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Abstract—For the first time a state variable transient anal-
ysis using wavelets is developed and implemented in a cir-
cuit simulator. The formulation is particularly well suited to
modeling RF and microwave circuits and is validated by con-
sidering a nonlinear transmission line. However, results in-
dicate that still more research is needed to make this method
efficient for the simulation of large circuits.

I. Introduction

MULTIRESOLUTION analysis has generated consid-
erable excitement in the engineering community be-

cause of its potential to efficiently model large systems with
an overall coarse response but fine behavior in some re-
gions. Wavelet basis functions are ideally suited to expand-
ing such a response as higher order and more localized basis
functions can be concentrated on the regions where the re-
sponse varies rapidly. Multiresolution analysis has been
used with a wide variety of modeling problems including
signal processing and electromagnetics. It is important to
know where wavelet analysis is applicable as this guides
future development. This letter presents, for the first time,
wavelet-based transient analysis incorporated in a general
purpose circuit simulator. In circuits, voltage and current
changes vary with time and location (e.g. node index) and
so they can be modeled with few state variables by using
variable resolution. In contrast, in conventional transient
simulation the same fine time step is used at every node.

The use of wavelets for the transient analysis of circuits
has been limited to the calculation of convolution opera-
tion in the transient analysis of simple circuits [1, 2] and
the analysis of linear time-variant electrical networks [3].
Zhou et al. presented the spline pseudo-wavelet collocation
method for simple networks in [4] and [5] (see also [6–9]).
In the present study, we achieved wavelet transient analysis
for arbitrary circuits by combining this collocation method
with the state variable concept [10] in an object-oriented
circuit simulator (Transim, [11]).

II. Background

This work uses the spline pseudo-wavelet collocation
method described in detail in Reference [8]. In this method
the unknown function is expanded in a wavelet series. The
coefficients of the series are determined so the expansion
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fits the circuit response at a number of collocation points
[6].

Consider the following system of nonlinear differential
equations: {

dx
dt = f(t,x)
x(0) = xt0

(1)

where x(t) is an unknown vector function defined in a finite
interval I = [0, L], L > 4 and f(t,x) is a given nonlinear
function. A scaling operation is applied to I to cover any
interval.

Let x̂J be the vector with the wavelet coefficients of x(t):

x̂J = (x̂−1,−3, . . . , x̂−1,L−1,

x̂0,−1, . . . , x̂0,n0−2,

x̂J−1,−1, . . . , x̂J−1,nJ−1−2)

and will be determined by satisfying interpolating condi-
tions at interior knots called collocation points. Each com-
ponent xi(t) of x(t) in (1) is replaced by its wavelet expan-
sion form at each collocation point. Therefore we obtain
the following nonlinear algebraic system

Ax̂J = f̂(x̂J ) (2)

where A is a constant matrix that performs the derivative
operation and f̂() is a nonlinear vector function. Zhou et
al. [7] use a relaxation method to solve the nonlinear equa-
tions.

This method then provides a uniform error distribution
on the interval. By this property, large time steps can be
used without introducing significant phase shifting between
the approximate and exact solutions. The minimization of
the error over an interval is the significant departure from
conventional transient analysis where error is minimized at
one time point at a time.

III. Concepts Behind Formulation

In wavelet-based transient analysis the unknowns are no
longer voltages and currents but are now the coefficients of
the wavelet expansion. Thus, a formulation of a reduced
error function using a state variable approach can be de-
rived as described below. One advantage of doing this is
that the size of the resulting algebraic system of nonlinear
equations is considerably smaller than that of (2). As well,
good convergence properties can be obtained by defining
all nonlinear functions as smooth functions [12].

Formulation of the problem is in two parts: a) the combi-
nation of the linear subcircuit with sources and the expres-
sion of the result in terms of wavelets; and b) the expression
of the error function in terms of a wavelet expansion.
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A. Source Formulation

The modified nodal admittance matrix (MNAM) of the
linear subcircuit is now formulated in the time domain and
integrated with the sources. Two square matrices of dimen-
sion n (M and M′) are obtained, one for the unknowns and
the other for its derivatives

Mu + M′u̇ = s. (3)

Here u is the vector of nodal voltages and selected currents,
u̇ is the corresponding derivative and s is the source vector
composed of a ‘fixed’ time variant component sf and a
variable nonlinear component sv that depends on the state
variables:

s = sf + sv. (4)

Wavelets are introduced by considering the function g(t)
defined in I. The following square matrices WJ and W′

J

can be defined:

g = WJ ĝJ , ġ = W′
J ĝJ (5)

where g, ġ are vectors whose elements are the function and
derivative values, respectively, at the collocation points and
ĝJ is the vector of the corresponding coefficients. J is the
maximum subspace level being considered.

M and M′ are now expanded using WJ and W′
J , respec-

tively, reduced by removing the redundant first row. Ad-
ditional equations are obtained by noting that the product
of the coefficients of each electrical variable times the first
row of WJ is equal to the initial condition for that vari-
able. The extra rows from these equations plus the sum of
the expanded matrices result in a sparse matrix MJ .

The wavelet formulation of the source vector sJ = sf,J +
sv,J is obtained by expanding each element of sf,J into the
set of time samples corresponding to the collocation points.
The first time sample of the source vector is replaced by
the corresponding initial value.

The final linear circuit equation combining the linear
subnetwork and the sources is

MJ ûJ = sf,J + sv,J (6)

where ûJ is the vector of the wavelet coefficients of the
unknown circuit variables.

B. Nonlinear Error Function

The error function of an arbitrary circuit is developed
using connectivity information (described by an incidence
matrix and constitutive relations describing the nonlinear
elements). The incidence matrix T, is built as described
in [10]. This matrix is sparse and moreover, the number
of nonzero elements (either +1 or −1) is at most twice the
number of state variables (ns). Then T is expanded by
replacing each +1 by WJ , and each −1 by −WJ (in both
cases WJ is reduced by removing the first column and the
first row is replaced by zeros). This matrix is denoted T2,J .
The transpose of T is similarly expanded by replacing each
+1 by a matrix Ir, and each −1 by −Ir, where Ir is an

identity matrix of size m × m reduced by removing the
first row. This matrix is denoted T1,J .

T1,J and T2,J capture the connectivity of the nonlinear
elements. The nonlinear subnetwork is described by the
following generalized parametric equations [12]:

vNL(t) = u[x(t),
dx

dt
, . . . ,

dnx

dtn
,xD(t)] (7)

iNL(t) = w[x(t),
dx

dt
, . . . ,

dnx

dtn
,xD(t)] (8)

where vNL(t) and iNL(t) are vectors of voltages and cur-
rents at the common ports, x(t) is a vector of state variables
and xD(t) is a vector of time-delayed state variables, i.e.,
xDi(t) = xi(t− τi).

Let xJ be the state variable vector at all collocation
points and x̂J the corresponding vector of coefficients in
the transform domain. The first transform coefficient is
excluded from the set of unknowns since it can be derived
from the initial condition. Then we denote vNL,J(x̂)J and
iNL,J(x̂J ) the vectors of voltages and currents at the ports
of the nonlinear devices at all the collocation points but
the first. The error function F(x̂J ) is then

F(x̂J ) = T2,JM−1
J sf,J

+T2,JM−1
J T1,J iNL,J(x̂J )− vNL,J(x̂J ) (9)

which can be expressed as

F(x̂J ) = ssv,J + Msv,J iNL,J(x̂J )− vNL,J(x̂J ) (10)

Here ssv,J is the compressed source vector (the initial con-
ditions of the entire linear subcircuit are embedded in it)
and Msv,J is the compressed impedance matrix. Our im-
plementation solves the system of nonlinear equations us-
ing a globally convergent quasi-Newton method. The size
of Msv,J is (m− 1)ns× (m− 1)ns, where m is the number
of collocation points.

IV. Discussion

Consider the modeling of the 47-section nonlinear trans-
mission line described in [13] (see Fig. 1). Modeling this
structure is regarded by many in the field as an extreme
test of the performance of transient and steady-state sim-
ulators. Fig. 2 compares the results using wavelet tran-
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Fig. 1. Model of the nonlinear transmission line.

sient and Spice3f5 simulations. The small difference in
the response is due to slightly different treatments of the
diode model in Transim and Spice. A large number of
time windows (see [7]) was needed to reduce the number
of unknowns to be solved simultaneously. There are clear
tradeoffs involved. In wavelet transient analysis the error
is minimized over a time interval and there are many more
unknowns than when the error is minimized at a single
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Fig. 2. Comparison of the voltage of the last diode of the nonlinear
transmission line.

time point. However since error is minimized over a range
and because of the O(h4) convergence rate of the wavelet
basis used [6], where h is the time step, there are gener-
ally many fewer time points than required in a Spice-like
analysis. Table I compares different key aspects of the two

TABLE I

Comparison of Spice and wavelet transient simulations of

the first 400 ps transient response of the soliton line.

Wavelets Spice
Time (minutes) 50 3
Memory (MB) 41 37
Scalar Unknowns 564 3027
No. of Windows / Time Samples 94 1055
Average Newton Iterations 30 4

simulation methods. Despite the smaller number of scalar
unknowns in our state variable wavelet formulation, the
overall simulation time is longer than the Spice time be-
cause of two reasons: the Jacobian of the nonlinear system
of equations in the wavelet method is dense and the ini-
tial guess for the nonlinear system at each time window
is not as good as in the Spice method. This implies more
and slower Newton iterations and therefore more computa-
tion time. The lack of a good initial guess also affects the
robustness of the analysis. Fig. 3 shows the wavelet coeffi-
cients for the state variable of the last diode. Many of these
are negligible and could be removed from the calculation by
using an adaptive scheme to increase the efficiency of the
method. More development is needed before this method
reaches its full potential. In particular dynamic variation of
resolution including variable resolution at different circuit
nodes is required.
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Fig. 3. Coefficients of the state variable of the last diode.
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