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TABLE 1
SAMPLING MIXER SPECIFICATIONS

Sampling Specifications

Mixers
W-J Model LO Frequency RF Frequency Conversion
No. (GHz) (GHz) Loss (dB Max.)
6300-310 .200+.02 2-18 25
6300-340 1.000+.100 2-18 15
6300-370 1.000-1.500 2-18 22

are much longer than would seem appropriate according to the ideal
pulse approximation. The 90 ps 0.25 pF circuit evaluated here has a
monotonically decreasing output that is usable to 40 GHz (Fig. 4(a)).
The same sampler modified for a 35 ps chamber delay exhibits lower
conversion efficiency and a deep null at 34 GHz (Fig. 5(b)). Care
must be exercised in selecting the sampling frequency of operation.
For example, operating the 0.25 pF circuit at the 300 MHz sampling
frequency used in [8] would be undesirable since the capacitor value
is not suitable to hold the sampled signal over the duration of the
sample period. VHF sampling rates require higher sampling capacitor
values and faster SRD rise times to achieve K 'a band operation.

Sensitivity to the pulse generator rise time for the 90 ps chamber
delay sampler was investigated using four different SRD lots from
three different manufacturers. The SRDs had 10%-90% transitions
times in the 35 to 60 ps range. After the SRD matching network was
adjusted, all four versions of the circuit were within the production
performance specifications listed in Table 1. In contrast, units that
employ much shorter round-trip chamber delays often require a
number of SRD lot evaluations before finding diodes with acceptable
rise times.

V. CONCLUSION

A computer model has been developed to aid in the understanding
of sampling mixer conversion loss variations at microwave frequen-
cies. Conversion loss is predicted using the fourier transform of
diode conductance waveforms. Experimental verification was given
for three different values of sampling capacitors over a 2-40 GHz
range. Results have been used to design a product line of integrated
sampling mixers that are amenable to production manufacturing and
insensitive to variations in SRD parameters.
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Parameter Extraction of Microwave Transistors using a
Hybrid Gradient Descent and Tree Annealing Approach

Steven G. Skaggs, Jason Gerber, Griff Bilbro, and Michael B. Steer

Abstract—Tree annealing is a robust optimization scheme which can
be used to find the “valleys” of an error surface. The problem of
entrapment in local minima is not a factor with this type of optimization,
however, it is much slower than gradient-based techniques. The method
presented here attempts to take advantage of the speed of gradient-
based methods and of the efficient pseudo-random searching abilities of
tree annealing. The result is a technique which behaves as a directed
multi-start gradient method. All minima encountered during optimization
are recorded, thus providing alternatives in case of a non-physical final
solution. The technique is used in the extraction of a modified Materka-
Kacprzak model of a GaAs MESFET.

I. INTRODUCTION

Circuit designers rely on models of active devices to design and
simulate active microwave circuits prior to fabrication. The ability
to determine accurately the parameters of these models has been
limited by the lack of a sufficiently accurate equivalent circuit and a
tool that extracts consistently reliable model parameters from device
measurements and model predictions. Gradient-descent algorithms
are most commonly used but results are seldom satisfactory unless the
initial estimate of parameter values is very good. Measurement error,
coupled with the large number of elements of a physically-based
equivalent circuit, leads to an error function having many minima.
If there are few local minima, gradient-based algorithms can be
conveniently restarted from many different (often randomly chosen)
initial points and the best solution taken as the approximation of the
global minimum. However, the number of additional minima grows
rapidly as the number of equivalent-circuit elements is increased.

Alternatives to gradient-descent-based parameter extraction have
recently been proposed by Vai et al. [1]-[3] who used simulated
annealing (SA) [4] and Bilbro er al. [5] who used tree annealing
(TA)—a modified form of simulated annealing. These are global
optimization techniques. SA differs from descent algorithms by
continually accepting some proportion of random moves up the
error surface. SA is more efficient than random multistart descent
algorithms if the local minima tend to be shallow and if the error
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Fig. 1. Modified Materka—Kacprzak nonlinear MESFET model.

surface is not dominated by deep winding grooves or valleys, so that
a feasible proportion of uphill and downhill moves can be generated.
This is a consequence of SA using perturbation methads to generate
new solution candidates. TA differs from SA in that information
about the error surface is recorded and used to generate new solytion
candidates and so TA tolerates deep local minima. The robusfness
of the TA parameter extraction procedure is not free as it is more
intensive computationally than gradient-based algorithms. However
the major cost of gradient-based algorithms is the engineering time
required to examine the extracted circuit, decide on its merits and
to choose an alternate starting point if a satisfactory minimum has
not been obtained.

We report a parameter-extraction procedure that combines tree
annealing optimization with gradient descent. The result is a ro-
bust extractor which matches or exceeds the performance of either
extraction technique on its own. This hybrid parameter extraction
procedure requires only that the upper and lower limits of the element
values be specified by the user. The only restriction enforced on the
optimization process is that the number of function evaluations is
limited so that the process stops when this limit is exceeded. All
minima encountered in the optimization process are recorded, so that
the most desirable solution can be chosen from among them.

II. METHOD

A modified Materka—Kacprzak of a MESFET model [6], [7]
is shown in Fig. 1 where the branch Rpsp-Cpsp was added
across the current source to account for the frequency sensitivity
of the output conductance. The I-V and C-V expressions for the
nonlinear elements, shown in Table I, and the linear elements were
extracted using both I-V and S-parameter data to obtain all model
parameters simultaneously. Non-unique solutions are avoided by the
use of sufficient data taken in all regions of device operation. The
large amount of data strengthens the ability to identify each model
parameter and reduces the region in parameter space that yields an
acceptable solution.

The TA optimization procedure was previously reported in [5]. The
gradient-descent method used here is a variable-metric optimization
process generally called a quasi-Newton optimizer. The mainstay
of the quasi-Newton method is an approximation of the second
derivatives of the error function. The TA procedure was merged with
the gradient descent procedure as follows. First, an initial starting
point is chosen (this can be chosen at random or by the user), and a
gradient-descent optimization is performed. Optimization using tree
annealing then proceeds. Whenever the error decreases below the
previous best error obtained during tree annealing, a gradient-descent
search is initiated. At any time, if the residual error is below a user-
specified tolerance, parameter extraction is halted. In this way several
local minima can be detected before the error is suitably low.
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TABLE 1
DEVICE EQUATIONS FOR THE MATERKA-KACPRZAK MESFET MODEL (THE
GATE-SOURCE VOLTAGE AcRoss Cis 1S DEFINED AS Vg sy, THE
INTRINSIC D RAIN-SOURCE VOLTAGE A CROSS THE CURRENT SOURCE
Ips i1s Vpsy AND THE VOLTAGE ACROsS C'gs AND Ry 1s V1.)

Vosi Vesi(t —T) (B + KgVosi(t - T))
Tos = Ipss (1 + Ss};) (1 " Vro + “/VDSI)
-tanh ( ScVost )
Ipss(l — KeVesi(t — T))
Cos = __C‘“_...
vi-KiVesr
Ces = 010\/5 if K1Vgsr > 0.8
Cog = Cro
1- Kp(Vi — Vpsr)
Cpe = CroV5 if Kp(Vi — Vpsr) 2 0.8
Ry = Rio(1 - KrVasr)
R =0 if KrVgsr > 1.0
Igs = Io(exp(a,Vesr)—1)
Ing = Ipo(exp(as(Vpsr — Vi — Vac)) - 1)

All minima encountered throughout the optimization process are
recorded along with their errors. Since the quasi-Newton method is
used at the outset, the hybrid method is guaranteed to perform at least
as well as the quasi-Newton method alone.

II. THE ERROR FUNCTION

The error function for this problem is directly related to the
measured and calculated drain and gate terminal currents (Ip and
I, respectively) as well as measured and calculated S -parameters.
The error vector

E=[M-C]" )

where M is a vector containing measured S-parameters and dc
quantities, and C is a vector containing the corresponding calcu-
lated quantities. Because measurements can range several orders
of magnitude, some weighting must be given to measurements of
smaller magnitude so that the error related to them will be minimized
as effectively as the error related to measurements of much larger
magnitude. In this implementation, the weighting is determined
automatically by the software. The weighted error is then

Ew =W[M-C)" 2

where Ew is now the weighted error function and W is a diagonal
matrix whose elements are the weights necessary to force all of the
errors to roughly the same order of magnitude. All measurements
of the same type (e.g., Ip,Ig.S11 magnitude and phase, etc.) are
assigned the same weight. For the ith measurement, the weight is
given by

1

min;

Wi =

3

where m;is the largest error of the same type as measurement ¢,
and n; is the number of measurements of that type. Finally, the total

error is
F=Ew Ew O]

where F is a scalar figure of merit.

IV. RESULTS

Fifteen parameters of the modified Materka—Kacprzak MESFET
model were optimized. The parameters that were not optimized were
established by previous parameter extractions. d¢ I-V measurements
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Fig. 2. Current versus voltage characteristics of the solutions given by
gradient descent (dotted lines) and the hybrid method (solid lines). Points
represent measured data,
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Fig. 3. Magnitude of S-parameters as predicted by gradient descent (dotted
lines) and hybrid optimization (solid lines). The scale on the right corresponds
to S»1 only. Points represent measured data.

of a Toshiba 88182 GaAs MESFET were made at 49 bias points.
These results are shown in Fig. 2. S -parameters were measured from
3 to 17 GHz at 2 GHz intervals at two different bias points, one with
Vos = —0.6 Vand Vs = 1.5 V and one with Ve;s = 0.0 V and
Vps = 1.5 V. The resulting dc solutions for both the quasi-Newton
and the hybrid optimization techniques are shown in Fig. 2. and the
resulting S -parameter solutions are shown in Figs. 3 and 4. The
initial parameter values and the solutions given by both optimization
methods are shown in Table II. For comparison, results from a tree
annealing optimization alone (with a 13 000 function evaluation limit)
are also shown here. A list of some of the minima encountered in
hybrid optimization along with the errors is given in Table III.

V. DISCUSSION AND CONCLUSION

Both the gradient-descent and hybrid optimization techniques per-
formed well on the Ips — Vps curves, as seen in Fig. 2. Clearly
there is some discrepancy in the S-parameter data, most likely due to
measurement error. However, the hybrid method clearly outperformed
the gradient method on S-parameter data, particularly $,, and S,
as shown in Fig. 3 and Fig. 4. Most of the difference between the
weighted error given by the two methods can be accounted for in
the magnitude of S»;. It is interesting to note that tree annealing has
proven to be particularly effective in reducing S-parameter error. One
possible explanation is that the S-parameter error surface is more
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Fig. 4. Phase of S-parameters as predicted by gradient descent (dotted lines)
and hybrid optimization (solid lines). Points represent measured data.

TABLE 11
EXTRACTED PARAMETER VALUES OBTAINED BY THE H
YBRID METHOD AND BY GRADIENT DESCENT ALONE

Parameter Minimum | Nominal | Maximum | Hybrid Tree Gradient
Value Value Value Method | Annealing [ Descent
vy -0.2 0.1539 0.2 -0.1378 0.0569 -0.1638
KE -1.3 0.7596 1.3 -0.6884 0.1458 -0.8237
Ry () 0.01 5.8401 10 5.2983 9.3413 0.24
KR -3 -2.4443 3 2.2234 0.8439 -0.035
Cio (pF) 0.05 0.282 10 0.2435 0.1322 0.208
K1 1 31 40 0.9025 33.856 0.9184
Cro (pF) 0.05 0.169 1 0.0497 0.5266 0.1448
KF 1 32.914 40 1.94 20.491 12.094
Lg (nH) 0 0.166 1 0.1750 0.1824 0.1779
Lp (nH) 0 0.119 1 0.0654 0.0606 0
Ls (nH) 0 0.0404 1 0.0514 0.09354 0.0838
Cps (pF) 0 0.119 2 0.1259 0.0353 0.1471
Rpsp () 100 4225.16 5000 211.6 142.91 4842
Cess (pF) 0 0.0705 1 0.0929 0.0616 0.1057
Cpss (pF) 0 0 1 0.00006 | 0.017529 0
WEIGHTED
ERROR, F 0.4308 1.6242 1.6669
TABLE 111
MINIMA ENCOUNTERED DURING HYBRID OPTIMIZATION
AND TOTAL RELATED WEIGHTED ERROR
Parameter 1% 27 39 T 11% 12%
Minimum | Minimum | Minimum | Minimum | Minimum | Minimum
¥ -0.1638 -0.1396 -0.1395 -0.1394 -0.1378 -0.1396
KE -0.8237 -0.704 -0.7027 -0.7023 -0.6884 -0.7034
Ry () 0.24 8.116 6.5664 6.1128 5.2983 7.6728
KR -0.035 1.1924 1.6054 1.7368 2.2234 1.2795
Cyo (pF) 0.208 0.2352 0.2377 0.2389 0.2435 0.2365
K1 0.9184 0.8975 0.8941 0.8925 0.9025 0.8967
Cro (pF) 0.1448 0.1804 0.1856 0.1835 0.0497 1372
12.094 36.856 37.414 36.09 1.94 20.86
Lg (nH) 0.1779 0.1786 0.1777 0.0177 0.1750 0.1782
Lp (nH) 0 0.0583 0.0574 0.0567 0.0654 0.0589
Ls (nH) 0.0838 0.0493 0.0517 0.0524 0.0514 0.4995
Cps (pF) 0.1471 0.1267 0.1281 0.1282 0.1259 0.1271
Rpsp(9) 4842 208.6 211.1 211.8 211.6 209.3
Case (pF) 0.1057 0.1024 0.0992 0.0978 0.0929 0.1011
Cpss (pF) 0 0 0 0.0003 0.0006 0
WEIGHTED
ERROR, F 1.6669 0.4752 0.4634 0.4598 0.4308 0.4704

irregular than the error surface of the I-V data and thus contains
more local minima.

The main drawback to the hybrid method is the computing time
necessary for the optimization. For the example discussed here,
the hybrid method required four hours of computing time on a
VAXstation 3200 (rated at 3 to 5 VAX 11/780 MIPS) to extract the 15
parameter equivalent circuit. However, about 90% of the optimization
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time was spent in the many gradient descent optimizations initiated in
the process. In our implementation, the tree annealing optimization
serves in a limited way in that the tree structure described in [5]
does not become very large. However, tree annealing is still effective
in determining starting points for quasi-Newton optimizations and
each minimum is evaluated at approximately the cost of a single
quasi-Newton optimization.
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Quasi-Static Analysis of Shielded Microstripline
by a Modified Boundary Element Method

T. N. Chang and Y. T. Lin

Abstract—This paper presents a modified boundary element method for
analyzing the shielded microstrip-like structure. The boundary integral
equations are derived via the Green’s second identity with the adjoint
fields chosen to satisfy the boundary conditions along the outside shielding
conductor. Numerically, these result in a considerably reduced matrix
size compared to that using free space Green’s functions as the adjoint
fields. The computation time for off-diagonal element of the matrix can be
decreased by taking the Maclaurin series expansion forms of the infinite
sums. Results for microstrip line are found in good agreement with those
in the literature.

I. INTRODUCTION

The boundary element method has previously been applied to the
analysis of lines in a shielding box with and without a dielectric
substrate [1]-[2]. An analysis of microstrip line with finite thickness
was presented in [3]. In this method, the wave equation is converted
to an integral over the boundary of the region of interest by way of
Green’s second identity. Although the free space Green’s function is
chosen as the adjoint field in [1]-[3], it is by no means the only choice.
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In [4], the Green’s function for the classical image problem was
employed. For a shielded structure, a unified approach to determine
the required Green’s function was suggested [5].

One disadvantage of the choice of free space Green’s function is
that the matrix size formulated by discretizing the boundary integral
equation is generally large since the whole shielding conductor
should be discretized [3]. In this paper, a modified boundary element
method is presented wherein the Green’s function is forced to satisfy
the boundary conditions along the shielding boundary. A boundary
integral results which is performed merely along the line where the
strip is located. Therefore, the required memory size will largely be
reduced. This newly adopted Green’s function involves a slowly-
convergent infinite series. However, the computation time is reduced
by application of the geometric-series method [6].

II. FORMULATION

The cross-section of a microstripline shielded by a perfect conduc-
tor is considered. The subdomain S; with contour I'; (i = 1,2) is
homogeneously filled with a loss-free dielectric medium. Inside each
region S;, Laplace’s equation

Vi =0 (1)

holds, where ¢; denotes the electrostatic potential. Green’s second
identity over S; can be expressed as

[ 15200 + o5 puas

= [to@ofon) - 000 fonolar. @
where ; is a suitable adjoint field and 0/0n; the derivative in
the positive normal direction. The free space Green’s function is
chosen for ¢; in [1]-[3] for boundary element formulation. The
disadvantage of this choice is that the boundary integral equation
must be performed on both contours I'; (= ABCDEFA) and
I'y (= ABCGHFA). There results in a large memory size if the
boundary scale is considerably large. In this paper, each I'; is divided
into two parts T'Y and T}, where the superscript g and r stand for
the ground and the remainder parts respectively. For example, we
have I'{ = CDEF and '] = FABC. The suitable adjoint field
©; now can be chosen to satisfy the required boundary condition
on the ground plane. In the present case, the Green’s function for
a rectangular trough region [6] was chosen as the candidate. With
the coordinates shown in Fig. 2, two Green’s functions for the
homogeneous rectangular trough regions are needed. They satisfy
the following differential equations:

(0% 0:/ 02"+ [0%:/0y"]
= — (1/e)b(x — 2:)0(y — ¥i)
where & is the Dirac Delta function, €; = €o€,, €2 = €0, and (&, y:)

is the source point in the ith region.
To facilitate understanding, ; is given by

i=1,2 (3a)

o0

pile,y/eiy) = (2/7e;) Z(l/n) sin (nwx;/b) sin (nw/b)

n=1

-sinh [(n7/b) fi) exp [(n7/b)gs] (3b)

where (fi,g1) = (y1,—y) for y > y1:(fr.g1) = (y,—y1) for
y < y1:(fong2) = (A + R —y.ys — h— k') for y > y2; and
(favgs) = (yo —h =k .y —h = h') for y < y2).
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