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Abstract—Fosters’ canonical representation of the transfer
characteristic of a linear system is the key to causal fully conver-
gent incorporation of distributed structures in transient circuit
simulators. The implementation of the Foster’s model in the
fREEDA circuit simulator is reported and the modeling of a
two-port coupled inductor is presented as an example.

Index Terms—Foster’s canonical model, transient circuit
simulation.

I. INTRODUCTION

T RANSIENT simulation of circuits incorporating dis-
tributed structures has been particularly troublesome.

Electromagnetic characterization of transmission lines, an-
tennas, and RF and microwave structures, especially when
the impact of skin effect and related frequency-dependent
ohmic loss must be taken into account, can only be determined
accurately in the frequency domain using one of several
integral equation-based or differential equation-based elec-
tromagnetic-field solvers. Subsequently, for the purposes of
(in general) nonlinear transient simulation of RF subsystems
and systems, a transformation technique is required to obtain
time-domain transfer functions for such passive components
from their frequency-domain responses. Particular issues
include convergence problems, noncausality inherent in the
time-domain transformation, aliasing problems in the con-
version, lengthy convolution and nonlinear iterations, and
numerical ill conditioning. Furthermore, even small numerical
errors in the frequency-domain characterization may manifest
themselves as appreciable waveform errors in the transient
response. The same is true in reverse, potentially rendering
transient simulation inadequate for the design of strongly
frequency-dependent microwave circuits such as circuits with
filters and matching networks.

Transient analysis is critical when analyzing large RF circuits
with important transient behavior, especially when large-signal
nonlinear responses must be predicted, when thermal effects
on device behavior must be taken into account, or when an
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avalanche occurs. Such simulations are critical for predicting
and mitigating oscillation and chaotic behavior. Clearly, in order
to ensure the integrity and accuracy of such simulations, the cal-
culated responses must be free from spurious nonphysical oscil-
lations and instabilities caused by lack of stability or passivity of
the numerically generated frequency-domain multipart descrip-
tions of the passive components. The purpose of this paper is to
introduce a Foster-synthesis-based methodology for the devel-
opment of a passive reduced-order multiport description of such
passives from numerically calculated frequency-domain data,
and discuss its implementation in the transient circuit simulator
fREEDA.

II. BACKGROUND

Numerous techniques have been explored for incorporating
distributed structure frequency-domain characterizations in
transient circuit simulators. These have been extensively
reviewed recently by Achar and Nakhla [1]. Techniques
include developing the impulse response and then using
convolution-based iteration techniques [2], [3] and also more
recently the evaluation of convolutions in a recursive manner
[4]. Asymptotic waveform evaluation (AWE) [5] and Laplace
inversion [6] are powerful, but have their limitations in appli-
cation as described below.

A. AWE

The AWE method is best suited for use in conjunction with
characterizations for which the moments of the transfer function
are either readily available or can be computed with high accu-
racy. The basic objective of AWE is to develop a reduced-order
state-space model of a linear sub-component of a system for the
purposes of expediting transient simulation. According to [5],
application of AWE results in approximately two orders of mag-
nitude reduction in the simulation time needed if the original
system (of higher order) is used. To facilitate the utilization of
AWE in nonlinear circuit simulation numerical inversion, con-
volution and piecewise linearization methods have been intro-
duced [5], [7]. The original implementation of the AWE tech-
nique was found to be of low bandwidth, a consequence of the
fact that moment matching was based on a single-point Padé
approximation. This limitation was partially addressed through
the use of multipoint Padé approximations (e.g.,[8]). More re-
cently, more systematic methodologies have been proposed for
such Padé approximation-based model order reduction, which,
through special processes, can ensure the passivity and, hence,
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stability, of the generated reduced-order model (see, e.g., [9],
[10]). However, use of such model order reduction methods as-
sumes that the mathematical statement of the discrete electro-
magnetic boundary value problem used to characterize the pas-
sive structure is in a form compatible with the Krylov-subspace
formalism that constitutes the backbone of all such methods.
While finite-difference- and finite-element-based methods pro-
duce such models [11], this is not the case of integral-equation-
based solvers in general, unless quasi-static approximations of
the full-wave Green’s function kernels involved in the integral
statements are made (e.g., [12]).

Nevertheless, with the advent of fast and numerically stable
iterative methods for the iterative solution of full-wave integral
equations, their application to the full-wave characterization of
distributed passive components and interconnects continues to
grow. Since AWE-like and Krylov subspace techniques are not
best suited for the development of reduced-order models from
the method-of-moments approximations of these full-wave in-
tegral equations, one has to rely on other means for the syn-
thesis of multiport models from the calculated frequency-do-
main responses sampled at multiple frequency points over the
desired frequency bandwidth. The convolution-based develop-
ment of the impulse response discussed below is one of these
techniques.

B. Convolution Based on Impulse Response

This technique suffers from two major limitations. One
of these is the aliasing problem associated with the inverse
Fourier transform operation required to extract the impulse
response from frequency-domain characteristics. Numerous
schemes have been developed for extending the dynamic range,
but have proven difficult to apply in general. Causality has
been a long-running problem, but has been alleviated recently
[2]. Even if the aliasing problem is avoided, the convolution
approach suffers from excessive run times. The convolution
integral, which becomes a convolution sum in computer simu-
lations, is when it is implemented ( being the total
number of discrete time points used to divide the continuous
time) [3].

C. Numerical Inversion of Laplace-Transform Technique

This technique does not have aliasing problems since it does
not assume that the function is periodic—the inverse transform
exists for both periodic and nonperiodic functions. There is no
causality problem for double-sided Laplace transforms either.
Unlike fast Fourier transform (FFT)-based methods, the desired
part of the response can be obtained without performing tedious
and unnecessary calculations for the other parts of the response.
However, Laplace techniques suffer from the limitations of se-
ries approximations and the nonlinear iterations involved. The
advantages and limitations of the inverse Laplace methods are
discussed in detail in [6] and [13].

D. Summary

Irrespective of the method used for the development of a
circuit simulator-compatible impulse response, a process that

ensures the passivity (or at least the stability) of the synthe-
sized response is required. Passivity is an issue that continues
to receive significant attention by the electronic computer-aided
design (CAD) community as subsystem- and system-level non-
linear transient simulation of complex circuits involving sec-
tions that exhibit distributed electromagnetic behavior becomes
indispensable for design optimization and functionality verifi-
cation [14], [15]. The Foster’s synthesis-based technique, which
we will discuss below, includes such a process. However, prior
to its discussion, the important issue of the assignment of local
references for different ports in the distributed system is briefly
reviewed.

III. LOCAL REFERENCE GROUPS

Most microwave networks can be viewed as interconnections
of -port networks, where each port has two terminals, one of
which is a reference terminal. In the case of a distributed net-
work, these reference terminals are, in general, independent of
each other. In many cases, the appropriate handling of the refer-
ence terminals is inherent in the network parameters used, such
as with the use of -parameters. Use of multiple reference ter-
minals is of paramount importance to the proper electromag-
netic description of large distributed networks such as active
antenna arrays and on-chip interconnect networks [16], [17].
The formulation particular suited to circuit analysis is the local
reference group (LRG) concept [16], [18]. The difference be-
tween LRGs and the conventional usage of ports will now be
explained. Conventionally, when referring to an -port, we are
referring to a network with nonreference terminals and
reference terminals. (The reference terminals are not instanta-
neously connected and, thus, it is an error to consider them as a
global ground node.) In the general case, several terminals can
have the same local reference terminal (LRT) and the network
parameters describing the subcircuits are port based. The con-
version of the port-based -parameters to nodal-based -pa-
rameters, as are required in nodal-based circuit simulators, has
been previously defined by Mohan [19]. In effect, an LRG is a
multiterminal port with one reference terminal and one or more
other terminals.

IV. FOSTER’S CANONICAL MODEL

Foster’s canonical model is used here to develop a re-
duced-order model of a distributed network [24]. Of most
importance here is that, when properly constructed, Foster’s
canonical model is causal.

A. Representation

Foster’s representation of distributed circuits is adopted be-
cause of its guaranteed causality, provided that its construction
from the available frequency-domain data for the network re-
sponse is carried out according to the constraints involved in
its definition. The detail description of these constraints, along
with a description of the methodology used for the synthesis of
Foster’s canonical form, can be found in [23]. It is pointed out
that, for our purposes, the methodology proposed in [23] was
streamlined for direct compatibility with the rational function
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synthesis algorithm VectFit [21], [22]. The resulting process
was first presented in [25]. It is important to stress that prior
to utilizing VectFit, the numerical data for the frequency-do-
main response, which constitute the input to VectFit, are tested
for passivity. Violation of passivity may be encountered, par-
ticularly in relation to data obtained from numerical solutions,
in which case, it is predominantly caused by discretization or
round-off error. The easiest way to test for passivity is through
the conditions satisfied by the scattering-parameters of the mul-
tiport circuit [20]. If passivity is violated at a frequency point,
the situation is rectified through a slight perturbation of the scat-
tering parameters.

Once the numerical data has been rendered passive, the Foster
synthesis process is ready to commence. To offer a brief re-
view of the properties of the Foster canonical form, the case of a
one-port circuit is considered. Foster’s canonical representation
of its input admittance is

(1)

where represents the conductance term, represents the
capacitance value of the shunt capacitance term,
represents a real pole at , and and

—the overbar indicates the complex conjugation—together
represent a complex conjugate pole pair. In addition to the re-
quirement that the real part of the poles is nonpositive, the re-
quirement that and are nonnegative is recognized im-
mediately and intuitively as a required constraint for passivity.
These constraints are complemented by ones involving the co-
efficients , and and the associated poles. These additional
constraints are

(2)

The constraints for the case of multiport network are of similar
form and can be found in [23]. A final point worth mentioning
is the issue of the accuracy of the synthesized model outside
the frequency range of the data used for its synthesis. Clearly,
accuracy is guaranteed only over the frequency range used in the
synthesis. It is, therefore, essential that the frequency range over
which data is generated for the synthesis of the Foster equivalent
circuit is selected broad enough to encompass the anticipated
bandwidth of interest in the simulations of the circuits in which
the synthesized equivalent will be used.

Synthesized subject to these constraints, the multiport admit-
tance matrix is guaranteed to be passive and, hence, causal. Its
compatibility with the modified nodal admittance (MNA) ma-
trix description of the state-space representation of the overall
system is another advantage that becomes more evident from
the discussion in Section IV-B.

Returning to the general case of a multiport distributed cir-
cuit, let be the number of ports. The pole-residue form of

its rational function approximation, obtained according to the
process outlined above, is as follows:

...
...

...
... (3)

where all the elements share the same set of poles
. The poles are, in general, complex, and due

to the passivity of the generated reduced model, are all stable.
Since complex poles occur in complex conjugate pairs, with
their corresponding residues being complex conjugates also,
the expression for the current at the th port in terms of the

-port voltages may be cast in the form

(4)

where is the number of pairs of complex poles and
is the number of real poles. Thus, (4) describes one row of the
definite port-based nodal admittance matrix

. This is derived from the indefinite form of
the nodal admittance matrix with multiple redundant rows and
each of these corresponding to an LRT [16], [24]. In the case
of a lumped linear network with a single global reference ter-
minal, there would be only one redundant row. This distinction
is not important for the development that follows, but is critical
in formulating the circuit equations for the entire network. Thus,
referring to the LRG section, each of the LRTs shown (terminals

) result in redundant entries and care must
be taken in formulating the overall circuit equations. In the end,
the definite forms of the total MNA matrix must be used, as the
indefinite form is singular [19]. The synthesis methodology is
then based on the interpretation of each of the terms in the equa-
tion above as part of an equivalent circuit.
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B. Technical Approach

The -port Foster’s model is directly incorporated in the
MNA matrix in the circuit simulator. The implementation is
analogous to that of inserting multiterminal linear voltage-con-
trolled current sources (VCCSs) although a direct implementa-
tion is preferred for simulation speed and robustness, as well as
netlist robustness (that is specifying a single element rather than
a complex circuit of VCCSs). The method demonstrated here is
the pole-residual method, as it has demonstrated good numer-
ical stability.

Foster’s model describes an admittance matrix wherein each
element of the matrix is represented as a rational function in
pole-residue format. In this format, different elements in the ad-
mittance matrix may have different poles (meaning values of the
poles), but all the elements in the admittance matrix must have
the same number of poles. However, in a complete network sim-
ulation, there can be any number of -port Foster models with
each model having a different number of poles. The restriction
on the number of poles of each of the admittance matrix ele-
ments being the same comes about because time-domain anal-
ysis requires derivatives of the MNA matrix. (For steady-state
analysis, as in harmonic-balance analysis, there would not be
this pole restriction, but the key guiding principal we have fol-
lowed is using the same model in all circuit analyses.)

C. Filling the MNA Matrix

The widely accepted practice for incorporating models in a
simulator is to use a stamp, which, in this case, is a subma-
trix entry in the MNA matrix of the linear network. This is
done using a function typically called fillMNAM, which, in our
case, fills the MNA matrix with the calculated transfer function
values.

Consider a two-port distributed network, then we could have
either one or four instances of the NPortFoster element, i.e., if

(5)

then each could be represented as an instance of this
element, depending on the way it is connected in the network.
Alternatively, all four components of the matrix could be treated
as a single element. However, simplicity is critically important
and, thus, each element of the admittance matrix is implemented
separately. Furthermore, each admittance element has one or
more real poles and one or more complex pole pairs. From (3),

(6)

where

(7)
Thus, (6) can be written in the form

(8)

Hence, there is a real pole-residue value and a complex pole-
residue value, and the complex pole-residue value is converted
to real pole-residue format.

D. Development of the MNA Stamp

Here, the MNA stamp of Foster’s model is developed. The
transfer function , voltage , and the current are
related as

(9)

and

(10)

where varies from 1 to . The MNA stamp is built from
stamps for the individual poles. First consider the real pole

(11)

then

(12)

taking its inverse Laplace transform and rearranging

(13)

where is the voltage difference between terminals
and . The real pole adds one extra row and column. The

MNA matrix stamp for is then in conventional form [26]

(14)

and its first derivative is

(15)

Next consider the complex conjugate pole pair

(16)

when multiplied, it yields the real term

(17)
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and, thus,

(18)

where , , , and are real and

(19)

(20)

(21)

(22)

Taking the inverse Laplace transform of (18) and rearranging

(23)

Since this involves second derivative terms, we take an auxiliary
variable, say, , and define it as

(24)

and, thus,

(25)

then the MNA stamp is

(26)

and its first derivative is

(27)

The number of extra rows and columns of the MNA for the
implementation of time-domain analysis is

Extra rows and columns number of real poles

number of complex poles

The factor of “2” is present here because of the complex conju-
gate pairs.

V. MODELING OF A DISTRIBUTED COUPLED INDUCTOR

Coupled inductors or on-chip transformers are used in RF
and microwave integrated circuits to boost inductance values,
as balun-like structures, as ac coupled interconnects, and
in switched capacitor bias circuits operating at microwave
frequencies. A stacked transformer of external dimension of 50
and 75 m was fabricated on a 0.25- m five metal-layer process
[27] (see Fig. 1). The self-inductances of the transformer are

Fig. 1. Three-dimensional picture of on-chip coupled inductors.

Fig. 2. S-parameters of the coupled inductor.

nominally 2 nH. A patterned polysilicon ground shield was
placed between the bottom spiral inductor and the substrate to
reduce eddy currents and eliminate substrate effects.

The distributed coupled inductor (Fig. 1) has complex fre-
quency characteristics (Fig. 2) and demonstrates the fidelity of
the reduced-order model and its integration in a transient circuit
simulator. An th-order port-based -parameter Foster’s
canonical model was developed from the swept frequency
experimental network analyzer characterization. Note that the
Foster’s model is guaranteed to be causal and, hence, no check
is required.

A. Experimental Setup

The experimental setup consists of a probe station, digital
sampling oscilloscope, 3-Gb/s pulse generator, subminiature A
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Fig. 3. Comparison of the pulse waveforms measured at the output of the pulse
generator and at the end of the through line.

(SMA) cables, and 100- m-pitch ground–signal–ground (GSG)
probes.

The system was initially calibrated by applying a square pulse
of 1-GHz frequency using an SMA cable and the GSG probes.
The output port was connected to the sampling head of the os-
cilloscope using GSG probes and an SMA cable.

The input signal frequency of 1 GHz is low enough that it is
unaffected by discontinuities and dispersive losses in the SMA
cable. To that end, the GSG probes were connected in a through
configuration on a line reflect method (LRM) impedance stan-
dard substrate (ISS) calibration substrate. ISS is a multipurpose
calibration substrate offered by Cascade Microtech, and LRM
is one of the calibration techniques that can be implemented
using the ISS substrate. The output waveform was analyzed on
the oscilloscope. It was observed that the difference in the two
waveforms (both in amplitude and frequency) was negligible.
Hence, this confirms that the effect of losses in the SMA cable
or discontinuity effect in the fixturing is not significant enough
to warrant a time-domain calibration. This is illustrated in Fig. 3
where two waveforms are compared: one measured at the output
of the pulse generator and the other at the end of a through-line
connection.

B. Results and Discussion

Fig. 4 shows the transient response of the coupled inductor
calculated using the NPortFoster model described above. was
taken to be two, as it is a two-port inductor model, and the factor-
ization time of the matrix was calculated to be 0.01 s. The drive
for the two-port Foster’s network is a 1-V exponential square
input pulse with a series resistor of 50 . The output voltage
is measured across a 50- resistive load and the transient anal-
ysis simulation is shown in Fig. 4. The simulation result agree
closely with that of the experimental data. In particular, the di-
rect implementation described minimizes the number of non-
linear operations whereas a large number of such operations are
required if a synthesized RLCK (K being a coupled inductor)
equivalent circuit was used.

Fig. 4. Complete transient response for the coupled inductor comparing
measured and simulated results.

VI. CONCLUSION

This paper has presented the result of a quest for a distributed
structure modeling technology that can be used in transient cir-
cuit simulation analysis strategy. The modeling technique has
guaranteed causality and is particularly well suited to modeling
distributed structures that do not necessarily have low-pass char-
acteristics. The modeling technique can be efficiently imple-
mented in a transient circuit simulator (in this case, fREEDA
[28]).
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