
observable from the spectral measurement of the output
signal. Alternatively, co-channel distortion is quantified
from measurements waveform signal quality metrics such
as signal-to-noise and distortion ratio (SNDR) error vector
magnitude (EVM) and the correlation coefficient (r).
These signal metrics are measured using a digital receiver
to demodulate the output signal and then perform time-
domain calculations using the input signal. Demodulation
and determination of signal metrics from circuit simulation
of complex integrated circuit designs is not practical.
Therefore, new analysis techniques are needed to determine
efficiently signal metrics from circuit simulations and lab-
oratory measurements.
The key to understand the relationship between

co-channel distortion and SNR is to recognise that interfer-
ence is defined by the total in-band signal power that is
uncorrelated with the desired signal. Thus, the SNR at the
output of a nonlinear circuit is determined by the ratio of
the desired signal to the uncorrelated in-band distortion
and noise.
The identification of the uncorrelated distortion com-

ponents is usually done by assuming that the input signal
has a Gaussian statistical properties. Then, using
Bussgang theorem [1], the response of a general nonlinear-
ity to a Gaussian process consists of an amplified replica of
the input signal and an uncorrelated distortion component
[2–4]. The Gaussian assumption leads to a simplified
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analysis of distortion in CDMA systems; however, it is
not always valid to model CDMA wireless communication
signals which exhibit statistical properties that depend on
number of active users, user power profile, modulation
and coding [5]. A theoretical analysis of the decomposition
of the output spectrum into uncorrelated components
without using the Gaussian assumption was studied in [5–
12] where on the basis of the properties of the distribution
function of the input signals, the output of a bandpass non-
linearity can be expressed as a sum of uncorrelated
components.
In [13], we presented an orthogonalisation procedure of

the nonlinear behavioural model that enables the effective
in-band distortion in IS-95 system to be estimated. In this
paper, we present a generalised approach for the accurate
estimation of in-band distortion introduced by nonlinear
amplification in WCDMA systems. We present an orthogo-
nalisation procedure on the basis of Gram–Schmidt ortho-
gonalisation for the nonlinear model to determine the
effective in-band distortion. Gram–Schmidt orthogonalisa-
tion is more general than orthogonal polynomials to model
nonlinearity [14, 15], because it does not impose a certain
probability distribution on the input waveform.
Measurement verification of the predicted uncorrelated
inband distortion in WCDMA systems is achieved using
feed-forward cancelation of the desired signal at the
output of the nonlinear amplifier. The estimated effective
in-band distortion obtained from the orthogonalised model
is used to predict the effective SNDR (which is directly
related to BER for a particular modulation scheme).
Predicted in-band distortion is in very good agreement
with measured in-band distortion and SNDR.

2 Orthogonal behavioural model development

Many nonlinear models are available for behavioural mod-
elling of nonlinear circuits; however, the developed model
presented here is intended to provide insight into how non-
linear in-band distortion contributes to signal-to-noise and
distortion degradation. To this end, the behavioural model
is developed by orthogonalising the nonlinear response in
respect to the input signal and each branch of the model
such that each component at the output of the model is
orthogonal to each other. In the proposed model, a
complex power series behavioural model of the nonlinear
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circuit is utilised to represent a quasi-static, or memoryless,
nonlinearity, although the procedure presented is generally
applicable to more complicated models.
A memoryless nonlinearity can be characterised as a

power series model of the form

y(t) ¼
XN
n¼1

yn(t) ¼
XN
n¼1

anw
n(t) (1)

This representation however does not guarantee the
representation of the output as pure linear and pure dis-
tortion terms. This is because different orders of nonli-
nearity (yn(t)) may be correlated since the input basis
functions in (1) (w(t), w2(t), . . . ,wN(t)) are not
orthogonal.
The orthogonalisation of the behavioural model is needed

for the prediction of in-band distortion in wireless com-
munication systems where the objective is to extract the
uncorrelated part of the nonlinear output that is responsible
for the degradation of system performance. The objective is
thus to convert the nonlinear model in (1) into a model with
orthogonal output components of the form

y(t) ¼
XN
n¼1

sn(t) (2)

where sn(t) represent the nth order orthogonal output com-
ponent corresponding to yn(t). Orthogonality here is
defined in the statistical sense as

Rsnsm
(t) ¼ E[sn(t)sm(t þ t)] ¼ 0

where R represents the cross-correlation function assuming
that sn(t) and sm(t) are jointly wide-sense stationary (WSS)
processes and E is the statistical expectation operator. As a
result, the nonlinear output is expressed as a useful com-
ponent yc(t) correlated with the input signal, an uncorrelated
distortion component yd(t)

y(t) ¼ yc(t)þ yd(t) (3)

where using (2)

yc(t) ¼ s1(t) (4)

and

yd(t) ¼
XN
n¼2

sn(t) (5)

The useful component of the signal yc(t) consists of the
linearly amplified version of the input signal and the corre-
lated part of the nonlinear terms (spectral regrowth terms
represented by orders of the input signal). The correlated
part of the distortion does not contribute to distortion
noise but rather affects the signal level in a manner akin
to gain saturation or enhancement of discrete tones. The
uncorrelated component of the output yd is additive distor-
tion noise and affects system performance similar to addi-
tive white gaussian noise (AWGN). Thus, both correlated
and uncorrelated components of the output affects the
output SNR and BER in different ways.
In the following subsections we use Gram–Schmidt

orthogonalisation [16] to formulate the output as a sum of
uncorrelated terms for the power series model.

2.1 Gram–Schmidt orthogonalisation

Gram–Schmidt orthogonalisation is a mathematical pro-
cedure by which a set of non-orthogonal basis vectors is
IET Microw. Antennas Propag., Vol. 1, No. 5, October 2007
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converted into an orthogonal set [16]. Let wi be a set of
basis vectors for a finite-dimensional vector space V then
any vector y [ V can be written as a linear combination
of these basis vectors.

y ¼
XN
n¼1

anwn (6)

The Gram–Schmidt orthogonalisation procedure can
then be used to produce an orthogonal basis set un and
hence the vector y is written in terms of the orthogonal
basis as

y ¼
XN
n¼1

bnun (7)

where the orthogonal basis are produced as

un ¼ wn �
Xn�1

m¼1

amnum (8)

where

anm ¼
kwn, uml
kumk

2
(9)

and the kl represents inner product. The new coefficients bn
are then found as

bn ¼ an �
XN
m¼n

bmamn (10)

2.2 Orthogonalisation of the power series model

Instead of dealing with the general form of the power
series model, we choose to deal with its envelop
version since all the simulations done in this paper are
at the envelop level. The envelope version of this
model represents the nonlinear relationship between the
complex envelopes of the input and the output wave-
forms denoted by w̃(t) and ỹ(t) and can be developed
as in [17]

~y(t) ¼
XN
n¼1
nodd

bn ~wn(t) ¼
XN
n¼1
nodd

bnj ~w(t)j
n�1 ~w(t) (11)

where bn represents the envelope coefficients which are
directly related to the coefficients an. The envelope coef-
ficients bn can be obtained by polynomial fitting of the
measured AM–AM and AM–PM characteristics.
Applying the Gram–Schmidt procedure to the model in

(11), the new set of orthogonal output components s̃n(t) in
(2) can be obtained by replacing the input basis functions
(w̃1(t), w̃2(t), . . . , w̃N(t)) by a new set of orthogonal basis
(ũ1(t), ũ2(t), . . . , ũN(t)).
Therefore, the orthogonal output components can be

written as

~sn(t) ¼ cn ~un(t) (12)

where cn represents the orthogonal model coefficients and
un(t) ¼ un(t) represents a new set of orthogonal inputs.
Therefore, using Gram–Schmidt procedure, the new set of
orthogonal inputs can be obtained as

~un(t) ¼ ~wn(t)�
Xn�2

m¼1

anm ~um(t) (13)
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where anm is complex coefficient that represents the corre-
lation between the wn(t) and um(t) terms

anm ¼
E[ ~wn(t)~u

�
m(t)]

E[~um(t)~u
�
m(t)]

(14)

and hence, the original set wn(t) can then be written as a
linear combination of the orthogonal set un(t) as

~wn(t) ¼
Xn
m¼1

anm ~um(t): (15)

The new set of coefficients cn that represents the new
orthogonal nonlinear model is derived from the original
model coefficients bn as

cn ¼
XN
m¼n

bmamn (16)

Note that the new set of coefficients depends on the original
envelop coefficients and the input signal power level rep-
resented by the correlation coefficient amn. Note that
Gram–Schmidt orthogonalisation leads to a completely
uncorrelated output terms regardless of the distribution of
the input process. Special cases of this procedure can be
developed when the distribution of the input process is
known, such as using the Gaussian assumption as discussed
in [4].
Considering a 5th order orthogonalised model, the

orthogonal inputs are found using (13)

~u1(t) ¼ ~w1(t)

~u3(t) ¼ ~w3(t)� a31 ~u1(t)

~u5(t) ¼ ~w5(t)� a51 ~u1(t)� a53 ~u3(t) (17)

and the new set of coefficients of the orthogonal model are
obtained using (16) as

c1 ¼ b1 þ a31b3 þ a51b5

c3 ¼ b3 þ a53b5

c5 ¼ b5 (18)

where the correlation coefficients amn are found as in (14) as

a31 ¼
E[ ~w3(t)~u

�
1(t)]

E[~u1(t)~u
�
1(t)]

a51 ¼
E[ ~w5(t)~u

�
1(t)]

E[~u1(t)~u
�
1(t)]

a53 ¼
E[ ~w5(t)~u

�
3(t)]

E[~u3(t)~u
�
3(t)]

(19)

A 5th order orthogonalised power series model is shown in
Fig. 1. Note that with the power series model, Gram–
Schmidt orthogonalisation leads to new polynomial types
when the distribution of the input process is known. For
example, if the input process has a Gaussian distribution,
the orthogonalisation procedure leads to Hermite poly-
nomial representation of the nonlinear model. Another
example is when the input process has a Poisson distribution
where the orthogonalisation procedure leads to the
Poisson–Charlier polynomial representation of the non-
linear model [18, 19].

2.3 Discussion

The above formulation enables treating the in-band portion
of the uncorrelated distortion component yd(t) as additive
1080
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noise component. Considering the power series model that
represents the memoryless case, the uncorrelated in-band
distortion causes the scattering of the constellation points
of a digitally modulated signal similar to AWGN. On the
other hand, when the uncorrelated term is removed (e.g.
by linearisation), the resulting term is the correlated
output which is a scaled version of the input signal by a
complex factor. This scaling results in the rotation and
scaling of the constellation points that is evident by consid-
ering the complex multiplicative factors c1 of the orthgona-
lised power series model. Therefore, from (12), the
correlated output can be written as

~yc(t) ¼ ~s1(t) ¼ c1 ~u1(t) ¼
XN
m¼n

bmam1 ~w1

¼ b1 ~w1(t)þ
XN
m¼3

bmam1 ~w1

(20)

which means that the terms other than the linear term
(b1w̃1) are what causes the rotation and scaling of the con-
stellation points. In systems that employ automatic gain
control (AGC), this scaling can be removed and hence
the design of a predistorter on the basis of the removal
of uncorrelated components results in optimum nonlinear
distortion cancelation. Fig. 2a and b shows a constellation
diagrams of a quadrature phase shift keying (QPSK)
signal before and after nonlinear amplification, whereas
Fig. 2c and d show the constellation of the correlated
and uncorrelated components of the nonlinear output.
These figures show that the constellation of the correlated
output is a replica of the input with some rotation while
the constellation of the uncorrelated output is shown to
be similar to the case when AWGN is present.

3 Effective in-band distortion and SNDR

The objective now is to derive the output autocorrelation
function and the output spectrum to characterise the effec-
tive in-band distortion. Using the orthogonal behavioural
model, we can write the output autocorrelation function as
the sum of uncorrelated components where the cross-
correlation function of any two components is zero.
Therefore, the output autocorrelation function can now be
written using (3) as

R~y~y(t) ¼ R~yc ~yc
(t)þ R~yd ~yd

(t) (21)

Fig. 1 Orthogonal envelop nonlinear model with uncorrelated
outputs of order 5
IET Microw. Antennas Propag., Vol. 1, No. 5, October 2007
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Fig. 2 Constellation diagram of QPSK with pulse shaping

a Input signal
b Output signal
c Correlated output
d Uncorrelated output
where the autocorrelation function is defined for a WSS
stationary random process as

R~y~y(t) ¼ E[~y(t)~y�(t þ t)]

where the * represents complex conjugation. The Fourier
transform of the autocorrelation function gives the power
spectral density of the process by Wiener–Kenchin
theorem [20]. Here, Rỹc ỹc

(t) represents the autocorrelation
function of the correlated component of the nonlinear
output and Rỹd ỹd

(t) represents the autocorrelation function
of the uncorrelated component and can be expressed using
(4) and (5) as

R~yc ~yc
(t) ¼ R~s1 ~s1

(t)

R~yd ~yd
(t) ¼

XN
n¼2

R~si ~si
(t) (22)

where the autocorrelation function Rỹc ỹc
(t) represents the

undistorted output and Rỹd ỹd
(t) represents distortion.

With the orthogonalisation of the nonlinear model, the
output autocorrelation consists of the sum of the autocorre-
lation functions of the orthogonal components of the output.
However and as pointed out in [7], this is not always true
because even if E[s̃n(t)s̃

�
m(t)] ¼ 0 it is not necessarily that

E[s̃n(t)s̃
�
m(tþ t)] ¼ 0. Blachman [7] studied this case and

showed that for a zero mean random process w̃(t) a suffi-
cient and necessary condition for the output autocorrelation
function to be written as a sum of uncorrelated components
IET Microw. Antennas Propag., Vol. 1, No. 5, October 2007
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is that the process w̃(t) be a separable random process (has a
separable distribution function) in the Nuttal sense [21].
This implies that the conditional mean M ¼ E[w̃ (tþ t)jw̃
(t)] is a linear function of the form: A(t)w̃(t)þ B(t).
Therefore, for any separable process, M can be written as
[7]

M ¼ E[ ~w(t þ t)j ~w(t)] ¼
E[ ~w(t) ~w(t þ t)]

E[ ~w2(t)]
~w(t)

¼
R ~w ~w(t)

R ~w ~w(0)

~w(t) (23)

This means that the cross-correlation function of w̃ (t) ¼
w̃1(t) and its nth power (w̃n(t)) can be written as

E[ ~wn(t) ~w1(t þ t)] ¼ E[E[ ~w1(t þ t) ~wn(t)j ~w1(t)]]

¼ E
E[ ~w1(t þ t) ~w1(t)]

E[ ~w2
1(t)]

~wn(t) ~w1(t)

� �

¼
E[ ~w1(t þ t) ~w1(t)]

E[ ~w2
1(t)]

E[ ~wn(t) ~w1(t)]

¼
R ~w1 ~w1

(t)

R ~w1 ~w1
(0)

R ~wn ~w1
(0)

¼ an1R ~w1 ~w1
(t)

¼ an1R ~w ~w(t) (24)
1081
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The identity holds for separable random processes such as
Gaussian processes as will be shown in the next section:
however, a separable process does need to be Gaussian
[7]. For CDMA signals, this condition can be proved
using their statistical properties without assuming a
Gaussian distribution.
To develop the relationship between the co-channel dis-

tortion and SNDR (and hence system BER), it is useful to
express the above formulation in the frequency domain.
The output power spectral density (PSD) is obtained from
the Fourier transform of the autocorrelation function [20].
Therefore, the output PSD of ỹ(t) can be found by taking
the Fourier transform of (21)

S~y~y( f ) ¼ S~yc ~yc ( f )þ S~yd ~yd ( f ) (25)

The output spectrum is therefore the sum of the spectra of
the uncorrelated signal components of the orthogonal beha-
vioural model. This partition is useful for the case in hand
where the objective is to separate the uncorrelated output
distortion from the useful or undistorted component and
hence to estimate the effective in-band distortion. The effec-
tive in-band distortion can now be expressed in terms of the
PSD’s of the uncorrelated output components of (25) as

PInband ¼

ðB=2
�B=2

S~yd ~yd ( f ) df (26)

where B is the bandwidth of the input signal. The effective
system SNDR is defined as the ratio of signal to total noise
power including the effective in-band distortion power. It
can be expressed in terms of the PSD’s of the uncorrelated
output components of (25) as

SNDR ¼

Ð B=2
�B=2 S~yc ~yc ( f ) dfÐ B=2

�B=2 S~yd ~yd ( f ) df þ N0B
(27)

Note that SNDR is a function of both the nonlinear distor-
tion and the PSD of AWGN represented by N0. The evalu-
ation of the effective SNR is important to determine the
system BER and the system noise figure. These parameters
are usually estimated assuming a linear AWGN channel
however nonlinear distortion increases the system BER
for a fixed AWGN power. In the following, we apply the
above analysis to the case where the input signal is a
known such as the case of narrow band gaussian noise
(NBGN) process and WCDMA signals.

3.1 Orthogonalised behavioural model with
gaussian input

As an example, we apply the above analysis to a NBGN
process which is a very widely used approximation to
CDMA signals. A NBGN signal is represented by its auto-
correlation function as as

R ~w ~w(t) ¼ E[ ~w(t) ~w�(t þ t)] ¼ N0sinc(Bt) (28)

where B is the bandwidth of the process and N0 is the PSD
of the white process before bandlimiting. Considering a 5th
order orthogonalised power series model, the correlation
coefficients amn can be evaluated using (14) and using the
1082
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properties of Gaussian random processes [22]

a31 ¼
E[ ~w3(t)~u

�
1(t)]

E[~u1(t)~u
�
1(t)]

¼
R ~w3 ~u1

(0)

R~u1 ~u1
(0)

¼ 2R ~w ~w(0)

a51 ¼
E[ ~w5(t)~u

�
1(t)]

E[~u1(t)~u
�
1(t)]

¼
R ~w5 ~u1

(0)

R~u1 ~u1
(0)

¼ 6R2
~w ~w(0)

a53 ¼
E[ ~w5(t)~u

�
3(t)]

E[~u3(t)~u
�
3(t)]

¼
R ~w5 ~u3

(0)

R~u3 ~u3
(0)

¼ 6R ~w ~w(0) (29)

Let A ¼ Rw̃w̃ (0) (which represents the average power of the
input signal), the new set of coefficients of the orthogonal
model is obtained using (18) as

c1 ¼ b1 þ 2Ab3 þ 6A2
b5

c3 ¼ b3 þ 6Ab5

c5 ¼ b5

the orthogonal inputs are evaluated using (19) as

~u1(t) ¼ ~w1(t)

~u3(t) ¼ ~w3(t)� 2A~u1(t)

~u5(t) ¼ ~w5(t)� 6A2 ~u1(t)� 6A~u3(t)

and hence the orthogonal outputs can be evaluated as
~si(t) ¼ ci ~ui(t), i ¼ {1, 3, 5}. It is easy to show that a
Gaussian process is a separable random process because
of the separability of the Gaussian distribution function
and therefore the condition (23) holds. For example

E[~s1(t þ t)~s3(t)] ¼ E[c1 ~u1(t þ t)c3 ~u3(t)]

¼ c1c3E[~u1(t þ t)~u3(t)]

¼ c1c3E[ ~w1(t þ t) ~w3(t)]

� a31c1c3E[ ~w1(t þ t) ~w1(t)]

but using the properties of Gaussian processes [23]

E[ ~w1(t þ t) ~w3(t)] ¼ 2R ~w ~w(t)R ~w ~w(0)

and hence

E[~s1(t þ t)~s3(t)] ¼ 2c1c3R ~w ~w(t)R ~w ~w(0)

� 2c1c3R ~w ~w(0)R ~w ~w(t)

¼ 0: (30)

The cross correlation between the other terms can be eval-
uated similarly. The autocorrelation of the correlated and
uncorrelated components can now be evaluated using (22)
and using the properties Gaussian random variables [23] as

R~yc ~yc
(t) ¼ R~s1 ~s1

(t) ¼ jc1j
2
R~u1 ~u1

(t)

¼ jb1 þ 2b3Aþ 6b5A
2
j
2R ~w ~w(t) (31)

R~yd ~yd
(t) ¼ R~s3 ~s3

(t)þ R~s5 ~s5
(t)

¼ jc3j
2R~u3 ~u3

(t)þ jc5j
2R~u5 ~u5(t) (32)

where

jc3j
2R~u3 ~u3

(t) ¼ 2jb3 þ 6b5Aj
2R3

~w ~w(t) (33)

and

jc5j
2
R~u5 ~u5

(t) ¼ 12jb5j
2
R
5
~w ~w(t) (34)

The output PSD can be found by taking the Fourier trans-
form of (31) and (32). Thus, the output autocorrelation
IET Microw. Antennas Propag., Vol. 1, No. 5, October 2007
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function consists of uncorrelated components and the output
spectrum is therefore the sum of the spectra of the individ-
ual components leading to a completely separable signal
and distortion components. Fig. 3 shows the output spec-
trum of an NBGN process partitioned into correlated and
uncorrelated components. It is clear that the shape of the
uncorrelated distortion spectrum is completely different in
shape from the correlated spectrum.

3.2 WCDMA signals

In this section, we consider the application of the orthogonal
behavioural model using different examples of WCDMA
signals. Simulated WCDMA are used as input to a 5th
order power series model, and the output spectrum is com-
puted from the orthogonalised model. Fig. 5 shows the total
output spectrum and the uncorrelated distortion spectrum of
three different customised forward-link WCDMA signals:
forward-link 3 dedicated physical channel (DPCH) and 16
DPCH and a reverse-link 5DPCH signal. Note that the
shape of the uncorrelated components depends on the
signal and its statistics. Fig. 4 shows the probability
density functions of the three signals. In the case of 3
DPCH and 5 DPCH shown in Fig. 5a and b, the uncorre-
lated distortion inside the main channel is below spectral
regrowth in the adjacent channel. The case of 16 DPCH
shown in Fig. 5c represents the worst case since it exhibits
the highest peak-to-average ratio (PAR). The shape of the

Fig. 3 Output spectrum of NBGN process; (1) correlated output
and (2) uncorrelated distortion

Fig. 4 PDF of the signal envelope of the three WCDMA signals
used in the simulations. Solid line, 5 DPCH; dashed line, 3 DPCH;
dotted line, 16 DPCH
IET Microw. Antennas Propag., Vol. 1, No. 5, October 2007
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uncorrelated spectrum resembles that of Gaussian signals
which is flat over the signal bandwidth because its distri-
bution can be approximated by a Gaussian distribution by
the central limit theorem.

4 Measurement and simulation results

The analytical evaluation of the uncorrelated distortion
component obtained from the orthogonalisation procedure
was verified by measurements done on WCDMA signals.
The measurements presented here were done using
Agilent 8510 vector network analyser (VNA), E4438C

Fig. 5 Output spectrum of a forward-link WCDMA signal. (1)
correlated spectrum and (2) uncorrelated distortion

a 3 DPCH
b 5 DPCH
c 16 DPCH
1083
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vector signal generator, E4445A spectrum analyser and
89600S vector signal analyser (VSA).

4.1 Behavioural model extraction

The amplifier considered here has a gain of 21 dB, an output
1 dB compression point of 11 dBm and an output third order
intercept (OIP3) of 18 dBm all at 2 GHz. The coefficients of
the envelope model of the amplifier were obtained by
measuring the AM–AM and AM–PM characteristics of
the power amplifier (PA) at 2 GHz. A polynomial of order
5 was fitted to the complex data using classical least
squares polynomial fitting and a set of envelope coefficients
(bn) obtained. Table 1 shows the envelope coefficients of the
envelope power series model developed to model the PA.
The output spectrum was developed from the computed
autocorrelation function using signal realisations of the
forward-link and the reverse-link WCDMA signals which
were generated according to the WCDMA standard.

4.2 Orthogonal model verification

Table 2 shows the corresponding orthogonal model coeffi-
cients for different WCDMA signals and at an input
power of 210 and 25 dBm. The uncorrelated distortion
spectrum was measured using feed-forward cancelation as
described in [13]. The input signal is generated using
Agilent ESG 4438C vector signal generator. Three
forward-link WCDMA signals were generated: 3 DPCH,
5 DPCH and 16 DPCH, all using WCDMA standard. The
resulting spectrum at the output of the feed-forward cance-
lation system consists of the uncorrelated distortion, and the
effective in-band distortion is measured within the signal
bandwidth using Agilent VSA. Fig. 6 shows the measured
and simulated uncorrelated distortion spectra of the three
forward-link WCDMA signal models: 3 DPCH, 5 DPCH,
and 16 DPCH all, measured at Pin ¼ 210 dBm which is

Table 1: Envelope power series coefficients

b1 3.7576þ j10.7590

b3 289.89742 j83.1693

b5 495.24þ j330.57

Table 2: Orthogonal power series coefficients for
various WCDMA signals

Pin,

dBm

3-DPCH 5 DPCH 16 DPCH

210

c1 2.9166þ j9.9608 3.0392þ j 10.0826 2.9249

þ j 9.9689

c3 274.9131 2 j73.1674 280.8735 2 j 77.1459 274.9111

2j73.166

c5 495.24þ j330.57 495.24þ j 330.57 495.24

þ j 330.57

25

c1 1.6327þ j8.5917 1.7969þ j 8.8278 1.6480

þ j 8.6100

c3 242.5131 2 j51.5405 261.3613 2 j 64.1216 242.5067

2 j 51.5362

c5 495.24þ j330.57 495.24þ j 330.57 495.24

þ j 330.57
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the 1 dB compression point of the PA. The measured uncor-
related distortion spectrum was compared with simulated
values using simulated spectrum and the orthogonal beha-
vioural model. The simulated spectra show a good agree-
ment with the measured spectra in terms of the power
levels and the shape. Fig. 7 shows the measured and simu-
lated in-band distortion as a function of the output power, all
measured in a bandwidth of 3.84 MHz of WCDMA signals.
The difference between the measured and simulated values
at low power levels is because of the finite cancelation that
the feed-forward approach provides.
The predicted SNDRwas verified using direct vector signal

analyzer (VSA)measurements. Fig 8 shows a good agreement

Fig. 6 Uncorrelated distortion spectrum of a forward-link
WCDMA signal. Dashed line, measured signal; solid line, simu-
lated signal

a 3 DPCH
b 5 DPCH
c 16 DPCH
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between themeasured and the simulated values of SNDR. The
signal to additive white Gaussian noise ratio was fixed at
30 dB in the simulations which is the value measured by the
VSA when no nonlinear distortion is present.

5 Conclusion

We have developed a procedure that enables the effective
in-band distortion in RF front ends to be identified and esti-
mated. The procedure is based on the orthogonalisation of
the nonlinear model using Gram–Schmidt orthogonalisa-
tion. The orthogonalisation was done for the power series
model. The analytical formulation presented here enables
the SNDR to be directly related to nonlinear distortion for
both memoryless system and systems with memory. The
uncorrelated co-channel distortion was obtained from the
output spectrum estimated using signal realisations and
measured nonlinear characteristics, which means that
system metrics and in-band distortion can be estimated
directly and accurately from simple measurements.
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