Macromodels for Generating Signal Integrity
and Timing Management Advice for Package Design

Paul Franzon, Slobodan Simovich, Sharad Mehrotra, Michael Steer,
PicoLab
Department of Electrical and Computer Engineering
North Carolina State University,
Raleigh NC 27695-7911

Abstract

The electrical design of packaging for high speed dig-
ital systems requires intensive efforts on the part of sig-
nal integrity engineers. We have produced a set of tools
that assist these engineers in efficiently producing PCB
and MCM designs that meet timing and other electrical
needs. This paper describes the most important aspect of
this solution, the internal ‘macromodels’ that accurately
capture the relationships between electrical/timing design
and the package physical design (or layout).

1 Introduction

In high speed PCBs and MCMs it is necessary to constrain physical
parameters such as cross-sections, lengths, via count and topolo-
gies of interconnection nets (MCM) to ensure that timing and
noise (signal integrity) requirements are met [3].! The physical
constraints are often referred to as wiring rules. Ensuring proper
electrical design of PCBs and MCMs is a daunting task for the
signal integrity and other packaging engineers. It often involves
a lot of tedious simulation and analysis work. Also, the few ex-
perts who understand the process are often spread thin over many
designs and are often even called in too late to influence the de-
sign into the correct direction. Our work has resulted in a set
of tools that provide computer-aided assistance to the signal in-
tegrity engineer. These tools remove much of the drudgery and
result in designs that are correct-by-construction. In this paper
we describe the most important technical aspect of this tool set,
the internal ‘macromodels’ used to accurately capture the rela-
tionships between electrical/timing design and physical design (or
layout).

Currently, there are two approaches used to generate the
physical constraints for each net in a design. The current main-
stream industry computer-aided approach to managing timing and
signal integrity requirements is illustrated in Figure 1. There are
a number of problems with this approach:

¢ Even the most complete theory-based equations for predict-
ing delay and noise assume ideal circuits including linear
drivers and receivers, point to point nets, uniform transmis-
sion lines, and no simultaneous switching noise. Because

1This research was supported by the National Science Foundation under
grant MIP-901704 and by Cadence Design Systems.

523

these non-ideal circuit properties are not taken into account
the theory-based equations are inaccurate for most nets and
the post-layout simulator reports many delay and signal in-
tegrity violations that the theory-based equations did not
predict. The extract-simulate-adjust loop must be iterated
many times, increasing total design time.

o Rules of thumb, such as ‘zero length stubs’ over-constrain
the router. The effective result is increased routing overflows
and possibly additional layers.

Specifying and adjusting the rules requires the attention of a
signal integrity expert as well as design and layout engineers.
This is inefficient. Furthermore, the signal integrity expert
is often not called in until it is found that the prototype does
not work! Correct-by-construction approaches are needed.

The other approach, reported mainly in the context of its
use in designing high speed computers at IBM [3][6] involves a
team of signal integrity engineers working concurrently with the
computer design engineers (their methodology for signal nets only
is described):

1. Through extensive simulation studies, the signal integrity
engineers work out, for each net class of interest, the con-
straints on lengths and stub capacitances, etc., that guaran-
tee first incident switching. Within IBM, these constraints
are called ‘wiring rules’ which is a different meaning from
that discussed in the first paragraph above and used through-
out this paper.

2. The signal integrity engineers then conduct further simu-
lation studies to empirically determine a delay equation for

| Logic Design }-

Specify initial rules using
-Rules of Thumb
-Theory-based Equations .

PCB Simulate:
Physical @ Timing Verification
Design @ Signal Integrity

Figure 1: Current Approach to Managing Wiring Rules.

0569-5503/93/0000-0523 $3.00 ©1993 IEEE

each net class. The delay equation is only determined within
the bounds on length, etc. that guarantee first incident
switching.

3. These ‘wiring rules’ and delay equations are used by the
circuit and package design engineers, through appropriate
floorplanning, placement, and routing CAD tools. If the
design engineers find the rules and equations too restrictive
to produce an effective design they work closely with the
signal integrity engineers to obtain more suitable rules.

Though highly successful, there are some drawbacks to this ap-
proach. It requires large amounts of human effort and expertise
to generate and maintain the rules and equations. In order to make
the process tractable to humans, certain simplifying assumptions
have to be made. In particular, they specify that all signals must
be first incident switching and construct the wiring rule to reflect
that. This means that the resulting rules are somewhat more re-
strictive than they would otherwise be. The result is that during
design, the designers make requests to the circuit analysis team
for rule modifications realizing that the rules are conservative and
simplified.

Central to either of these approaches is the development of a
high level model that captures circuit delay and noise responses
as functions of physical variables, such as net length. In the first
approach simple analytic and qualitative functions are used. These
functions are approximate and often inaccurate. In the second
approach, polynomial functions are fitted over a restricted range
of physical variables. While these functions are accurate, their
tight ranges of validity artificially restrict the designs.

An improved approach is to develop a set of global models
that apply over the full range of design variables (e.g. net lengths).
These are called macromodels. The usual use of the term ‘macro-
model’ is to signify a simplified model used to replace a more com-
plex model in a circuit simulation, so as to speed the simulation
up. Though our macromodels can be used as fast ‘simulations’
(justifying their name) their main use here is for obtaining wiring
rules.

In this paper, we discuss the automatic production of macro-
models and how they are applied to a design. In this approach,
the macromodels are built from simulation studies, allowing them
to be accurate, thus avoiding the problems of the first approach
above. Because they are built automatically, not manually, they
are cheaper to produce than in the approach used at IBM. Also,
as they are built by computers, not humans, fewer simplifying
assumptions are made in their construction.

The remainder of this paper is organized as follows. First
we discuss what is needed from the macromodels in order for
them to be useful. Then we show how the macromodels that
meet these needs are generated. Two types of macromodels are
generated, the mean-fit macromodel and the conservative-design
macromodel. We show how the second type is used to generate
wiring rules that can then be used by placement and routing tools.

An example is integrated throughout this paper. The exam-
ple is taken from an MCM implementation of a small computer
design. The MCM process is the MCM-D process developed at
MCNC. The small computer design (provided by Cadence Design
Systems) had seventeen classes of nets, where each class has a
different number of loads and a different driver. In the example
in this paper, we automatically develop the macromodel for one
class of nets, the custom-CMOS driven, two-receiver nets. We

then show how this macromodel is used to produce a wiring rule
for one of the nets in the design. The same macromodelling pro-
cess would be applied to the other sixteen net classes and the rule
production process to all of the other nets in the design in order
to obtain a full set of wiring rules.

2 Macromodels for Timing and Signal
Integrity Design

In this section, we first list the electrical responses of interest which
we need to macromodel. We then discuss why these electrical
responses must be captured in equation form in order to formulate
wiring rules. We also define and justify the macromodel types
employed.

Fundamentally, data signals only have to satisfy the following
requirements [4]:

1. The signal be stable, within a noise margin of the logic-0 or
logic-1 nominal voltage, at each latch in the system during
the maximum possible extent of the set-up and hold period
of the latch.

2. The positive and negative overshoot be constrained in order
to prevent programmable logic reset, etc.

Civen a logical design, and the min/max timing of every gate in
that design, a timing analyzer will return the min/max timing
slack on every interconnect net in the system. In order to meet
the requirements for signal nets, the settling delay (Figure 2) on
each net must have a value within the bounds of the timing slack.
Settling delay on an interconnect is defined as (Figure 2) the de-
lay from the signal at the start of the net (driver end) passing
through the 50% point in the voltage swing to when the signal
settles to within the allocated noise budget for reflection noise at
each receiver. (The requirements on clock signals are much more
stringent. They require first incident switching, minimum or no
porching, and minimum levels of overshoot.) Using settling delay
as the interconnect net delay criterion has advantages and disad-
vantages.

The main advantage is gained from the realization that not all
signals will need to be first incident switching to obtain a satisfac-
tory design, though the interconnect nets with the smallest timing
slacks are likely to require it. By dictating first incident switching
as part of the wiring rule process, the designer is over-constraining
many of the interconnections, specifying their longest length to be
shorter than necessary.

As expected, settling delay is not a smooth function of the
physical design parameters. For example, consider the two ter-

minal net shown in Fieure 3. Figure 4 shows part of a set of
simulation results (defining a responsé surface) showing settling

delay as a function of wire lengths for an unterminated MCM-D
interconnection [5]. Figure 5 shows similar results for a match-
ing terminated lossless PCB interconnection. In both cases, the
response is a highly non-linear function with respect to lengths.
The reasons for the non-linearities are quite simple. As the branch
lengths change so do the magnitudes of the undershoots in the
ringing. If a small change in a length causes the peak voltage of
an undershoot to exceed the noise budget, the waveform feature
that defines settling delay is switched to this voltage peak from
another and settling delay changes significantly. In the case of the

524

Driver:)
N\
\v4
tﬂ'ﬁﬂﬁ!ﬂ
Receiver: \ *
\e-eeof Noise budget allowed
U f for reflection noise

Figure 2: Definition of settling delay t4_,csuc-
CMOS receiver

] TAB lead
==mme Thin film signal line

D " 2

0.8u
CMOS
driver

E CMOS

receiver

Figure 3: Two terminal net, showing the length design parameters.

lossy MCM interconnect, line losses suppress ringing in long lines
and the first undershoot voltage becomes less than the reflection
noise budget at some point, resulting in a sudden drop in settling
delay.

Inspecting the response surfaces in Figures 4 and 5 shows that
these irregularities make the fitting of linear and other polynomial
macromodels difficult. However, such forms are needed for the
macromodel to be useful in formulating wiring rules. For example,
if delay is expressed as a quadratic function of length,

(1) = ao + a1l + a0, (1)

then the length ranges that meet a delay requirement of say t(l) =
1.2 ns can easily be found mathematically. One way around this
problem would be to choose a portion of the response surface that
is sufficiently smooth for fitting a single equation and model that
portion only. If we did this, we would be artificially restricting
the follow-on design tools (e.g. the router) to lengths, etc, that
that were covered in the sufficiently smooth portion. As we are
seeking a conservative design, another solution would be to form a
macromodel for which the modeled response, say t(!) would always
be greater than the actual response (assuming we were interested
in restricting maximum delays in the design). However, such a
macromodel is actually very conservative, the difference between
the modeled and true responses being large. Again, this artificially
restrains the follow-on tools.

The method we use to deal with this issue is to capture the

entire response surface as a piecewise linear macromodel. In this
macromodel, the region for which the response surface was ob-
tained is divided into a number of sub-regions and in each sub-
region a linear equation is fitted to the response. Generating this
macromodel for the general case, where the settling delay or other
circuit electrical response might be a function of six or more physi-
cal variables, requires an automated approach. In the next section,
we present this automated approach, starting with a brief descrip-
tion of how the response surfaces are obtained.

Settling delay

4.5e-09 |~

4e-09 [~
3.5e-09 I~
3e-09 —
.5e-09 [~
2e-09 =
1.5e-09 —

~

S
stub2

Figure 4: Response surfaces characterizing settling delay over a
range of lengths for a lossy net on an MCM-D in the net cla.tfs
given in Figure 3. ‘stubl’ is labelled ‘13’ in Figure 3 and ‘stub2’ is
labelled as ‘12’.

stable delay ([sec]

T

1l.le-08
le-08
Se-09 [~
8e-09 |—
7e-09 [—
6e-09 [—
S5e-09 [~

0.03
stub (mj

0.04

0.05 O

Figure 5: Response surfaces characterizing settling delay over a
range of lengths for a lossless net on an PCB in the net class given
in Figure 3. ‘stub’ is labeled as ‘13’ in Figure 3 and ‘branch2’ is
labelled as ‘12'.

3 The Generation of the Macromod-
els

The first step in generating the macromodels is to characterize
the response surfaces for the timing and voltage parameters of
interest over a certain physical design space. (A ‘physical design
space’ is simply the ranges for the physical variables of interest, e.g.
{; <10 cm, l; < 10 cm, etc.) The response surface is characterized
by automatically designing a sequential computer ezperiment. In
each step of this experiment, a set of points are selected for sam-
pling via simulation. After each step, it is determined if this set of
points provides a sufficiently accurate characterization when inter-
polated over the entire design space. If it does not, more points are
sampled. The details of this process are described elsewhere [8].
Using this approach, we are able to achieve sufficiently accurate
characterizations with typically only a few hundred simulations.
The responses surfaces that are partially shown in Figures 4 and 5
were each obtained with 200 simulations. The number of samples
needed does not depend on the number of physical design vari-
ables, or their ranges, but on the linearity of the response surface.

The key to obtaining a piecewise linear macromodel is to make

525

Largest Response
Y Difference =~ > surfgce
“g pConvex
5 Hull
2
(]
(%]
c
a
(7]
[
(i
.‘:':.
e
6 -

Physical Variable (e.g. length)

(a) First Step: Fit Convex Hull around response
and find point of largest difference.

Circuit Response

Physical Variable (e.g. length)

(b) Second step: Dlvide into two sub-regions and
fit convex hull around response in each region.

Figure 6: Example of basic steps used to generate a macromodel
for a single-input-variable design space.

good choices for the boundaries between the linearly fitted sub-
regions. In contrast to the approach where the regions are de-
termined a-priori [2], based on the designer’s previous experience,
our approach is to perform an automated determination that does
not require the use of the designer’s knowledge. We have devel-
oped a heuristic ‘greedy-cut’ algorithm to do this. We illustrate
the algorithm with a simple example before presenting its details.

Imagine a specified design space that consists of a single di-
mension and the characterized response is as shown at the top of
Figure 6. The algorithm first finds the convex hull that completely
encloses the data. This is also shown at the top of Figure 6. It
compares this convex hull with the data and determines the point
where the difference between either the lower or upper surfaces
and the data is the largest. The design space is then split into
two subregions, one on each side of this point, as shown at the
bottom of Figure 6. A convex hull is then generated around each
sub-region as shown. These steps are repeated until some stopping
criterion is met.

More formally, the steps in the algorithm are as follows:

Step 1. Perform the following steps:

(a.) Read in the set S of N, points that characterizes the
response in the D-dimensional space RP. The first D1
dimensions are the dimensions of the physical design
space RP-! and the D-th dimension is the response
variable. This dimension is referred to as the ‘vertical’

dimension and defines ‘above’ and ‘below’.

(b.) The boundaries of the space that contains the set § of
points is the initial ‘current’ sub-region. These bound-
aries are assumed to specify a convex sub-region.

(c.) Fit the convex hull around the points S.

(d.) Set the stopping criterion. Stop either when Nroy_mas
(Nreg-maz > 1) sub-regions are generated or the maxi-
mum vertical difference between a point and any facet
of any convex hull is less than dmge-

Step 2. Count the number of points contained within the ‘cur-
rent’ sub-region. If there are less than D + 1 points then fit
a plane (in D dimensions) through those points, remove the
sub-region from further consideration, and proceed to step
4,

Step 3. For the ‘current’ sub-region, determine that point that
has the furthest ‘vertical’ distance from any facet (surface)
of the convex hull. Call that facet fw, and do the following:

(a.) Find the D — 1 points above or below the facet fw
that have the largest vertical distance from that facet.
If there are less than D — 1 points above or below facet
fw then use those points and select others at random
from the rest of the set in order to obtain D —1 points.

(b.) Construct the vertical greedy-cut plane that runs
through these D — 1 points.

(c.) Separate the set of points S; into two sub-sets S} and
52, defining new sub-regions that lie on either side of
the greedy-cut plane.

If there are fewer than D + 1 points in either sub-
region then then remove that sub-region from further
consideration.

(d.)

(e.) Add the sub-regions with greater than D points con-
taining S} and S? to the set of sub-regions {S;} and
determine the convex hulls that contain the points in
each sub-region.

Step 4. If the number of obtained subregions (including those
set aside in Steps 2 and 3(d)) is about to exceed Nyey—maa,
then exit.

Step 5. Determine the sub-region that has the maximum verti-
cal distance between a point and a facet fw of the convex
hull. If this distance is less than dpaz, or all the regions have
been set aside as a result of steps 2 and 3(d), then exit.
Else, make this the ‘current’ sub-region and go to step 2.

. Response
Surface

Conservative
k Fit Macromodel

Sub-region 1 Sub- Sub-region 3
. region 2

@ 3 H
£
&2
[
3 /
21
5
D length (cm)

Figure 7: Simple example of a conservative-design macromodel.

526

Table 1: Equations for ‘above’ macromodel for the entire initial

region and two of the sub-regions.

Region Equation: t,et. (n8) = Domain (cm)
Initial | 6.932 + 0.412; + 0.2421; + 0.188l3 0<h,l,ls<10
subreg 1]0.824 + 0.40711 + 0.3321) + 0.09313 0 S 11,17,13 S 10
3.19 — 0.141}, +0.5451;, — I3 <0
2.00 +1.137; — 0511, — I3 <0
3.49 — 0.1581, +0.7911;, — I3 < 0
—0.903 — 0.6681, + 1.99, — [, <0
subreg 2 [2.67 + 0.5861, — 0.188l; + 0.19515 0 < h,l3,13 leql0

3.19 - 0.1415, + 0.545]; - I; <0
2.00 4+ 1.13,, — 0.511l, — I3 < 0
3.49 — 0.158; +0.791; — 13 < 0

—0.903 — 0.6681, + 1.991; — 3 > 0

The algorithm used for constructing the convex hull is the “gift-
wrapping” algorithm by Chand and Kapur [1}. A detailed analysis
of the algorithm has been conducted by Swart [9].

3.1 Macromodel Types

Two types of macromodels are obtained from the results of the
process described above. The mean-fit macromodel is obtained
by performing a least-squares fit on the points contained within
each sub-region so as to obtain a single linear function therein.
In the conservative-design macromodel, two linear equations are
obtained for each sub-region. The ‘below’ equation is defined so
that all of the points in each sub-region lie above the surface repre-
sented by the equation. The ‘above’ equation is defined so that all
of the points in each sub-region lie below the surface represented
by the equation. The conservative-design macromodel is obtained
by finding the single ‘above’ facet and single ‘below’ facet of the
convex hull in each sub-region that has the smallest worst case
‘vertical’ distance from the points within the sub-region. An ex-
ample is given in Figure 7 based on the response surface, shown
earlier in Figure 6. One more split was done on the regions shown
in Figure 6 before the macromodel was generated.

Each type of macromodel has its own particular uses. The
mean-fit macromodel is best suited for use at the high level design
phase, for example in a floorplanning tool such as PEPPER (7]. In
a floorplanner, the macromodels are used to determine the max-
imum practical spacing between chips, to decide on driver type,
number of loads, etc. As only rough design is being done now,
a single least-square fit macromodel is adequate and there is no
need to use the conservative-fit macromodel.

The conservative-design macromodel is used is used to gen-
erate wiring rules. Wiring rules have to be conservatively spec-
ified. It is better to over-predict noise and delay (if the design
requirement is expressed as a maximum delay) rather than under-
predict. The mean-fit macromodel may over-predict or it may
under-predict. The conservative-design macromodel will always
over-predict, and thus leads to a ‘safe’ design.

As an example, the ‘above’ half of the conservative-design
macromodel was generated using the MCM response for settling
delay illustrated above. Eleven disjoint sub-regions were formed
as a result of this process, the equations for two of which are given
in Table 1. The maximum and average vertical distances between
the macromodel and the of set of randomly sampled points in each

region are reported in Table 2. In Table 2, the line titled ‘Ini-
tial’ provides the difference statistics obtained when the ‘above’
macromodel is generated without any region sub-division. It can
be seen that with the division into sub-regions, the conservative-
design macromodel provides a much closer fit. The manner in
which these macromodels are used to obtain wiring rules is dis-
cussed next.

4 Obtaining Wiring Rules from the
Macromodels

We illustrate the process first, through a simple example, before
giving the algorithm used and showing a full example.

Consider the single variable design space and the response
illustrated earlier in Figure 6 and its corresponding conservative-
design macromodel shown in Figure 7. If the timing design indi-
cates that delay must be less than 2 ns then the ‘above’ macro-
model can be used to find the ranges of length for which this is
guaranteed. If the length range for which overshoot is less than
1 V is obtained from the overshoot macromodel, then the result-
ing wiring rule is the overlap of these two lengths as shown in the
bottom of Figure 8.

Table 2: The sub-regions generated for the MCM case with the
differences between sampled points and the macromodels.

Region | Number of Maximum Average
Points | Difference (ns) | Difference (ns)

Initial 1000 2.276 1.11
subreg 1 176 1.261 0.658
subreg 2 25 1.710 0.621
subreg 3 38 0.990 0.510
subreg 4 69 0.972 0.942
subreg 5 150 1.351 0.710
subreg 6 32 1.451 0.656
subreg 7 38 0.499 0.282
subreg 8 114 1.316 0.475
subreg 9 74 1.253 0.594
subreg 10 68 1.429 0.701
subreg 11 216 1.452 0.810

527

Sub-region 1 Sub- , Sub-region 3
34 region 2
£
F2] " Delay <2
= ; elay <2 ns
214
%
> length (cm)

e
Lengths for which macromodel
predicts delay < 2 ns

e | @ngths for which Overshoot
Macromodel predicts Overshoot < 1 V

-+——» Allowed length range = Wiring Rule

Figure 8: Simple example showing a conservative-design macro-
model and how a wiring rule is obtained from it.

Written more formally, a wiring rule is obtained for a data
signal net as follows:

Step 1. The maximum settling delay requirement £p,_mqs is 0b-
tained from the timing design. This is compared with the
‘above’ settling delay macromodel to determine the union
of regions A in the physical design space RP-! for which
tDs_maz is greater than the delay obtained from the macro-
model. (Note thigh_iow and tiow-nigh transition results are
combined into a single macromodel.)

Step 2. The minimum settling delay requirement tp,_min is ob-
tained from the timing design and compared with the macro-
model, in the same fashion as above, to obtain region B.

Step 3. The maximum positive overshoot is obtained from the
noise requirements and compared with the positive overshoot
macromodel to obtain region C.

Step 4. Region D is obtained by considering the maximum neg-
ative overshoot.

Step 5. The wiring rule is the polytope determined by the inter-
section of volumes A, B, C, and D.

A wiring rule is obtained for a clock net by similarly applying
this process using the requirements for, and ‘above’ macromodels
for, 50% delay, positive and negative overshoot, positive and neg-
ative undershoot, rise and fall times, and the maximum width of
any ‘porching’. Note that all but the 50% delay requirement are
requirements for first incident switching.

This process was applied to the two-receiver example illus-
trated above, using the MCM-D response surface (but only the
‘initial’ macromodel given in Table 1 to make the results easier to
visualize), and the following timing and electrical requirements:

o Stable delay < 5 ns.

o Peak overshoot (positive and negative) <2 V.

The resulting wiring rule is the three-dimensional volume illus-
trated in Figure 9.

12
(0.0,10) {0,10,10)
(4.74,10%
(10,10,10)
{0,0,0) 13
o128 ’_’V(O'OJO)
e - 6.0.10)
00} (10,0,1.57) (10,0,10)

"

Figure 9: The acceptable design space, or wiring rule, is the vol-
ume enclosed by the bold-drawn edges.

5 Conclusions

We have established an automated process in which signal delay
and reflection noise are managed without resorting to overly con-
servative and ultimately costly design practices. Central to this
process is the production of macromodels that accurately capture
the electrical responses of interconnect circuits over a wide range of
physical design variables (including lengths, number of vias, layer
assignment, number of loads, etc). The macromodels are obtained
by fitting piecewise-linear equations to a set of simulation results.
The macromodel must be obtained from simulation results because
the available analytical expressions for circuit electrical responses
are inaccurate. We obtain two types of macromodel, a piece-wise
least-square fitted linear model and a piece-wise linear upper and
lower bound model. (Only the second type is discussed in de-
tail above.) The advantage of the second model type is that it is
guaranteed to be conservative resulting in a ‘safe’ design without
overly restricting that design.

Our solution greatly reduces the burden on the signal in-
tegrity and package design engineers. The automatic production
of macromodels releases the signal integrity engineer from the need
to conduct a large number of simulation runs. The automatic ap-
plication of the macromodels to the generation of a package layout
from the timing design releases the signal integrity engineer from
the need to become involved in the detailed layout of a large num-
ber of designs. This automation also helps guarantee first pass
success for high speed digital designs.

Acknowledgements

The authors would like to thank Zaki Rakib and C. Kumar of
Cadence, George Katopis and Jay Diepenbrock of IBM, and John
Grebenkemper of Tandem for discussions during the course of this
work. We would also like to thank Garrett Simpson of Cadence
for providing the small computer design and the preliminary pro-
cessing of it.

528

References

(1] Donald Chand and Sham Kapur. An Algorithm for Convex
Polytopes. Journal of the ACM, 17(1):78-86, January 1970.

[2] M.J. Chen and E.S. Kuh. Solving nonlinear resistive net-
works using piecewise-linear analysis and simplicial subdivi-
sion. IEEE Transactions on Circuits and Systems, CAS-
24(6):305-317, June 1977.

(3] E.E. Davidson and G.A. Katopis. Package electrical design. In
R.R. Tummala and E.J. Rymaszewski, editors, Microelectron-
ics Packaging Handbook, chapter 3. Van Nostrand Reinhold,
1989.

[4] P.D. Franzon. Electrical design. In D.A. Doane and P.D. Fran-
zon (ed), editors, Multichip Module Technologies and Alterna-
tives: The Basics, chapter 11. Van Nostrand Reinhold (New
York), 1992.

(5] P.D. Franzon, S. Simovich, S. Mehrotra, and M. Steer. Auto-
matic a-priori generation of delay and noise macromodels and
wiring rules for MCMs. In Proc. 1998 IEEE Multi-Chip Module
Conference, 1993.

[6] G. Katopis. Wiring rules for electrical package design, 1992.

[7] D.P. LaPotin. Early analysis of multichip modules. In Proc.
1990 International Electronics Packaging Symposium, pages
pp.557-563, September 1990.

[8] S. Mehrotra, S. Simovich, P.D. Franzon, and M.B. Steer. Au-
tomatic Circuit Characterization through Computer Experi-
ments. submitted for publication, 1993.

(9] Garret Swart. Finding the Convex Hull Facet by Facet. Jour-
nal of Algorithms, (6):17-48, 1985.

529

