space ' available to us. (For this reason we could not use
conventional slots.) .~ -

The ring-loaded slot is also a structure amenable to accu-
rate analysis by mode-matching methods {4, 5]. Using the

. able to design a satisfactory bandstop filter; Figure 2 shows
~ that an additional ~ 30 dB of isolation"Was-achieved i in lhe

vicinity of 10.8 GHz, and the passband of 8-8.4 GHZ was fiot
 significantly affected.

The combined bandpass/bandstop waveguide filter was

“ then fully analyzed by the mode-matching method. The ad-
~“vantage of being able to calculate the filter characteristics
.- accurately is that one can have a definitive design before
“'manufacture. In addition, by making small perturbations to
the parameters of the final design, the manufacturing toler-
*, ances required- to ensure the desired performance can be
“readily established. In our design, analysis showed that the
filter should be machined within +0.05 mm of the given
* dimensions in order to achleve the predicted filter character-
istics satisfactorily.

,", 3. RESULTS

- With these tolerances jn mind, the combined filter, shown in
Figure 3(a), was constructed and its performance accurately
measured on a network analyzer. The comparison with the

" predicted values is shown in Figure 3(b). As can be seen, the
‘agreement is quite remarkable, even down to the fine struc-

- ture of the filter characteristic at the —30 to —40-dB levels.

- This result demonstrates what can be achieved when accurate

" theoretical modeling is combined with high-quality manufac-
turing. Indeed, without both of these capabilities, it is difficult

" to see how an effective filter could have been developed.

4, CONCLUSION

" We have described a multi-iris bandpass filter used in con-
junctiqn with a ring-loaded slot bandstop filter in circular

power, dB

0 105 1 15

95
froquency, GHz

(b)

. Figure 3 Combined bandpass/bandstop X-band filter in circular
" waveguide. (a) Cross-sectional view of the filter. (b) Calculated and
- % measured return and transmission loss of the filter response. Solid
i line, measured return loss; long-dashed line, predicted; short-dashed

. line, measured transmission; dotted line, predicted

same numerical optimization procedure as before, we were’

waveguide. The addition of the ring-loaded slot bandstop
filter provides a considerable band of high attenuation and
improved stop-band performance beyond what is possible
with the multiiris bandpass filter alone, Our computer analy-
sis shows excellent agreement when compared with the mea-
sured data.
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ABSTRACT

Fabry-Perot resonators and beam waveguides are used in quasioptical
systems to refocus electromagnetic fields. These fields are described by
Laguerre Gaussian or Hermite Gaussian quasi-TEM mode families
depending on whether the aperture is rectangular or circular. It is shown
that certain lower-order Laguerre Gaussian and Hermite Gaussian modes
are identical. This has implications for the design of quasioptical systems
Jor mode selection. © 1995 John Wiley’& Sons, Inc.

I. INTRODUCTION '

'Fabry-Perot resonators and beam waveguides are used in

quasioptical systems such as power combiners, amplifiers, and
frequency multipliers. Successful implementation of these
structures in quasioptical systems requires an understanding
of the mode structures they support. This article presents the
classical development of the modal ﬂelds of Fabry Perot

* He is now with North Carolina State Umvcrsxlv
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?:_»fésonators. As usual thesc are approximated as either Her-
" mite Gaussian (HG) or Laguerre Gaussian (LG) mode fami-
lies; which exists is usually thought to be determined by

“"i whether the aperture is rectangular or circular, respectively.

For the first time the approximated mode families are derived
using common terminology. A surprising result is that the
lower-order modes of the respective mode families are identi-

. cal. This considerably simplifies the design of quasioptical

system components, as only one set of mode families needs to
be considered and the higher-order modes are easily sup-
pressed.

ii. FIELD STRUCTURE

A Fabry-Perot resonator typically has two spherical section
reflectors that may be of either rectangular or circular aper-
_ ture, as shown in Figure 1. Using Huygen’s principle [1, 2] the
traveling-wave electric field (E) on one of the surfaces (S) of
the resonator can be found from the sum of the contributions
of the traveling-wave electric field (E’) on the surface of the
- opposite reflector (S’), as given by the integral:

jk(1 + cos 9) JkR ren
E = . AR E'dS , (§))
- where R =|R| and R is the vector from a point on S’ to a
point on S, and 6 is the angle between the surface normal of
.8" and R. In a Fabry-Perot resonator the field on one mirror
reproduces itself on the opposite mirror with a complex
proportionality factor o, so that E = ¢E' and

jk(1 + cos 0)

~jk '
s R e *EdS'.

¢}

E=¢

* lll. MODE ANALYSIS

Solution of (2) yields both the field structure and the dlffrac- i

- tion loss. Unfortunately, it must be solved numerically, and so
approximations [1, 2] are used to develop modal field descrip-
tions. Closed-form solutions to (2) can be found after makmg
appropriate approximations. A near-field polynomial approxi-
" mation for R is used in the exponential term, and a far-field

, approxnmatlon for R is used in the denominator term. Unity

“is used to approximate cos 6. For circifar-aperture res- .
onators, circular cylindrical coordinates (r, ¢, z) are used W

- while Cartesian coordinates (x, y, z) are used for rectangular
: apertures \Usmg the approximations, the solution to (2) for

Figure 1 Nonconfocal Fabry-Perot resonator geometry
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Y

circular apertures is given by

E(r’ d’: + d/z)ﬁy‘
LGy = =%
ry2 2r
= N,g(p,t)(—f-—,—) Lrl’(m) 3
Ws s

x —r cos(t)
P T sin(t¢) |

Using the same approximatioﬁs in rectangular coordinates,
the solution for a rectangular aperture is given by

ECGt,y, £ d/Dmn
HG,, - y /2)m,
EO

)
= N, (n, m)H,,,( ‘/,_ )H,,( 2 ) 4)
w w,

5 5

~(x? +y 1]
X exp -!7—-— s

5

where m, n, p, and ¢ are the mode indices corresponding to
the x, y, r, and ¢ directions, respectively; N, (n,m) and
Nigp,t) are normalizing coefficients for the HG and LG
modes, respectively; H,(X) is the Hermite polynomial
deﬁned by. the Rodrigues formula, H, (X) = (-1"
e~Xdme=X"7dx™ [3], L'(R) is the generahzed Laguerre
polynomxal the spot size at the reflectors is

I\b' d 1/4
V= (21;' —d) ’

where A’is the wavelength; b’ is the resonator radius of
curvature; and d is ghe resonator spacing. :

Note that aperture dimensions affect the losses, Wthh are
quantified by o and can only be found through numerical
solution of (2). Analyzing the losses as a function of mode
number and frequency reveals that they are a slowly varying
function of frequency and increase as the size of the trans-
verse mode indices (m, n, p, and ¢) increase.

By making a transformation of coordinates from cylindri-
cal to Cartesian in (3) the expressions for lowest-order LG
modes become identical to the lowest-order HG modes.
Specifically,

T
5

)

“HGyy = LGy, HG,g = LG(cosinedoi,
HGy, = LG(sine)or and
HG,; = LG(sm’e)oz

()

Higher-order HG and LG modes are distinct. -

IV. EXPERIMENTAL INVESTIGATION

A planoconcave resonator was constructed using a circular
aperture reflector of spherical cross section together with a
rectangular plate reflector. This geometry supports half the
number of possible modes as compared to a resonator with -
two curved reflectors because the planar reflector shorts out
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Figure 2 Measured 10 percentile contours of (a) the resonant
TEM,, mode at 8.503 GHz, and (b) the resonant TEM, o mode at
8.552 GHz. The center axis of the resonator is indicated by the cross
and the antenna by the bar. The axes scales indicate the sample
index, and the sample spacing is 4.6 mm and 14.4 mm in the x and y
directions

mqdes that would otherwise have had tangential electric
fields at the beam waist. A circular aperture size of 55 cm in
diameter was selected to create low losses for X-band longi-
tudinal modes while providing mode selection through higher
losses for transverse modes. The fields were mapped by

exciting the cavity with a low-profile nonresonant inverted-L.

antenna and measuring the perturbation of the reflection
coefficient by a small absorber placed in the field.

Profiles of the HGy, and HG,, modes are shown in Figure
2. These data are in close agreement with the profiles as
"indicated by (4) with the perturbation near the antenna
attributed to near-field effects. Higher-order modes were
detectable, but the relative magnitudes of these modes de-
creased rapidly with increasing mode index.

V. CONCLUSION

.+ . This article has demonstrated that the low-order mode struc-

ture of a quasioptical resonant can be approximated by either
Hermite Gaussian or Laguerre Gaussian functions indepen-
dent of aperture geometry. Higher-order modes are elimi-
nated by limiting the size of the apertures, Furthermore,

quasioptical system components can be designed to optimize .

impedance mode matching without regard to excrtatron of
undesrred modes
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ABSTRACT

- A new algorithm and system architecture for inverse filter generation

using a coherent iterative optical processor is presented. This processor
avoids the singularity problem usually faced in inverse filter generation.
The algorithm convergence is analyzed and a convergence condition is
derived. Computer simulation of the algorithm performance is presented,
and the results confirm the theoretical predictions for the convergence.
Two optical architectures for the implementation of this algorithm are
also introduced, based on space- and time-domain utilization. © 1995
John Wiley & Sons, Inc.

1. INTRODUCTION

Optical processing and computing are emerging as major
fields of inte®st that exploits the inherent advantages of
optics. Systems can directly implement and utilize addition,
multiplication, and Fourier transforming to perform variety
of operations, some of which include linear algebra process-
ing [1], correlation and convolution [2], spectrum analysis [3,
4], inverse Tfilter generation, et cetera. In particular, the
Fourier-transforming properties of optical systems can be
utilized in the inverse filter problem. A number of articles
have been published on the direct use of Fourier-transfor-
ming optical systems for the generation of inverse filters [5,
6]. Some of these use optical multiplication in the Fourier

- domain of two photographic plates. This, along with nonper-

fect imaging systems, impose stringent requirements on the
development of optical inverse filters [7]. ,

This article presents a ngw approach for’ inverse ﬁlter
generation using an iterative method, rather than the direct
use of the Fourier-transforming property of optics. In Section
II we introduce the algorithm and derive the condition for

convergence. In Section III, two designs for. the coherent

optical implementation of the algorithm are presented and
discussed. The results of a computer simulation of the system
using a typical optical frequency response function are pre-
sented in Section IV. And finally, Section V provides a brief
discussion, some conclusions, and possible applications of the
algorithm.
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