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Abstract. A moment method using a dyadic Green’s
function is developed for the analysis of quasi-optical
systems. The dyadic Green’s function used has sep-
arate terms for the paraxial and non-paraxial fields
and is much easier to develop than a mixed potential
Green’s function. The method is applied to the analy-
sis of antenna elements in a quasi-optical resonator.

1. Introduction

Quasi-optical techniques provide a means for com-
bining power from numerous solid-state millimeter-
wave sources attached to radiating elements such as an-
tenna arrays or grids, as is shown in Figs. 1 and 2. The
power from the radiating elements is combined in free-
space over a distance of many wavelengths to channel
power predominately into a single paraxial mode. The
complex device field interactions render it difficult to
optimize efficiencies and ensure stable operation. How-
ever, computer aided analysis techniques are evolving
to aid in design. The strategy is to develop, using
numerical field analysis, a multiport impedance model
of the linear part of the quasi-optical system. This
can then be interfaced with commercial microwave cir-
cuit simulators. Efficiency requires that volumetric
discretization must be avoided. By utilizing Green’s
functions appropriate to the physical background, dis-
cretization can be limited to surfaces. In [1-3] a se-
ries of developments culminated in a straight forward
methodology for developing the dyadic Green’s func-
tion of a quasi-optical structure. The dyadic Green’s
function is derived by separately considering paraxial
and non-paraxial modes. It is not feasible to derive a
mixed, scalar and vector, potential Green’s function, as
required in conventional space domain moment method
techniques. Alternatively, we have adapted an efficient
moment method field solver [4,5] to use dyadic Green’s
functions. In this paper we introduce for the first time
a moment method technique using a dyadic Green’s
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function which describes all of the electric fields, both
cavity coupled and free space, for radiating elements
of arbitrary shape in an open cavity resonator. Unlike
the work in [6] which is applicable only to infinite pe-
riodic quasi-optical structures, this work is applicable
to structures of finite extent.
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Figure 2: A grid amplifier on a dielectric slab with X and
Y polarizers.

2. Quasi-Optical Resonator Dyadic Green’s
Function

A dyadic Green’s function for a quasi-optical res-
onator was developed by Heron et al. {2,3]. The res-
onator, shown in Fig. 1, consists of a planar reflector
at z = 0 and a partially transmitting spherical reflector
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with its center located at z = D. The planar reflec-
tor is assumed to be perfectly conducting with infinite
dimensions in the transverse direction. The spherical
reflector is of finite dimension with radii of curvature
along the z and y axis, F; and Fy, respectively. The
medium in the cavity is free space. The Green’s func-
tion of the resonator can be divided into two parts

Ge = Gee + Gen (1)

where Gg. and Ggp are the cavity and half-space
contributions, respectively. The cavity Green’s func-
tion describes the coupling between an electric current
source above the planar reflector, z = d, and all of the
electric fields within the cavity, both resonant cavity
modal fields and a correction to the half-space Green’s
function to account for these cavity fields. The a,a,
component is given as

Rmnwmn (
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where N, and N, represent the number of transverse
modes. The reader is referred to [2, 3] for the expres-
sions of Epy, Rmn, and ¥,,,. The half-space is defined
as the region, z > 0, with the absence of the spherical
reflector. The dyadic Green’s function for the half-
space exhibits a strong singularity in the self-terms.
For this reason it is desirable to work in the spectral
domain. The a,a, component, for 0 < z < d, in the
spectral domain is given as 7]

k2 — k2
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kZ=kd—kZ—k , Im(k;) <0 4)
and Z; and kg are the free space impedance and
wavenumber, respectively. The imaginary part of k,
needs to be less than zero in order to satisfy the radia-
tion condition. The spectral domain Green’s function
for half-space does not exhibit any singularities.

3. Method Of Moments

The boundary value problem for the current distri-
bution on the conductor surface, located at z = d, is
formulated as an electric field integral equation. The
patch antenna surface is segmented into equal size rect-
angular cells of dimension a x b and sinusoidal basis
functions are used for expansion and testing (Galerkin
method), resulting in a set of linear equations,
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where

[z} (1) = [V] (5)
to be solved for the unknown currents I,. The terms
of the moment matrix [Z] can be divided into

Zii = Zeji + Znji (6)
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where Z, and Zj represent the cavity and half-space
contributions, respectively, given by
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The z-directed sinusoidal basis function J§ is spanned
over two rectangular cells, centered at (z;,%), and
is constant in the y direction. JF is the two dimen-
sional Fourier transform of J7 and can be evaluated in
closed form. The () represents the complex conjugate.
Primed coordinates denote the source location and un-
primed coordinates denote the test location. The cav-
ity moment matrix elements in (7) contain no singu-
larities and have separable source and test fields which
allows for efficient evaluation in the spatial domain.
The half-space moment matrix elements in (8) are com-
puted in the spectral domain [7] to avoid the singu-
larity in the spatial domain half-space Green’s func-
tions. A transformation to polar coordinates, where
k; = Bcosa and ky = Bsina, is used to reduce the
number of infinite integrations.

For this formulation only a single row of cell subdi-
vision is considered. A delta-gap voltage generator is
used as the excitation vector [V], given as

_J 1 for p equal to feed point
Ve _{ 0 otherwise (1)

The input impedance at the location of the delta-gap
voltage generator is computed as
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where I, is the current at the delta-gap computed by
the method of moments.

4. Comparison Of Computed And Experimen-
tal Results

The radii of curvature of the spherical reflector are
Fr = 0.894308 m, Fy = 0.953839 m and its location
is D = 0.620494 m. The resonant frequencies of the
cavity are given as [2]
c 1 1 -1 D
o |1t % (m+§>tan 2F, - D

+.}. .+_l tan™! L
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where ¢ is the speed of light and ¢ is the longitudi-
nal mode number corresponding to an integer num-
ber of longitudinal half waves. For the ¢ = 35 family,
measurements were made using an electrically short
inverted L antenna, shown in Fig. 3, with a wire di-
ameter of 0.9 mm and a length L = 2.6 mm. The
L antenna was divided into 10 cells with a delta-gap
source placed between the first and second cells. The
location of the antenna in the cavity was at (-90.6 mm,
15 mm) with d = 1.9 mm. The magnitude and phase of
the input impedance is shown in Figs. 4 and 5 for the
TEMo,0,35 mode and in Figs. 6 and 7 for the TEMg ; 35
and TEM; ¢ 35 modes.
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Figure 3: A coaxial fed inverted L antenna.

A measurement of a coaxial center fed patch an-
tenna with dimension L = 15 mm and W = 5 mm,
was taken without the reflector at d = 1 mm. The
input impedance is shown in Fig. 8. The patch was
divided into 16 cells with a delta-gap source placed in
the center. Fig. 9 shows the simulated results for the
TEMo,0,23 and TEMj g,34 modes for a patch antenna
in the cavity located at (30 mm, 30 mm). The Q, com-
puted as f/Af, was found to be 11,200 and 15,020 for
the TEMg 0,23 and TEMg ¢ 34 modes, respectively.
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Figure 4: Input impedance magnitude of the L antenna
for the TEMo 0,35 mode: solid line, simulation;
dashed line, measurement.
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Figure 5: Input impedance phase of the L antenna for the
TEMo 0,35 mode: solid line, simulation; dashed
line, measurement.
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Figure 6: Input impedance magnitude of the L antenna
for the TEM0,1,35 mode (left) and TEM]'0’35
mode (right): solid line, simulation; dashed
line, measurement.
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Figure 7: Input impedance phase of the L antenna for
the TEMp,; 35 mode (left) and TEM; 0,35 mode
(right): solid line, simulation; dashed line,
measurement.

Figure 8: Impedance Smith chart showing the input
impedance of the patch antenna without the
reflector: solid line, simulation; dashed line,
measurement.

Figure 9: Impedance Smith chart showing the input
impedance of the simulated input impedance
of the patch antenna in the cavity: solid line,
T'EMog 034 mode; dashed line, TEMg 0,24 mode.

5. Conclusions

A moment method implementation has been devel-
oped for the analysis of antenna elements in a quasi-
optical resonator. The antennas can be of arbitrary
shape and size. The moment matrix elements are com-
puted using a combination of spatial and spectral do-
mains. Simulated results have been shown to com-
pare favorably with measurements. The technique pre-
sented here will aid in the design of quasi-optical sys-
tems by accurately predicting the impedances of the
radiating elements used in quasi-optics. Work contin-
ues in the development of quasi-optical Green’s func-
tions of grid amplifiers and polarizers.
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