Object Oriented Microwave Circuit Simulation *

Carlos E. Christoffersen!, Usman A. Mughal!, Michael B. Steer?
March 27, 2000

Abstract

An object-oriented microwave circuit simulation environment is described. The
design of the program is intended to offer flexibility without sacrifying efficiency. Recent
developments in object-oriented techniques and in C++ compilers are used to obtain
a flexible and robust system ideally suited to the development of a global modeling
strategy for the integration of circuit, field, thermal and mechanical analyses. The
simulation of spatial power combining systems is used as a vehicle to illustrate the
architectural developments of the system.

Keywords: Circuit simulation, microwave CAE, object-oriented programming, cir-
cuit field interaction, global modeling.

1 Introduction

The rapid rate of innovation of microwave and millimeter wave systems requires the devel-
opment of an easily extensible and modifiable microwave computer aided engineering (CAE)
environment. While great strides have been made in the flexibility of commercial CAE
tools, these sometimes prove inadequate in modeling advanced systems. As with virtually
all aspects of electronic engineering the abstraction level of RF and microwave theory and
techniques has increased dramatically. In particular, large systems are being designed with
attention given to the interaction of components at many levels. One of the most significant
developments relevant to microwave computer aided engineering is the rise of object oriented
(O0) design practice [1, 2, 3, 4, 5, 6]*. While it is normal to think of OO-specific program-
ming languages as being the main technology for implementing OO design, good OO practice
(with limitations) can be implemented in more conventional programming languages such
as C. However OO-specific languages foster code reuse and have constructs that facilitate

*This work was supported by the Defense Advanced Research Projects Agency (DARPA) through the
MAFET Thrust IIT program as DARPA Agreement Number DAAL01-96-K-3619.

fC. E. Christoffersen is with the Department of Electrical and Computer Engineering, North Carolina
State University, Raleigh, NC 27695-7914, U.S.A., (e-mail: c.christoffersen@ieee.org).

tU. A. Mughal is with Intel Corp. PTD, Portland, Oregon 97124, (e-mail: uamughal@ieee.org)

SM. B. Steer is with the Institute of Microwaves and Photonics, School of Electronic and Electrical
Engineering, University of Leeds, Leeds, United Kingdom LS2 9JT, (e-mail: m.b.steer@ieee.org).

!These references are available on line at http://www.objectmentor.com/

object manipulation. The OO abstraction is well suited to modeling electronic systems, for
example, circuit elements are already viewed as discrete objects and at the same time as
an integral part of a (circuit) continuum. The OO view is a unifying concept that maps
extremely well onto the way humans perceive the world around them. Non-OO circuit sim-
ulators always become complicated with many layers of special cases. Referring to circuit
elements again, traditional simulation implementations have many “if-then” like statements
and individually identify every element in many places for special handling.

Traditionally papers on advances in circuit simulation technology have presented algo-
rithmic developments which usually resulted in more robust and speedier circuit modeling
technologies. In some cases additional capability is presented in that strategies for simulating
electronic systems that could not be modeled previously are presented. In contrast, what
this paper does more than anything else is present a level of abstraction higher than that pre-
viously reported for modeling microwave circuits and systems. This is not a paper on how to
write a computer program to implement circuit simulation. Rather it is the latest contribu-
tion to a theoretical OO circuit modeling framework to which many have contributed. This
is a traditional model for reporting research results. Specifically, the material presented here
is the result of experimentation in implementing a circuit-focused global modeling strategy
integrating apparently disparate analyses [7]. The CAE environment described in this paper
is intended to facilitate research in modeling very large systems integrating electromagnetic,
thermal, physical device models and various other analysis types. A capability not previously
supported for RF and microwave circuits and systems.

There are a few key premises that drove the work reported here. One of these is the adop-
tion of a very strong OO paradigm throughout to obtain a modular design. Also, an integral
part of the various high performance computing initiatives is the separation of the core com-
ponents embodying numerical methods from the modeling and solver formulation process
with the result that numerical techniques developed by computer scientists and mathemati-
cians can be formulated using formal correctness procedures. Thus, what is adopted here,
is that the circuit abstraction is adapted so that highly reliable and efficient pre-developed
libraries can be used.

C++ was once considered slow for scientific applications. Advances in compilers and
programming techniques, however, have made this language attractive and in some bench-
marks C++ outperforms Fortran [8, 9]. Several OO numerical libraries have been developed
[10]. Of great importance to the work described here is the incorporation of the standard
template library (STL) [11]. The STL is a C++ library of container classes, algorithms, and
iterators; it provides many of the basic algorithms and data structures of computer science.
The STL is a generic library, meaning that its components are heavily parameterized: almost
every component in the STL is a template. The current ISO/ANSI C++ standard [12] has
not been fully implemented and C++ compilers support a variable subset of the standard.
The biggest areas of noncompliance being the templates and the standard library.

The circuit simulator implementing the ideas presented here is called Transim. We present
for the first time a circuit simulator using some of the recently developed formal OO tech-
niques and C++ features. The design intent was to to combine the advantages of previous
OO circuit simulators with these new developments as well as expanding capability. Transim
uses C++ libraries [13, 14] and several written in C or Fortran [15, 16, 17]. In the following
OO circuit simulators are first reviewed and the specific OO programming construction used

in the current work is described. Then an example is presented integrating electromagnetic
and circuit analysis in modeling a microwave CPW active antenna.

2 Background

APLAC? [18, 19] is a significant achievement in the development of object-oriented circuit
simulators with the object orientation implemented in the standard C language using macros.
The most important feature of APLAC is that every circuit element is modeled internally
using independent and voltage-controlled current sources. Since all models in APLAC are
eventually mapped to current sources, the simple nodal linear DC analysis, Gu = j, is
all that is required to realize nonlinear DC, AC, transient and harmonic balance analyses.
Here G, u and j denote conductance matrix, nodal voltages and the independent source
currents, respectively. The cost of this approach is reduced speed. In part this is because
the C language is not optimum for OO applications but also because the high level of
abstraction introduces overhead. However the objective of providing great functionality
to enable experimentation with new element types and analysis techniques was achieved.
The current version of the program incorporates many advanced features including electro-
thermal analysis and is commercially available.

Other OO circuit simulators are CODECS [20], ACS? [21] and Sframe [22] and these
adopted a common interface for all the circuit elements. In this way, all the code related to
one element is separated from the rest of the program. In other words, the main program
does not have dependencies on individual elements. The result is that the programming
effort required to add new elements and algorithms is greatly reduced. ACS and Sframe are
written in C++ and among other features, they both allow one element to be composed of
other basic elements. The underlying algorithms in ACS are the same as those in Spice. As
well as the flexibility introduced by the OO design there are memory savings in storing the
circuit.

Sframe incorporates several novel features including automatic differentiation. In this
simulator C++ is used as the circuit description language rather than, say, a Spice netlist.
This arrangement yields a level of flexibility difficult to achieve using a netlist parser or
graphical interface. On the other hand, the netlist must be compiled and the simulator
linked for each circuit, and the user must be aware of the subtle details of the C++ syntax.

Other considerations about the OO design of circuit simulators are presented in [23].

3 Structure of the Program

In this Section the focus is on the design of the object-oriented structure of the program. The
goal in design was to obtain speed in development, to use ‘off the shelf” advanced numerical
techniques, and to allow easy expansion and testing of new models and numerical methods.

http://www.aplac.hut.fi/aplac/main.html
3http://www.geda.seul.org/dist/

3.1 The Network Package

The network package is the core of the simulator. All the elements and the analysis classes
are built upon it as shown in the class diagram of Figure 1. (See Appendix 1 for a description
of the class diagram syntax.) Following the suggestion made in [21], there is a NetListItem
class that is the base for all classes of objects that appear in the input netlist. This is the
base class that handles parameters. Figure 2 shows some of the methods provided by this
class. All the netlist items share a common syntax so that the element model developer does
not need to worry about the details of element parsing and there is no need to modify the
parser to add new elements. For compatibility reasons, Spice-type syntax (which does not
have a consistent grammar) is supported by the parser outside the network package.

The Element class contains basic methods common to all elements as well as the interface
methods for the evaluation routines. Some of the methods of this class (Figure 3) need to
be overridden by the derived classes. For example, in class Diode, svTran() is intended
to contain the code to evaluate the time domain response of a diode. This function is
used by DC and transient analyses. The same happens with svHB() and £i11MNAM(). The
overhead imposed by these virtual functions is small compared to the time spent evaluating
the functions themselves and so this approach is a good compromise between flexibility and
efficiency. This idea has been used in [20, 21, 22]. Transim also offers a more elaborate
mechanism for nonlinear element evaluation functions which will be described in Section 3.4.

The ElementManager class is mainly responsible for keeping a catalog of all the existing
elements. Note that this class is the only one that ‘knows’ about each and every type of
element but this dependency is weak. The element list is included from an automatically
generated file. ElementManager is also used to automatically generate the element catalog
documentation in html format, see (Figure 4). The Circuit class represents either a main
circuit or a subcircuit as a collection of elements and terminals. It provides methods to
add, remove and find elements and terminals using different criteria and it also provides
methods related to circuit topology. More details about this class are given in Figure 5. All
the Element and Terminal instances must be stored in data structure inside the Circuit
instance and the map container of the STL [11]. The map is a Sorted Associative Container
that associates objects of type Key with objects of type Data. Here Data is either Element
or Terminal and Key is int (the ID number). This is an example of where the features of
C++ are used to reduce development time. This is achieved at no overhead as an optimum
implementation of these concepts is embedded in the compiler.

Subcircuit instances are represented by the Xsubckt class, see Figure 6. The method
attachDefinition() is used to associate a Circuit instance where the actual subcircuit is
stored to the particular Xsubckt instance and expandToCircuit () takes a Circuit pointer
as argument and expands the subcircuit. Note that before expansion the complete hierarchy
of a circuit is available in memory, so this engine could eventually be used to perform
hierarchical simulation.

3.2 Example of Element Implementation: CPW Transmission Line

The flexibility for element creation is illustrated by showing one implemention of the CPW
transmission line element, Figure 7. Other implementations are also possible. Since the CPW

model is similar in concept to the physical transmission line model (Tlinp4 element) shown
in Figure 4, the CPW element can be implemented as shown in Figure 8. The Element
class (Figure 3) provides a default init () function which is executed after all the parameters
values and the terminal connections are set. This method is overridden by the CPW class
(this means the default function is replaced by a custom function for the CPW class) as
follows. After all the CPW parameters are set, the CPW init() function calculates the
equivalent parameters for a Tlinp4 element (see Figure 4 for a description of parameters)
and inserts it in the circuit. The actual transmission line equations are then handled by the
underlying Tlinp4 element and this relationship applies to nearly every other aspect of the
model such as the information to check local reference nodes [24, 25].

This kind of code reuse could also be achieved using the conventional procedural paradigm
of programming. The advantage of the OO apprach is that all the data, as well as all the
functions needed to implement the physical transmission line element are contained in one
class, thus making it easier to handle the elements as independent ‘blocks’. This is known
as the encapsulation mechanism which provides modularity of the code (see Appendix 2).

The concept of this example can also be used to create elements composed of a set of
other elements, or ‘hardwired subcircuits’, although no elements of this type are currently
implemented.

3.3 The Analysis Classes

Figure 9 shows the relation between the network package, the elements and the analysis
classes. Each of these classes stores analysis-specific data that would traditionally be global.
The concept goes farther than this as all the analysis code is encapsulated inside each class.
This leads to the key desired attribute of flexibility in incorporating a new type of analysis,
or even different implementations of the same analysis type. Examples are the SVTr and
SVHB classes which contain the state-variable- convolution transient and harmonic balance
analyses described in [26] and [27] respectively.

There are some components common to two or more analysis types. The natural way of
handling these components is by creating a class which is shared by the different analysis
types. For example, the FreqMINAM class handles a Modified Nodal Admittance Matrix
(MNAM) in the frequency domain. In a microwave simulator, the frequency domain ad-
mittance matrix is a key element for most analysis types. Since it is used so often, special
care was taken to optimize efficiency. The elements fill the matrix directly without the need
for intermediate storage of the element stamp. They do that by means of in-line functions
to reduce function call overhead. Elements can fill the source vector in a similar way. The
elements depend on the FreqMINAM methods, but this is not a problem since the interface
is very unlikely to change. The current implementation of MNAM uses the Sparse library,
described in the next Section, and is completely encapsulated inside the FreqMINAM class.
In the same way, the NLSInterface class encapsulates the nonlinear solver routines. There-
fore it is possible to replace the underlying libraries, if that is desired, without the need for
any code modification outside the wrapper classes. A final observation is that it is possible
to add any kind of analysis type provided that the appropriate interface is defined and the
member functions are written for each element type.

3.4 Nonlinear Elements

Nonlinear elements often use service routines provided by the analysis classes. In order
to maximize code reuse and to avoid the dependence of the element code on a particular
analysis routines, in Transim elements depend on interface classes (Figure 10). The concept
is similar to the dependency inversion [2]. This is a technique which relies on interface
classes (normally implemented using abstract classes in C++) to make different parts of a
program independent of each other. They only depend on the interfaces. To achieve greater
efficiency, in Transim the dependency inversion is implemented using a concrete class with
heavy in-lining and pass-by-reference.

In this way, the element routines and the analysis depend on an interface class, Time-
DomainSV (not shown in Figure 1 for clarity). TimeDomainSV is a class that is used to
exchange information between an element and a state variable based time domain analysis.
It also provides some basic algorithms such as time differentiation methods. This approach
enables the element routines to be reused by several analysis types without the need to
modify the element code (as long as the new analysis is state variable-based). For example,
the DC analysis uses the same interface element as the SVTr.

Transim offers a more refined way to implement nonlinear elements, provided the element
equations can be expressed in the following parametric form [28§]

dx d™x

vnL(t) = u[x(t),a,...,%,xlj(t)] (1)
inn(l) = w[x(t),cfi—j,...,%,x[)(t)] @)

where v (%), inL(t) are vectors of voltages and currents at the element ports, x(t) is a vector
of state variables and xp(t) a vector of time-delayed state variables, i.e., zp;(t) = z;(t — 7;).
All vectors in (1) and (2) have the same size ng equal to the number of state variables of the
element.

Given these conditions, by implementing the parametric equations (1) and (2) using
a special syntax in only one function, Transim can obtain the analysis functions svHB(),
svTran() and derivatives automatically. This mechanism is termed generic evaluation.

Figure 11 shows the class diagram for an element using this feature. Note that the Diode
class is derived from a class (AdolcElement) which itself provides the analysis routines and
deals with the analysis interfaces. The Diode class only needs to implement the eval()
function with the parametric equations.

AdolcElement uses the Adol-C library (see Section 4.5 for a detailed explanation) to
evaluate the parametric function and derivatives, but the concept is independent of automatic
differentiation. If automatic differentiation were not used, then the derived class (e.g. the
Diode class) would have to provide the Jacobian for the parametric equations (1) and (2).

The idea is in a way similar to the one used in [19], i.e. the primitive equations are
‘wrapped’ in analysis-specific generic functions and so there is no need to write a separate
routine for each analysis type. In the current work there are two additional features. The
first is that the generic evaluation is combined with the state variable concept and automatic
differentiation. This provides unprecedented simplicity to create nonlinear element models.
The second is that a single mechanism is not mandatory. There are cases where it may not

be practical to use this approach, or the overhead involved (which is completely acceptable
even for simple models such as a diode) may not be properly amortized. In those cases, the
element can implement the analysis functions directly, without using the AdolcElement
class.

It is important to remark that generic evaluation is implemented efficiently so there are no
superfluous calculations. The current implementation supports elements with any number
of state variables. Each element selects the input variables as a subset of the following:
the state variables, the first derivatives, the second derivatives and a time delayed version
of the variables (the delay may be different for each). No derivation, time delaying nor
transformation is performed on the unselected inputs.

For example, an element with only an algebraic nonlinearity (such as the VCT: voltage
controlled transducer) only selects the state variables without any derivatives or delays.
As another example, the MesfetM class implements the Materka-Kacprzac model for a
MESFET. It requires two state variables, but only one of them needs to be delayed.

A consequence of having a library of elements using generic evaluation is that it is pos-
sible to add a new analysis type by just adding the appropiate evaluation routines to the
AdolcElement class. Thus, the maintainance and expansion of the simulator is simplified.

3.5 Example: Use of Polymorphism

The previous scheme constitutes a good example of the use of polymorphism to solve a
complex problem. Consider the segment of code of Figure 12. This code corresponds to
the evaluation of the nonlinear element functions in the state variable convolution transient.
elem vec is a vector of Element pointers implemented using the vector container of the C++
STL. There is no need to keep the size of the vector in a separate variable as elem_vec.size ()
returns the size of the vector. Also, the memory management of the vector is dynamic and
automatic; and elem_vec[k] returns the Element pointer at position k in the vector.

Each pointer inside elem_vec points to different kinds of elements. For the transient
routine the actual type of each element does not matter . The line containing
elem vec[k]->svTran(tdsv) will call the appropriate evaluation routine depending on the
actual type of Element pointer. The element may implement the routine directly or through
generic evaluation, but it makes no difference for the analysis routine.

The resulting code is therefore simple and there is no need for lists of “if-then” statements.
This would be very difficult to maintain, because each time an element is added or removed,
all the lists would have to be updated.

4 Support Libraries

A large number of support libraries are available (many of them freely) and some of these are
used in Transim. The various libraries, which should be of general interest to the microwave
modeling community, are described below.

4.1 Modified nodal admittance matrix representation

Sparse 1.3* [16] is a flexible package of subroutines written in C used to quickly and accu-
rately solve large sparse systems of linear equations. The package is able to handle arbitrary
real and complex square matrix equations. Besides being able to solve linear systems, it is
also able to quickly solve transposed systems, find determinants, and estimate errors due to
ill-conditioning in the system of equations and instability in the computations. Sparse also
provides a test program that is able to read matrix equation from a file, solve them, and print
useful information about the equation and its solution. Sparse was originally written for use
in circuit simulators and is well adapted to handling nodal- and modified-nodal admittance
matrices.

4.2 Vectors and matrices

Most of the vector and matrix handling uses MV++° [14]. This is a small set of concrete
vector and simple matrix classes for numerical computing written in C++. It is not intended
as a general vector container class but rather designed specifically for optimized numerical
computations on RISC and pipelined architectures which are used in most new computer
architectures. The various MV++ classes form the building blocks of larger user-level li-
braries. The MV++ package includes interfaces to the computational kernels of the Basic
Linear Algebra Subprograms package (BLAS) which includes scalar updates, vector sums,
and dot products. The idea is to utilize vendor-supplied, or optimized BLAS routines that
are fine-tuned for particular platforms. More complete matrix packages such as Blitz++5
or linear algebra packages such as the Matriz Template Library (MTL)" and the Template
Numerical Toolkit® are available but the GNU gcc compiler version 2.8.1 and earlier used
at the time to develop Transim are not capable of compiling them. Transim is now being
developed using GNU gcc 2.95.

4.3 Solution of nonlinear systems

Nonlinear systems are solved using the NNES® [17] library. This package is written in Fortran
and provides Newton and quasi-Newton methods with many options including the use of
analytic Jacobian or forward, backwards or central differences to approximate it, different
quasi-Newton Jacobian updates, or two globally convergent methods, etc. This library is
used through an interface class (NLSInterface), so it is possible to install a different library
if desired by just replacing the interface (four different nonlinear solvers have already been
used).

4http:/ /www.netlib.org/sparse/
Shttp://math.nist.gov/mv++/
®http://oonumerics.org/blitz/
"http://www.lsc.nd.edu/research /mtl/
8http://math.nist.gov/tnt/
9http://www.netlib.org/opt/

4.4 Fourier transform

Fourier transformation is implemented using the FETW ' library [15]. FFTW is a C subrou-
tine library for computing the Discrete Fourier Transform (DFT) in one or more dimensions,
of both real and complex data, and of arbitrary input size. The authors of this library believe
that FF'TW, which is freely available, should become the FFT library of choice for most ap-
plications. Benchmarks, performed on a variety of platforms show that FFTW’s performance
is typically superior to that of other publicly available FFT software. Moreover, FFTW’s
performance is portable: the program performs well on most computer architectures without
modification.

4.5 Automatic differentiation

Most nonlinear computations require the evaluation of first and higher derivatives of vector
functions with m components in n real or complex variables [13]. Often these functions
are defined by sequential evaluation procedures involving many intermediate variables. By
eliminating the intermediate variables symbolically, it is theoretically always possible to
express the m dependent variables directly in terms of the n independent variables. Typically,
however, the attempt results in unwieldy algebraic formulae, if it can be completed at all.
Symbolic differentiation of the resulting formulae will usually exacerbate this problem of
expression swell and often entails the repeated evaluation of common expressions.

An obvious way to avoid such redundant calculations is to apply an optimizing compiler to
the source code that can be generated from the symbolic representation of the derivatives in
question. Exactly this approach was investigated by Speelpenning during his Ph.D. research
[29] at the University of Illinois from 1977 to 1980. Eventually he realized that at least in
the cases n = 1 and m = 1, the most efficient code for the evaluation of derivatives can be
obtained directly from the evaluation of the underlying vector function. In other words, he
advocated the differentiation of evaluation algorithms rather than formulae. In his thesis
he made the particularly striking observation that the gradient of a scalar-valued function
(i.e. m = 1) can always be obtained for no more than five times the operations count of
evaluating the function itself. This bound is completely independent of n, the number of
independent variables, and allows the row-wise computation of Jacobians for at most 5m
times the effort of evaluating the underlying vector function.

Given a code for a function F' : " — R™, automatic differentiation (AD) uses the chain
rule successively to compute the derivative matrix. AD has two basic modes, forward mode
and reverse mode [30]. The difference between these two is the way the chain rule is used to
propagate the derivatives.

A versatile implementation of the AD technique is Adol-C' [13], a software package
written in C and C++. The numerical values of derivative vectors (required to fill a Jacobian
in Harmonic Balance analysis [27], see Figure 13) are obtained free of truncation errors at
a small multiple of the run time with little additional memory required. It is important to
note that AD is not numerical differentiation and the same accuracy achieved by evaluating
analytically developed derivatives is obtained.

Ohttp:/ /www.fftw.org
Uhttp: //www.math.tu-dresden.de/ adol-c/

The eval () method of the nonlinear element class is executed at initialization time and
so the operations to calculate the currents and voltages of each element are recorded by
Adol-C in a tape which is actually an internal buffer. After that, each time that the values
or the derivatives of the nonlinear elements are required, an Adol-C function is called and
the values are calculated using the tapes. This implementation is efficient because the tap-
ing process is done only once (this almost doubles the speed of the calculation compared to
the case where the functions are taped each time they are needed). When the Jacobian is
needed, the corresponding Adol-C function is called using the same tape. We have tested
the program with large circuits with many tones, and the function or Jacobian evaluation
times are always very small compared with the time required to solve the matrix equation
(typically some form of Newton’s method) that uses the Jacobian. The conclusion is that
there is little detriment to the performance of the program introduced by using automatic
differentiation. However the advantage in terms of rapid model development is significant.
The majority of the development time in implementing models in simulators, particularly
harmonic balance simulators, is in the manual development of the derivatives equations.
Unfortunately the determination of derivatives using numerical differences is not sufficiently
accurate for any but the simplest circuits. With Adol-C full ‘analytic’ accuracy is obtained
and the implementation of nonlinear device models is dramatically simplified. From experi-
ence the average time to develop and implement a transistor model is an order of magnitude
less. Note that time differentiation, time delay and transformations are left outside the au-
tomatic differentiation block and this is approximately ten times faster than including them
inside the block.

5 Discussion

The successful development of the global modeling strategy required modification of the way
the simulator worked. In particular it required the experimentation with various ways to
model the interface of different types of analyses, e.g. circuit, field and thermal analyses. Key
results led to the adoption of the local reference node concept [24, 25|, and state variable-
based harmonic balance and transient analyses [26, 27]. This process of experimentation
would have been difficult without the flexibility and inherent code integrity resulting from
the OO approach described here.

5.1 Example: CPW Folded-Slot Active Antenna Unit Cell

As an example of the type of problem that can be modeled consider the CPW folded-slot
active antenna [31] shown in Figure 14. This is a component of a spatial power combining
circuit. The unit cell amplifier is excited by an incident horizontally polarized field and
radiates an amplified vertically polarized field. Complete analysis of this structure uses elec-
tromagnetic characterization as well as circuit simulation. In Figure 14 the two orthogonal
folded-slots are connected to each other by a CPW with an inserted MMIC amplifier.The
system is modeled using the circuit of Figure 15 and electromagnetic modeling of the struc-
ture is discussed in [32, 33, 34]. Note that three different local reference nodes, indicated by
the diamond shaped node symbol, are required. EM modeling yields port-based y parame-

10

ters of the antennas at each frequency of interest. The transfer of data between the EM and
circuit simulators (typically a file) includes a header with port grouping information (a port
grouping includes terminals associated with a specific local reference node). This is required
by the circuit simulator in order to expand the port-based matrix into nodal form and also
to check the connectivity of the spatially-distributed circuit. The currents calculated by
this simulation are used by an EM program to evaluate the effective isotropic power gain
of the amplifier cell. The comparison between the simulated results and the measurements
presented in [31] are shown in Figure 16.

5.2 Example: 2x2 CPW Folded-Slot Active Antenna Array

The 2x2 antenna array shown in Figure 17 is modeled using the equivalent circuit in Figure
18. A multi-port distributed element is used to model the antenna array so the electromag-
netic interactions of the antennas of different cells is taken into account.

The netlist (Figure 19) shows the syntax of subcircuits and of local refeence nodes. The
.model statements can be used in conjunction with any element type and here it is used for
the transmission lines. The output statement (.out) provide a calculator to process output
data.

The output currents are plotted in Figure 20. As expected, the currents are all different
since the system is not symmetric.

6 Conclusion

Object oriented techniques offer significant advantages for the design of circuit simulators.
Great design flexibility is obtained without compromising efficiency. This is due to advances
in both programming techniques and compiler technology. However careful analysis of the
problem and programming discipline are required. The use of ‘off-the-shelf’ libraries permits
rapid development, higher quality of the code, and as they implement modern numerical
methods which are regularly updated, currency is maintained. The simulator was developed
to model spatially distributed circuits, and in particular spatial, power combining systems
where electromagnetics, circuit and thermal interactions are important. The simulator ar-
chitecture presented here is suited to the experimentation of new simulation algorithms and
element models. Transim source code is freely available by contacting the authors.

Appendix 1: Object Oriented Programming Basics

Object oriented programming (OOP) [1] provides a means for abstraction in both program-
ming and design. OOP does not deal with programming in the sense of developing algorithms
or data structures but it must be studied as a means for the organization of programs and,
more generally, techniques for designing programs.

As the primary means for structuring a program or design, OOP provides objects. Objects
may model real life entities, may function to capture abstractions of arbitrary complex
phenomena, or may represent system artifacts such as stacks or graphics. Operationally,
objects control the computation. From the perspective of program development, however,

11

the most important characteristic of objects is not their behavior as such, but the fact that
the behavior of an object may be described by an abstract characterization of its interface.
Having such a characterization suffices for the design. The actual behavior of the object may
be implemented later and refined according to the need. A class specifies the behavior of
the objects which are its instances. Also, classes act as templates from which actual objects
may be created. An instance of a class is an object belonging to that class. A procedure (or
function) inside an object is called a method. A message to an object is a request to execute
a method.

Inheritance is the mechanism which allows the reuse of class specifications. The use of
inheritance results in a class hierarchy that, from an operational point of view, decides what
is the method that will be selected in response to a message.

Finally, an important feature of OO languages is their support for polymorphism. This
makes it possible to hide different implementations behind a common interface.

The notion of flow diagram in procedural programming is replaced in OOP by a set of
objects which interact by sending messages to each other.

We will briefly review what are traditionally considered to be features and benefits of
OOP. Both information hiding (also known as encapsulation) and data abstraction relieve
the task of the programmer using existing OO code, since with these mechanisms the pro-
grammer’s attention is no longer distracted by irrelevant implementation details. The flexible
dispatching behavior of objects that lends them their polymorphic behavior is due to the
dynamic binding of methods to messages. For the C++ language, polymorphic object be-
havior is effected by using virtual functions, for which in contrast to ordinary functions, the
binding to an actual function takes place at run time and not at compile time.

Encapsulation promotes modularity, meaning that objects may be regarded as the build-
ing blocks of a complex system. Another advantage often attibuted to the OOP is code reuse.
Inheritance is an invaluable mechanism in this respect, since it enables the programmer to
modify the behavior of a class of objects without requiring access to the source code.

Although an object oriented approach to program development indeed offers great flexi-
bility, some of the problems it addresses are intrinsically difficult and cannot really be solved
by mechanisms alone. For example, it is more likely to achieve a stable modularization when
shifting focus from programming to design.

C++ virtual functions [12] can have big performance penalties such as extra memory
accesses or the possibility of an unpredictable branch so pipelines can grind to a halt (note
however, that some architectures have branch caches which can avoid this problem). There
are several research projects which have demonstrated success at replacing virtual function
calls with direct dispatches. Note however, that virtual functions are not always bad when
it comes to performance. The important questions are: How much code is inside the virtual
function? How often is it used? If there is a lot of code (i.e. more than 25 flops), then the
overhead of the virtual function will be insignicant. But if there is a small amount of code
and the function is called very often (e.g. inside a loop), then the overhead can be critical.

12

Appendix 2: UML diagrams

The Unified Modeling Language (UML) [35, 6] is a language for specifying, visualizing, and
constructing the artifacts of software systems as well as for business modeling. The goal
of UML is to become a common language for creating models of object oriented computer
software. It is used here to graphically illustrate the relationship of classes using what is
called a class diagram. A class diagram is a graph of Classifier elements with connections
indicating by their various static relationships (Figure 1). (Note that a “class” diagram
may also contain interfaces, packages, relationships, and even instances, such as objects and
links. Perhaps a better name would be “static structural diagram” but “class diagram”
is shorter and its use is well established.) A class is drawn as a solid-outline rectangle
with 3 compartments separated by horizontal lines. The top name compartment holds the
class name and other general properties of the class (including stereotype); the middle list
compartment holds a list of attributes; the bottom list compartment holds a list of operations.
Either or both of the attribute and operation compartments may be suppressed. A separator
line is not drawn for a missing compartment. If a compartment is suppressed, no inference
can be drawn about the presence or absence of elements in it.

Each instance of type Element, for example, seems to contain an instance of type El-
ementData. This class relationship is indicated by the joining line. The relationship is
composition — indicated by the solid diamond symbol. The arrowhead denotes that the
relationship is navigable in only one direction, i.e., ElementData does not know anything
about Element. The inheritance relationship in UML is depicted by the triangular arrow-
head and points to the base class. A line from the base of the arrowhead connects it to the
derived classes, e.g. Element is derived from NetListItem.

Other forms of containment do not have whole/part implications and are called asso-
ciation relationships indicated by a line drawn between the participating classes. (This
relationship will almost certainly be implemented using pointers unless it is very weak.) If
the relationship between two classes is very weak (i.e. very little data is shared) then a
dashed line is used. For example, in Figure 1, ElementManager somehow depends upon
Diode. (In C++ the weak relationship is almost always implemented using an #include.)

An illustration showing examples for the notation is given in Figure 21.

References
[1] A. Eliéns, Principles of object-oriented software development, Adison-Wesley, 1995.
[2] R. C. Martin. “The dependency inversion principle,” C++ Report, May 1996.
[3] R. C. Martin, “The Open Closed Principle,” C++ Report, Jan. 1996.
[4] R. C. Martin, “The Liskov Substitution Principle,” C++ Report, March 1996.
[5] R. C. Martin, “The Interface Segregation Principle,” C++ Report, Aug 1996.

[6] R. C. Martin, “UML Tutorial: Part 1 — Class Diagrams,” Engineering Notebook Col-
umn, C++ Report, Aug. 1997.

13

[7]

[10]
[11]

M. B. Steer, J. F. Harvey, J. W. Mink, M. N. Abdulla, C. E. Christoffersen, H. M. Gutier-
rez, P. L. Heron, C. W. Hicks, A. I. Khalil, U. A. Mughal, S. Nakazawa, T. W. Nuteson,
J. Patwardhan, S. G. Skaggs, M. A. Summers, S. Wang, and A. B. Yakovlev, “Global
modeling of spatially distributed microwave and millimeter-wave systems,” IEEE Trans.
Microwave Theory Techniques, June 1999, pp. 830-839.

A. D. Robison, “C++ Gets Faster for Scientific Computing,” Computers in Physics,
vol. 10, pp. 458-462, 1996.

J. R. Cary and S. G. Shasharina, “Comparison of C++ and Fortran 90 for Object-
Oriented Scientific Programming,” Available from Los Alamos National Laboratory as
Report No. LA-UR-96-4064.

The Object Oriented Numerics Page, http://oonumerics.org/.

Silicon Graphics, Standard ~ Template Library = Programmer’s Guide,
http://www.sgi.com/Technology /STL/.

T. Veldhuizen, Techniques for Scientific C++ - Version 0.3, Indiana Univer-
sity, Computer Science Department, 1999. (http://extreme.indiana.edu/ tveld-
hui/papers/techniques))

A. Griewank, D. Juedes, J. Utke, “Adol-C: A Package for the Automatic Differenciation
of Algorithms Written in C/C++,” ACM TOMS, vol. 22(2), pp. 131-167, June 1996.

R. Pozo, MV++ v. 1.5a, Reference Guide, National Institute of Standards and Tech-
nology, 1997.

M. Frigo and S. G. Johnson, FFTW User’s Manual, Massachusetts Institute of Tech-
nology, September 1998.

K. S. Kundert and A. Songiovanni-Vincentelli, Sparse user’s guide - a sparse linear
equation solver, Dept. of Electrical Engineering and Computer Sciences, University of
California, Berkeley, Calif. 94720, Version 1.3a, Apr 1988.

R. S. Bain, NNES user’s manual, 1993.

M. Valtonen and T. Veijola, “A microcomputer tool especially suited for microwave
circuit design in frequency and time domain,” Proc. URSI/IEEE National Convention
on Radio Science, Espoo, Finland, 1986, p. 20,

M. Valtonen, P. Heikkila, A. Kankkunen, K. Mannersalo, R. Niutanen, P. Stenius, T.
Veijola and J. Virtanen, “APLAC - A new approach to circuit simulation by object
orientation,” 10th European Conference on Circuit Theory and Design Dig., 1991.

K. Mayaram and D. O. Pederson, “CODECS: an object-oriented mixed-level circuit
and device simulator,” 1987 IEEE Int. Symp. on Circuits and Systems Digest, 1987, pp
604-607.

14

[21]

[22]

[23]

[24]

[30]

[31]

[32]

A. Davis, “An object-oriented approach to circuit simulation,” 1996 IEEE Midwest
Symp. on Circuits and Systems Dig., 1996, pp 313-316.

B. Melville, P. Feldmann and S. Moinian, “A C++ environment for analog circuit simu-
lation,” 1992 IEEE Int. Conf. on Computer Design: VLSI in Computers and Processors.

P. Carvalho, E. Ngoya, J. Rousset and J. Obregon, “Object-oriented design of microwave
circuit simulators,” 1993 IEEE MTT-S Int. Microwave Symp. Digest, June 1993, pp
1491-1494.

C. E. Christoffersen and M. B. Steer “Implementation of the local reference concept for
spatially distributed circuits,” Int. J. of RF and Microwave Computer-Aided Eng., vol.
9, No. 5, 1999.

A. 1. Khalil and M. B. Steer “Circuit theory for spatially distributed microwave circuits,”
IEEE Trans. on Microwave Theory and Techn., vol. 46, Oct. 1998, pp 1500-1503.

C. E. Christoffersen, M. Ozkar, M. B. Steer, M. G. Case and M. Rodwell, “State variable-
based transient analysis using convolution,” IEEE Transactions on Microwave Theory
and Techniques, Vol. 47, June 1999, pp. 882-889.

C. E. Christoffersen, M. B. Steer and M. A. Summers, “Harmonic balance analysis for
systems with circuit-field interactions,” 1998 IEEE Int. Microwave Symp. Dig., June
1998, pp. 1131-1134.

V. Rizzoli, A. Lipparini, A. Costanzo, F. Mastri, C. Ceccetti, A. Neri and D. Masotti,
“State-of-the-art harmonic-balance simulation of forced nonlinear microwave circuits by

the piecewise technique,” IEEE Trans. on Microwave Theory and Techn., Vol. 40, Jan
1992, pp 12-27.

B. Speelpenning. “Compiling Fast Partial Derivatives of Functions Given by Algo-
rithms,” Ph.D. thesis (Under the supervision of W. Gear), Department of Computer
Science, University of Illinois at Urbana-Champaign, Urbana-Champaign, Ill., January
1980.

T. F. Coleman y G. F. Jonsson, “The Efficient Computation of Structured Gradients us-
ing Automatic Differentiation,” Cornell Theory Center Technical Report CTC97TR272,
April 28, 1997

H. S. Tsai, M. J. W. Rodwell and R. A. York, “Planar amplifier array with improved
bandwidth using folded-slots,” IEEE Microwave and Guided Wave Letters, vol. 4, April
1994, pp. 112-114.

M. B. Steer, M. N. Abdullah, C. Christoffersen, M. Summers, S. Nakazawa, A. Khalil,
and J. Harvey, “Integrated electro-magnetic and circuit modeling of large microwave
and millimeter-wave structures,” Proc. 1998 IEEE Antennas and Propagation Symp.,
pp- 478-481, June 1998.

15

[33] M. N. Abdulla, U.A. Mughal, and M B. Steer, “Network Charactarization for a Finite
Array of Folded-Slot Antennas for Spatial Power Combining Application,” Proc. 1999
IEEE Antennas and Propagation Symp., July 1999.

[34] U. A. Mughal, “Hierarchical approach to global modeling of active antenna arrays,”
M.S. Thesis, North Carolina State University, 1999.

[35] Rational Software, UML Resources, http://www.rational.com/.

16

List of Figures

— © 00 ~J O U i W N =

16
17
18
19
20
21

The network package is the core of the simulator.
The NetListItem class.
The Element class.
Documentation generated for an element.
The Circuit class.
The Xsubckt class.
A CPW transmission line
Implementation of an element using another element as a building block . . .
The analysis classes.
Dependency inversion was used to make the elements independent of the anal-
ysis classes.
Class diagram for an element using generic evaluation.
Nonlinear element function evaluation in convolution transient.
Implementation of automatic differentiation.
Unit cell of the CPW antenna array.
Circuit model of the unit cell. The diamond symbol indicates a local reference

Effective isotropic power gain as a function of frequency.
2x2 CPW antenna array. o
2x2 CPW antenna array equivalent circuit.
Netlist for a 2x2 CPW antenna array.
Output currents for the 2x2 antenna array.
Notation for a class diagram. L.

17

CircuitManager

<<type>>
Instanciable

<<type>>
NetListltem

<<type>>
Circuit GraphNode

<<type>>
Terminal -

-< - Element ’—> ElementData

TerminalData

Resistor

Isource

Xsubckt

Capacitor I

ElementManager

Figure 1: The network package is the core of the simulator.

18

NetListltem

* getName()

* getDescription()
* getAuthor()

+ getNumberOfParams()
* getParamSpec()
+ askParamType()
+ getParamsFrom()
+ setParam()

* isSet()

+ checkParams()

* getParamDesc()

Figure 2: The NetListItem class.

19

Element

+ getNumTerms()
* connect()

+ getTerminal()

* init()

+ check()

* getElemData()
+ filIMNAM()

+ svHB()

+ svTran()

Figure 3: The Element class.

20

4 terminal physical transmission line
Authors: Carlos E. Christoffersen, Mete Ozkar
Multi-referenced element.

Usage:

tlinp4 :<instance namer1 n2 n3 n4 <parameter list>

Parameter Type |Default value| Required?
k: Effective dielectric constant DOUBLE|1 no
alpha: Attenuation (dB/m) DOUBLE| 0.1 no
z0mag: Magnitude of characteristic impedance (chfi3PUBLE | n/a yes
fscale: Scaling frequency for attenuation (Hz) DOUBLE| 0 no
tand: Loss tangent DOUBLE| 0 no
length: Line length (m) DOUBLE | n/a yes

Figure 4: Documentation generated for an element.

21

Circuit

addElement()
removeElement()
connect()

getElement()
setFirstElement()
nextElement()
getNumberOfElements()

+ + + + + 4+ +

addTerminal()
removeTerminal()
setRefTerm()
getTerminal()
setFirstTerminal()
nextTerminal()
getNumberOfTerminals()

+ + + + + + +

+

init()

+ checkReferences()

Figure 5: The Circuit class.

22

Xsubckt

* attachDefinition(circuit)
*+ expandToCircuit(circuit)

Figure 6: The Xsubckt class.

23

Slots

Metal L o Metal
S
l [
- -
W W

Substrate (Dielectric)

Figure 7: A CPW transmission line

24

Element

CPW ‘—» Tlinp4

Figure 8: Implementation of an element using another element as a building block

25

<<type>>
NetListltem

NLSlInterface

ﬁ:

<<type>>

NETWORK

Analysis

<<interface>>
OFunction

AN

AC

S

FregMNAM

B Resistor

Circuit

<<type>>
Element

Terminal

Inductor

ELEMENT TYPES

Figure 9: The analysis classes.

26

Vsource Fdtd Open

TimeDomainSV

* getdt()

+ getCurrentTime()

+ getX(index)

+ getdX_dft(index)

+ getDelayedX(index)
+ u(index)

+ getdU_dt(index)

+ i(index)

+ getDI_dt(index)

* setTime()

DC SVTr

Figure 10: Dependency inversion was used to make the elements independent of the analysis
classes.

27

Element

+ init()

+ svHB()

+ SVHB_deriv()
+ svTran()

AdolcElement

eval() {abstract}
createTape()

+ SVHB()

+ SVHB_deriv()

+ svTran()

FregDomainSV

TimeDomainSV

Diode

MesfetM

+ init()
- eval()

+ init()

- eval()

Figure 11: Class diagram for an element using generic evaluation.

28

// Number of elements
int n_elem = elem_vec.size();
int i = 0;
// Go through all the nonlinear elements
for (int k = 0; k < n_elem; k++) {
// Set base index in interface object
tdsv->setIBase(i);
// nonlinear element evaluation
elem_vec[k] —>svTran(tdsv) ;
i += elem_vec[k]->getNumber0fStates();

Figure 12: Nonlinear element function evaluation in convolution transient.

29

AdolcElement::createTape()

. write
Diode::eval() 4—(Diode Function Tape)

¢

——————————————————————— read

Adol-C Library

Call for function or derivative evaluation

FregDomainSV
FFT

AdolcElement::svHB()

Time delay

AdolcElement::svHB_deriv()

I
|
I
|
I
:
I
I Time Derivation
I
|
I
|
I
|
I
I

TimeDomainSV

I
|
I
|
I
|
I
I Time Derivation
I
|
I
|
I
|
I
I

Time delay < AdolcElement::svTran_deriv() !

Figure 13: Implementation of automatic differentiation.

30

Meta Metal Width Folded Slot
T . portili e
slot width
INPUT
:;7 Slot
CPW line port 2
|
l
|
MMIC AMPLIFIER
y
X
=)
up and out

Ground Plane

7

OUTPUT

Figure 14: Unit cell of the CPW antenna array.

31

AMMETER AMMETER

11 /@(10 20 /@(22
INPUT/OUTPUT é

FIELD ANTENNAS FIELD
EXCITATION ‘ ‘ EXCITATION

\ /

CPW TRANSMISSION LINES

<EO

Figure 15: Circuit model of the unit cell. The diamond symbol indicates a local reference
node.

32

~ MEASUREMENT ——
| | | SIMULATION ——
oFr —— — e O
% 5 | e N
O ‘
& ;
Ll |
0 |
S T ,,,,,,,,,,,,,,,,,,,,,
3.6 3.8 4 4.2 4.4 4.6 4.8

FREQUENCY (GHz)

Figure 16: Effective isotropic power gain as a function of frequency.

33

pl p2

p5

p6

p3 p4

p7

p8

Ground Plane L

Figure 17: 2x2 CPW antenna array.

34

\\\\\\\\\\\\\\\\\\\\\\\\\

11

10

\\\\\\\\\\\\\\\\\\\\\\\\\

20

\\\\\\\\\\\\\\\\\\\\\\\\\

40

pl
p5

p2

ANTENNA

ARRAY

p4

Figure 18: 2x2 CPW antenna array equivalent circuit.

35

.ac start = 3.6GHz stop = 5.0GHz n_freqs = 50

* Subcircuit with cpwlines and amplifier model

.subckt amp_lines 11 100 22 200

.ref "a_gnd"

* Transistor small signal model

nport:amplifier 1 2 "a_gnd" filename = "ne3210sl.yp"

* CPW Transmission lines

.model fsal cpw (s=.369m w=1m t=10u er=10.8 tand=.001)
cpw:tl 11 100 1 "a_gnd" model="fsal" length=8.5m

cpw:t2 22 200 2 "a_gnd" model="fsal" length=17.5m

.ends

* Local reference nodes

.ref 100

.ref 200

.ref 300

.ref 400

.ref 500

.ref 600

.ref 700

.ref 800

* Antenna array

nport:cpw_2 10 20 30 40 50 60 70 80

+ 100 200 300 400 500 600 700 800 filename = "2x2cell.yp"
* Field excitation

gridex:iin 10 100 20 200 30 300 40 400

+ 50 500 60 600 70 700 80 800 ifilename = "2x2cell.i"

+ efilename = "dummy.e"

* Amplifier instances

xampl 11 100 55 500 amp_lines
xamp2 22 200 66 600 amp_lines
xamp3 33 300 77 700 amp_lines
xamp4 44 400 88 800 amp_lines

* Current meters

vsource:ampl 10 11

vsource:amp2 20 22

vsource:amp3 30 33

vsource:amp4 40 44

vsource:amp5 50 55

vsource:amp6 60 66

vsource:amp7 70 77

vsource:amp8 80 88

* Plot amplifier output currents
.out plot element "vsource:amp5"
.out plot element "vsource:amp6"
.out plot element "vsource:amp7"
.out plot element "vsource:amp8"
.end

if mag in "ib.outm"
if mag in "i6.outm"
if mag in "i7.outm"
if mag in "i8.outm"

[el el eolNe]

Figure 19: Netlist for a 2x2 CPW antenna array.

36

CURRENT MAG. (mA)

i5.outm

0.7 . | | | _. |
‘ ‘ ‘ ‘ 'I5.outm’
065 s — — . ie.outm’ - N
i7.outm’
0.6 'ig.outm’ N
0.55
0.5
0.45
04
0.35 [/
03 b
0.25 ! i i i ; |
3.6 3.8 4 4.2 4.4 4.6 4.8 5

FREQUENCY (GHz)

Figure 20: Output currents for the 2x2 antenna array.

37

Used

Had By Reference

Figure 21: Notation for a class diagram.

<<stereotype>>

Base Class F

Derived 1

Had By Value

Derived 2

38

