
Abstract

LUNSFORD II, PHILIP J. The Frequency Domain Behavioral Modeling and

Simulation of Nonlinear Analog Circuits and Systems. (Under the direction of

Michael B. Steer.)

A new technique for the frequency{domain behavioral modeling and simulation of

nonautonomous nonlinear analog subsystems is presented. This technique extracts

values of the Volterra nonlinear transfer functions and stores these values in binary

�les. Using these �les, the modeled substem can be simulated for an arbitrary

periodic input expressed as a �nite sum of sines and cosines. Furthermore, the

extraction can be based on any circuit simulator that is capable of steady state

simulation. Thus a large system can be divided into smaller subsystems, each of

which is characterized by circuit level simulations or lab measurements. The total

system can then be simulated using the subsystem characterization stored as tables

in binary �les.

Using known ideal nonlinear circuits, the method extraction technique was tested

for nonlinearities up to seventh order. The Volterra nonlinear transfer functions of

an equalizing circuit were extracted from the results of transient simulations which

utilized the shooting method. The resulting tables were then used to simulate an

arbitrary waveform and the results closely matched the equivalent time domain

circuit simulation.
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Chapter 1

Introduction

1.1 Motivations and Objectives of This Study

The design complexity of analog circuits and systems is forever increasing. With
this complexity comes the problem of simulation of these large analog systems.
VLSI circuit dimensions are decreasing, thus requiring more accurate simulations
and chip sizes are increasing, thus allowing larger, more complex circuits on a single
chip. With VLSI technology, design iterations are costly both in time and money,
and accurate simulation capability is a necessity for designing these large chips.
Furthermore, when these chips are put together to form a complex analog system,
the system design becomes complex, and system simulation even more demanding.

Circuit simulators such as SPICE [1] are impractical for system level simulation
because the cost of simulations is O(N3) where N is the number of nodes. Recent
advances such as waveform relaxation [2] have resulted in O(N�) where � is typically
1.2 to 1.5. However, no such speed up of global simulation has been achieved for
analog circuit functions.

A standard approach to system design is to identify the important characteristics
of the subsystems, and de�ne �gures of merit for each subsystem. These �gures of
merit can be budgeted for the total system. For example, for a Local Area Network
(LAN) using a token ring protocol, each station or subsystem contributes to the
overall jitter of the signal as it travels around the ring. In order to assure that the
system jitter is below some maximum, the maximum jitter contribution of a single
station is restricted to the total jitter budget divided by the number of stations.
This approach assumes that mechanics of how jitter is added is well understood. As
designs become more complex, the accumulation characteristics of such �gures of
merit become more complicated and harder to predict. Identifying and accurately
de�ning and budgeting these becomes more di�cult.

System simulators such as SABER [3,4] address the problem of system simulation
by providing the user with a language (e.g. MAST) to write behavioral models of
large circuits or small subsystems. It is up to the designer to write and verify these
models. The complexity of writing accurate models and the overhead and possible
mistakes in verifying these models can render this method of system simulation
unreliable.

The objectives of this study are to develop new ways to simulate nonlinear circuits
and systems and to develop new ways to automatically extract the subsytem models
to be used. This study is restricted to steady{state simulation, meaning all of the
signals can be expressed as the sum of periodic signals.
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1.2 Overview

The organization of this thesis is divided into six chapters. Chapter one is an intro-
ductory chapter outlining the entire thesis and stating the motivation, objectives,
and original contributions of this study. Chapter two gives a review of the state of
the art in steady{state behavioral modeling and simulation. In particular, modeling
and simulation techniques that can be used to analyze the steady{state behavior of
analog circuits and systems are reviewed. Also, the current technology in behavioral
model extraction is reviewed.

Chapter 3 is a presentation of new modeling and simulation techniques that are
restricted to steady{state simulation as they are based in the frequency domain.
Special attention is paid to bivariate, or two input, models both as a behavioral
black box (as in a ring diode mixer) and as a circuit element model (as in a current
source modeling the drain{to-source current in a MESFET controlled by both the
gate voltage and the drain voltage). Chapter 4 is a detailed description of a new
model extraction technique for Volterra behavioral models. This technique is appli-
cable to black box model extraction by both laboratory measurements and by device
level simulation. Chapter 5 is a review of veri�cation for the techniques presented in
chapters 4 and 5 and include simulation results for a ring diode mixer, a MESFET
ampli�er, simple RC �lter, a memoryless 7th order device, and a nonlinear equaliza-
tion circuit. Chapter 6 concludes this work by summarizing and giving suggestions
for further work.

1.3 Summary of Original Contributions

1.3.1 Published Work

� P.J. Lunsford, G.W. Rhyne, and M.B. Steer, \Frequency domain bivariate gen-
eralized power series analysis of nonlinear analog circuits," IEEE Trans. Mi-
crowave Theory Tech., vol. MTT-38, pp. 815{818, June 1990.

(sections 3.2 and 5.2)

� P.J. Lunsford and M.B. Steer, \The Relationship Between Bivariate Volterra
Analysis and Power Series Analysis with Application to the Behavioral Model-
ing of Microwave Circuits," Int. J. on Microwave and Millimeter Wave Com-
puter Aided Engineering, vol. 1, no. 3, July 1991, pp. 253{262.

(sections 3.3 and 5.3)

1.3.2 Unpublished Work

� Volterra Behavioral Model Extraction (chapter 4)

� Frequency Domain Harmonic Balance using Volterra Behaviorals (section 3.4
and appendix A)

2



Chapter 2

Review of Steady{State Behavioral Modeling

and Simulation

2.1 Introduction

The current state{of{the{art of steady{state modeling and simulation of analog
circuits and systems will be discussed in this chapter. More speci�cally, simulation
and modeling techniques that are applicable to steady{state modeling are reviewed.
In this context, the term \steady{state" refers to input and output signals that can
be expressed as a sum of periodic signals. In general, a steady{state signal is not
required to be periodic. For example, a signal consisting of the sum of two sinusoids,
one at 1 Hz and one at

p
2 Hz would be a steady{state signal, but it would not be

a periodic signal. However, most techniques discussed here are speci�c to periodic
signals.

First several de�nitions of terms are discussed and remarks are made giving
overall advantages and disadvantages of the techniques described by these terms.
Secondly modeling and simulation techniques are reviewed, and lastly behavioral
model extraction is reviewed.

2.2 De�nitions & Issues

Several terms merit discussion. Here macromodeling versus behavioral modeling,
circuit versus system simulation, and time versus frequency domain simulation are
discussed.

Two terms that are sometimes used interchangeably but usually carry di�erent
meaning are \macromodel" and \behavioral model". A macromodel is a simpli�ed
circuit that represents the behavior of a more complex circuit. Macromodeling is
commonly used for the simulation of complex circuits based on operational ampli�ers
[5]. A behavioral model, on the other hand, is usually de�ned as an input{output
characteristic described by an equation, algorithm, or table, but a macromodel is
also a behavioral model.

The terms \circuit simulation" and \system simulation" are also terms that carry
di�erent meaning. Circuit level simulation is a transistor level simulation where
branches of a circuit topology are described to a simulator and the voltage-current
constitutive relationship for each branch is known. The simulator then solves Kirch-
ho�'s voltage and current laws (KVL and KCL) to predict the performance of the
circuit. A system level simulator usually has an input where the branches describing
the topology have direction. In other words, the connections to the primitive blocks
in the system are either inputs or outputs. An output of one block connects to the
input(s) of another block(s). No two outputs are connected together. In a system
simulator, the e�ects of loading on a signal are not taken into account. Thus in a
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system simulator, the performance of a subsystem is dependent only on the signals
of the input, not what is connected to the output. However, a circuit simulator can
be used as a pseudosystem simulator by creating devices with the voltage-current
relationship described by a behavioral model. Thus through the use of behavioral
modeling, a circuit simulation can perform a mix of circuit and system simulation.

Other types of simulation (or design) techniques used to analyze high level sys-
tems are signal 
ow graphs [6, pp. 542{558], and spread sheet techniques that use
de�ned �gures of merit [7]. Signal 
ow analysis is con�ned to linear systems, and
bugeting de�ned �gures of merit requires a simpli�cation and often linearization of
the characteristics of the subsystems.

2.2.1 Time Domain vs Frequency Domain

Simulators capable of steady{state simulation can be divided into two types, time
domain and frequency domain simulators. A time domain simulator is the most
intuitive. The signals are expressed as values at points in time. On the other
hand, a frequency domain steady-state simulator expresses signals as coe�cients of
a Fourier series or set of Fourier series. Usually the phasor form of these coe�cients
is used, thus each signal is a vector of complex numbers. Each complex number has
an associated frequency. The magnitude and phase of the phasor corresponds to the
magnitude and phase of the frequency component.

Compared to time{domain simulators, frequency domain simulators can be more
e�cient, especially for the case of a linear circuit or system. Moreover, nonperiodic
steady{state signals can be more easily represented in the frequency domain than
in the time domain. Circuits which have steady{state responses can typically be
simulated several orders of magnitude faster. The simulation dynamic range (de�ned
as the ratio of the magnitude of the largest sinusoidal signal component present in
the circuit to the smallest component simultaneously present) exceeds 200dB for a
frequency domain simulation [8] and approaches 400 dB for some specialized forms.
On the other hand, the dynamic range for time{domain simulation can be as little as
60 dB. [9]. To put this in perspective, the accurate simulation of a 16 bit digital{to{
analog converter requires that the dynamic range of the simulator be at least 100 dB.
But time domain simulation is more intuitive and easier to integrate physical based
semiconductor models. The transients related to non-periodic a�ects (e.g. start
up) can also be analyzed with a time domain simulator and no such information is
available with frequency domain simulators.

2.3 Modeling Techniques

For a simulator to be useful, it must be supplied with a description of the circuit or
system that is to be simulated. Techniques of modeling are usually heavily dependent
on the simulator that will be used. For instance, a frequency domain description of
a component is more easily used in a frequency domain simulator.
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2.3.1 Time Domain Modeling

Time domain modeling is reasonably intuitive since the time domain is the domain
of physical reality. Other domains are just mathematical representations that enable
analysis from di�erent perspectives. For a macromodel used in circuit simulation,
an input{output characteristic or current{versus{voltage characteristic can be de-
scribed by a time domain equation or table, so that y(t) = F (x(t)) where F is some
analytic function. A behavioral model for an idealized subsystem can then be the
idealized function. For example, an ideal gain stage can be modeled by simply set-
ting the output equal to the input multiplied by the gain. This simpli�ed model
neglects skew rate limitations and other distortion factors, but enables simple and
e�cient simulation. Behavior level time domain simulators such as SABER [3, 4]
and PROFILE [10, 11] use specialized languages which enables the user to model
arbitrary systems. Of course trade{o�s between simplicity, e�ciency, and accuracy
of a model are made when creating the model. But each model must be coded by
hand, and the resulting model is only as good as the understanding of the designer.

2.3.2 Generalized Power Series Modeling

Generalized power series analysis is a frequency domain nonlinear circuit simulation
technique which utilizes generalized power series descriptions of nonlinear compo-
nents. It was developed by Steer and Khan in 1983 [12] based on earlier work by Sea
and Vacroux [13{15] and Heiter [16]. Examples of this simulation technique have
been published for microwave circuit simulation [17{19]. The work described here
forms one of the bases of the macromodeling techniques developed in this thesis.

Generalized power series requires that the constitutive relations (i.e. current
versus voltage) of the nonlinear elements be described by a power series that can
contain time delays. The steady{state input x(t) is described by a series of sinusoids,
or a vector of phasors. Each phasor Xk represents the amplitude and phase of the
corresponding sinusoid.

x(t) =
KX
k=0

�kjXkj cos(!kt+ �k) =
KX

k=�K

Xke
j!kt (2.1)

The general form of the output y(t) (e.g. the current through a branch as a function
of the voltage across the branch) is characterized by A;Ai; an;i; bk;i and �k;n;i.

y(t) = A
IX
i=1

Ai

1X
n=0

an;i

2
4 KX
k=�K

bk;ixk(t� �k;n;i)

3
5
n

(2.2)

The resulting output phasor Yq at frequency !q is given by

Yq =
1X
n=0

X
n1;:::;nK| {z }

jn1j+���+jnK j=n

Re f�nTg!q (2.3)
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where the output frequency is given by

!q =
KX
k=1

nk!k (2.4)

and T and � are de�ned by

T =
1X
�=0

X
s1;:::;sK| {z }

s1+���+sK=�

(n+ 2�)! an+2�� (2.5)

� =
KY
k=1

(bk)nk+2sk (Xy
k)

jnkj+sk (Xz
k)

sk(�y
k)

jnk j+sk(�z
k)

sk

sk!(jnkj+ sk)!
(2.6)

�k;n = e�j!k�k;n (2.7)

Using Kirchho�'s current and voltage laws, the harmonic balance system of equa-
tions can be solved using iterative techniques such as Newton-Raphson. The key to
this technique is the e�ciency of the nonlinear calculation. For a given set of fre-
quencies, an IPD (Intermodulation Production Description) table is created during
the initialization of the simulation. Each entry in this table is a valid set of nk (2.4).
This table is referred to during each iteration. The table can also be saved in a �le
to be used in subsequent simulations that use the same set of frequencies and that
contain elements with the same maximum order of the power series. For example,
�gure 2.1 shows a simple spectrum of a mixer circuit.

A partial list of the IPD table for this spectrum is given in table 2.1. The n and
n1; n2; and n3 variables are used in (2.3). Note that zero Hz (DC) is not an input
that is mixed with the other frequencies. The only DC input component is when
n = 0, or the DC output value for zero input. This is because we can simplify the
mixing calculations by changing the form of the polynomial. For instance, take the
polynomial of x

y = a0 + a1x+ a2x
2 + : : :+ anx

n (2.8)

If the DC input to the input x is given by x0, then (2.8) can be expressed in the
form

y = b0 + b1(x� x0) + b2(x� x0)
2 + : : :+ bn(x� x0)

n (2.9)

where
bi = ai + ai+1x0 + ai+2x

2

0
+ : : :+ anx

n
0

(2.10)

This recalculation of the coe�cients is inexpensive and reduces the number of IPD's
needed to calculate the output.

2.3.3 Power Series Ratios

In 1989, C.R. Chang introduced a new technique to calculate power series in the
frequency domain [20]. Termed the Arithmetic Operator Method or AOM, this
technique maps the time domain arithmetic operation into frequency domain matrix

6



Output Frequency n n1 n2 n3

f1, IF 1 1 0 0
2 0 1 -1
4 2 -1 1
5 -1 2 -2
7 3 -2 2
8 -2 3 -3

f2, LO 1 0 1 0
2 1 0 1
4 -1 2 -1
5 2 -1 2
7 -2 3 -2
8 3 -2 3

f3, RF 1 0 0 1
2 -1 1 0
4 1 -1 2
5 -2 2 -1
7 2 -2 3
8 -3 3 -2

f4, DC 0 0 0 0
3 1 -1 1
6 2 -2 2

Table 2.1: Partial listing of IPD's when DC is not an input to the algebraic formula
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Figure 2.1: Simpli�ed spectrum for a mixer circuit (f1 = 2f2 � f3)

operations. Since, for example, multiplication in the time domain corresponds to
a matrix multiplication in the frequency domain, division in the time domain can
be mapped to matrix inversion and multiplication in the frequency domain. Thus
saturating curves such as tanh(x) can be e�ciently modeled by a ratio of power
series.

y =
a0 + a1x+ a2x

2 + a3x3 : : :

b0 + b1x+ b2x2 + b3x3 : : :
(2.11)

This ability to allow division in the model algebra reduces the number of terms
needed for many models, especially models that have a saturating behavior similiar
to tanh(x). With GPSA, saturating curves such as tanh(x) require many terms.
Thus AOM increases the e�ciency and extends the modeling capability of GPSA.

2.3.4 Volterra Series

In the late 1800's and early 1900's Volterra developed functional series, now known as
Volterra series [21, 22]. A summary of this work is given in [22]. This has provided
a basis for modeling and simulation in a wide variety of disciplines. It has been
used in the �eld of biology to model the thermal dependency of the heart rate
[23], and the properties of the auditory system [24, 25]. In the �eld of nonlinear
hydrodynamics, it has been used to study ship and platform motion and stabilization
[26{32]. In addition to hydrodynamics, other mechanical engineering problems have
been studied using Volterra series including elastomer properties [33] and structural
mechanics [34{36]. It has been used to study the optical [37] and magnetic [38]
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properties of materials. The input{output properties of a laser diode have also been
modeled [39].

Volterra series has been extensively used in circuit design, often tailored for
a speci�c application. For example, oscillators [40, 34], power conversion systems
[41], transconductance{capacitor �lters [42], operational ampli�ers [43, 44], diode
mixers [45,46], hard-limiters [47], radio receivers [48], and traveling{wave tubes [49]
have all been analyzed using Volterra series. However, the most extensive use of
Volterra series has been in analyzing microwave ampli�ers [50{55]. There has also
been a vast amount of theoretical research on Volterra series. Most of this deals
with convergence properties [56, 57], conditions where Volterra series exist [58{62],
techniques to analytically derive Volterra descriptions for a given system [63], and
relationships to other mathematical theory [64{68]. There has also been work in
developing insight and techniques that will allow Volterra theory to be used in the
design of nonlinear controls [69{71]. The frequency domain form of the Volterra
Series forms the basis for behavioral modeling techniques developed in this thesis.

Time Domain Volterra Series

Time continuous time{domain expression for the output y(t) of a function described
by a Volterra series with input x(t) is

y(t) =
1X
n=0

yn(t) (2.12)

where

yn(t) =
Z

+1

�n=�1

Z
+1

�n�1=�1
: : :

Z
+1

�1=�1
hn(�1; �2; : : : �n)

"
nY
i=1

x(t� �i)

#
d�1 d�2 : : : d�n

(2.13)

The nth order Volterra kernel is hn(�1; �2; : : : �n) and is not unique unless some
further restriction is applied. Requiring that hn be symmetric can be done without
loss of generality and results in a unique set of Volterra kernels for a given system.
This restriction is usually applied and the following discussion assumes that the
kernels are symmetric.

Frequency Domain Volterra Series

The n{fold Fourier transform of the Volterra kernel is known as the Volterra non-
linear transfer function, Hn.

Hn(f1; f2; : : : fm) =
Z

+1

�1

Z
+1

�1
: : :

Z
+1

�1

hn(�1; �2; : : : �m)

e�j2�(f1�1+f2�2+:::fn�n)

d�1 d�2 : : : d�n (2.14)
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Using a Fourier transform, (2.13) can be used to give the frequency domain descrip-
tion of the nth order output Yn(f)

Yn(f) =
Z

+1

�1

Z
+1

�1
: : :

Z
+1

�1
Hn(f1; f2; : : : fm)

�(f � f1 � f2 � : : : fn)"
nY
i=1

X(fi)

#
df1 df2 : : : dfn (2.15)

Figure 2.2 gives a graphical representation of the frequency domain calculation of
the output. The output of each order calculation is summed to give the output of the
system. The output of each order calculation is calculated from the frequency domain
description of the input and the Volterra nonlinear transfer function corresponding
to that order. The 0th order calculation is just the DC o�set for zero input and is
represented by the value of the 0th order Volterra nonlinear transfer function H0.

2.4 Simulation

Three di�erent simulation techiques can be used for steady{state simulation. They
are shooting methods, harmonic balance, and the Volterra method of nonlinear
currents.

2.4.1 Shooting Methods

Shooting methods [72{77] are restricted to periodic simulation and are based on time
domain simulation. Since a time domain simulator can simulate a period of time
equal to the period of the signal, the only remaining problem is to �nd the initial
condition such that the initial state of the circuit is the same as the ending state of
the circuit. In other words, there is a boundary condition that all signals at the end
of the period simulation must be equal to the value of the signals at the beginning
of the simulation. For a circuit simulator, the value of all of the signals can usually
be uniquely determined by the value of all of the capacitor voltages and inductor
currents. For the special case of a circuit with a transmission line, the problem
becomes much more di�cult because the state of a transmission line requires a
continuous representation. Thus the initial state of the circuit must include a vector
of time samples representing the continuous waves traveling in the transmission line.
This makes shooting methods impractical for most circuits that contain transmission
line models.

2.4.2 Harmonic Balance

Harmonic balance simulators [8, 78] work in the frequency domain and thus signals
are expressed as vectors of phasors. Each phasor has a corresponding frequency, and
this list of frequencies is usually part of the speci�cation of the simulation. In other
words, for the simulation to be accurate, one must know apriori the discrete values
of the signi�cant frequencies that will be present in the circuit.
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Figure 2.2: Illustration of nonlinear analysis using Volterra series.
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Figure 2.3: Linear{Nonlinear Partitioning of Circuit

The overall circuit solution technique of harmonic balance simulators can be seen
in �gure 2.3. The circuit is grouped into two subcircuits. One subcircuit contains
only linear elements, and the other subcircuit contains only nonlinear elements. The
error signal that is minimized during the solution iteration is de�ned by the voltages
and currents at this interface.

E =
NX
k=0

jI!k + I 0!kj2 + jV!k � V 0
!kj2 (2.16)

2.4.3 Method of Nonlinear Currents

The method of nonlinear currents is a simulation technique based on the mathe-
matics of Volterra series that allows direct calculation of the frequency response of
nonlinear curcuits where the consitutive relationships of the nonlinear elements are
described by a power series [79, pp 190{207] [47, 80{87]. This method is particu-
larly e�cient when the nonlinearity is weak, and has been shown to be e�cient in
calculating the distortion in weakly nonlinear microwave circuits.

2.5 Behavioral Model Extraction

As analog circuits and systems get larger, the need for more complex simulations
increases. One way to simplify the simulation is to create a behavioral model for
portions of the sytem, and use this simpli�ed model in simulation. However, the
problem of creating the behavioral model is not simple. Even if the form or topology
of the model has been chosen, the speci�c model parameters must be created or
extracted in some way. The creation or extraction of a speci�c model depends on the
simulator that is being used. This section will discuss several aspects of behavioral
model extraction, using a written modeling language, using error minimization, using
the maximum likelihood estimator, and extracting a general Volterra series model.
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2.5.1 Hand Written in Modeling Language

Time domain circuit simulators that are tailored for behavioral simulation like
SABER [4] and PROFILE [10,11] use a structured language to describe the model.
The most common behavioral blocks are assumed to be linear and are easy to char-
acterize. Moreover, many circuits are intentionally designed to be linear, therefore
the assumption of linearity is as good as the design of the subcircuit being modeled.
Furthermore, sometimes the model can be an idealization of the intended function
of the intended circuit, thus no extraction is needed. Moreover, saturation e�ects
can be simply modeled by using thresholding functions.

2.5.2 Error Minimization

Most model extraction can be thought of as an error minimization problem. As-
suming that the topology of the model has been determined (e.g. the form of the
equation used to model the input{output behavior) then the known behavior of the
circuit can be compared to the modeled behavior of the circuit. The di�erence in
the behavior can be thought of as the error, e, of the model, and the parameters, P ,
of the model can be varied until the error is as small as possible.

e = f(P ) (2.17)

Linear Least Square Fit

If the relationship between the parameters P = [p1; p2 : : : pN ] and the behavior of the
circuit can be expressed in the matrix form of (2.18), then the parameters P can be
directly calculated [88, pp. 194{199]. This assumes that N is less than or equal to
M , and the error to be minimized is the L2 norm of the di�erence between the left
and right side of equation 2.18. This is a common method for extracting parameters
but is not always applicable because equation (2.18) cannot be formulated or because
the resulting error is inappropriate.

2
66666664

a11 a12 : : : a1N
a21 a22 : : : a2N
a31 a32 : : : a3N
...

...
...

...
aM1 aM2 : : : aMN

3
77777775

2
66664
p1
p2
...
pN

3
77775 =

2
66666664

b1
b2
b3
...
bM

3
77777775

(2.18)

Nonlinear Minimization with derivative information

Where the error minimization problem cannot be set up as a linear problem, non-
linear minimization must be used. Several methods of nonlinear minimization use
derivative information. These methods only �nd a local minimum in the parameter
space, but are relatively fast and e�cient. The major di�culty is calculating the
derivative information.
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Nonlinear Minimization without derivative information { Simulated An-
nealing

There are also nonlinear minimization techniques which do not require derivative
information. The main advantage of these techniques is that they tend to �nd the
global, instead of local, minimum of the error function. These are usually termed
\annealing" techniques because the algorithm has an analogy in the physics of a
metal being annealed [89]. The error value is analogous to the total energy of the
metal being annealed. As a metal cools, each molecule has a probability of changing
its energy level. The change of the state usually results in a decrease in energy. But
in some cases, the energy can increase, and the probability of an increase in energy
is greater at higher temperatures. Thus the cooling schedule used is an important
factor in the e�ciency and the quality of the resulting solution. A fast cooling
schedule is quicker but less likely to �nd the global minimum.

Conventional simulated annealing is not directly applicable to a continuous pa-
rameter space, the technique called tree annealing developed by Bilbro et al [90]
is very e�cient. The history of previous points in the parameter space is used to
bias the random choices of possible better solutions. This information is stored in a
multi{dimensional binary tree, and thus the term tree annealing. As with all non-
linear minimization algorithms, the user must specify a range of the valid parameter
space. Tree annealing is e�cient at �nding a global minimum, especially if an ap-
propriate cooling schedule is used and the calculation of the error function is not
too expensive.

2.5.3 Maximum Likelihood Estimator

A recent development in parameter extraction that deserves mention is the use
of the maximum likelihood estimator (MLE) [91{93]. This technique is based on
the mathematics of Volterra series and has the advantage of minimizing the e�ect
of gaussian white noise present in the system. Noise is always a factor that can
a�ect the accuracy of the extracted model. MLE assumes that random noise is
added to the input and output of the system due to the measurement technique.
The system is �rst characterized by measuring the noise characteristics of the input
and output with no signal applied. Thus MLE is applicable only to models based
on measurements taken in a laboratory, not simulated measurements derived by
simulation. After the zero{input noise is characterized, the output is measured with
an input stimulus. The problem is then formulated, \what is the most likely true
input (the intended input minus the noise added ) and true output (the measured
output minus the noise added) for this system with the known intended input and
measured output". This formulation has the advantage of minimizing the e�ects of
noise coupled into the system, but is expensive because the true input and output
are now unknown. Thus both the parameter space, and the input{output space
must be solved simultaneously. This translates into a larger number of unknowns.
Thus MLE is especially useful in parameter extraction where the model has a small
number of unknown parameters and where measurement noise is signi�cant.
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2.5.4 Volterra Series Model Extraction

General behavioral models based on Volterra series can be used to accurately repre-
sent many di�erent sytems [56]. The general Volterra model is a behavioral model
where the input{output characteristics are described by a Volterra series as given in
(2.13) or (2.15). The problem of extracting, storing, and using these models presents
di�culties. Since a general Volterra model consists of continuous functions, either
the time{domain kernels, or the frequency{domain nonlinear transfer functions, the
range and method of storage must be determined. Typically, discrete points are
selected. Since the time domain kernels are integrated over time, the equivalent of
the entire kernels must be saved. For the case of the frequency{domain nonlinear
transfer function, a limited set of points can be saved if the simulation frequencies
are known in advance. The amount of data needed to store the model is heavily
dependent on the order of the model assumed. The higher the order, the more
data needed. Both the Volterra kernels and the nonlinear transfer functions have
n inputs (where n is the order of the kernel or nonlinear transfer function). Thus
a small increase in the order of the model can vastly increase the amount of data
that needs to be stored. For most applications, the model must be extracted by
exciting the system with several di�erent inputs and measuring the responses. If
there is a system of equations already describing the system, the Volterra series can
be calcualted directly [63], but in that case, it would usually be more e�cient to
base the behavioral model directly on the known set of equations.

White Noise Probing for the Development of Functional Models

The idea of using noise as a probing input to extract Volterra models of a system was
�rst suggested by N. Wiener in the 1940's [94]. To simplify the procedure, Wiener
developed G-Functionals which are based on Volterra functionals (i.e. Volterra se-
ries) but unlike Volterra functionals, G-Functionals are orthogonal with respect to
gaussian white noise. Unlike G-Functionals responses, Volterra functional responses
are homogeneous of degree n, where n is the order of the functional. This extrac-
tion procedure was further developed and demonstrated on various circuits in the
1960's by Lee and Schetzen [95, 96] used in the 1960's for various circuits and sys-
tems. In the 1980's this method gained interest again [97{100] and gaussian noise
has been used to extract Volterra based models for electrical systems [101] struc-
tural components [102,103] vertebrate photoreceptors [104] and other biological and
physiological systems [105] .

The method is appealing because of the simplicity of the measurement. Only a
noise generator, variable delays, multipliers, and an averager are needed to extract
the models. These procedures, however, are time consuming and certain points are
di�cult to obtain, namely hn(�1; �2 : : : �n) where �i = �j for all i 6= j.

Two{tone probing

A second way to extract a Volterra representation of a system is to use two{tone
probing [106,107]. This is very simple and straightforward, but it requires that the
system be of order two, and thus is only applicable to a small set of systems. Since
the system is of order two, when the system is excited by the sum of two sinusoids the
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output spectrum has a limited number of discrete components, and each component
characterizes a single point in one of the Volterra nonlinear transfer functions.

Quick Method

In order to maximize the information derived from a single steady{state measure-
ment, Boyd et al developed the so called quick method for measuring second order
Volterra kernels [108]. The procedure uses an input of the sum of several sinu-
soids. The relative frequencies are very carefully chosen so that most of the output
frequencies are associated with only one point on a Volterra nonlinear transfer func-
tion. The method requires very careful control of the complex input signal, but the
output measurement and the calculation of the Volterra nonlinear transfer functions
is straightforward. The system is not, however, applicable to extraction based on
shooting method circuit simulation because of the extremely long periods of the
input signal. Work by Chua and Liao published in 1989 [109] extended this work
to higher order measurements. Although the theory presented is for any arbitrary
order, the authors show data for third order extraction and report that this method
is practical only up to fourth order.

This method is good for �nding the general shapes of the nonlinear transfer func-
tions, but it is limited since there are several points that cannot be measured directly
from a single measurement. For instance, if the system is of order 3 or higher, all
points on the �rst order transfer function cannot be extracted from a single mea-
surement. The output frequencies associated with the �rst order transfer functions
will always have components associated with the third order transfer function. For
example, if the input spectrum contains a 4 Hz sinusoid, then in general, the output
will contain a 4 Hz sinusoid. Part of the sinusoid will be assiciated with the point
H1(4), but part will also be associated with the point H3(�4; 4; 4).

In order to separate the di�erent orders associated with the same output fre-
quencies, several measurements can be taken using the same input frequencies and
the same relative amplitudes at each frequency, but the total amplitude of the sig-
nal is varied. Since the nth order response yn is homogeneous of degree n, then
x(t) ! yn(t) implies �x(t) ! �nyn(t). Thus the measurement is taken m times,
each time with the input x multiplied by a scalar �i. If ri is the measured response
for �ix(t), then the nth order response yn can be calculated by solving (2.19) in the
least square error sense. This method of separation previously has been used for
second order separation and will be used for higher order as part of the extraction
method proposed in chapter 4.

2
66664
�1 �2

1
: : : �N

1

�2 �2

2
: : : �N

2

...
...

...
...

�m �2

m : : : �Nm

3
77775

2
66664
y1
y2
...
yN

3
77775 =

2
66666664

r1
r2
r3
...
rm

3
77777775

(2.19)
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2.6 Conclusion

The current state of the art behavioral simulation techniques are usually based on an
idealized time domain model. Volterra series techniques o�er the generality needed
to model arbitrary non-autonomous causal systems, but techniques for model extrac-
tion and e�cient simulation are lacking. Most system level simulation today is done
using time domain simulators that require the equivalent of simpli�ed macromodels.
Although the modeling languages for these simulators provide general modeling ca-
pability, model synthesis and extraction is speci�c to the subsystem being modeled
and requires extensive knowledge of the subsystem.

Some of the work described in this chapter forms the basis of the behavioral
modeling technique discussed in later chapters. These are:

� Generalized Power Series indexing techniques

� Error Minimization with tree annealing

� Frequency domain Volterra models

� Two tone probing for Volterra model extraction

� Quick Method for Volterra model extraction
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Chapter 3

Behavioral Modeling and Simulation

3.1 Introduction

In order to simulate large circuits e�ciently, the circuit must be partitioned into
smaller subcircuits, and then each subcircuit characterized or modeled. The behav-
ioral model of a subcircuit needs to have su�cient generality so that the subcircuit
can be modeled to the desired accuracy. Volterra techniques provide a mathemati-
cal base that will enable a large class of input-output behaviors to be modeled. It
also provides a built{in measure of complexity, the order of the model, that can
be increased to improve the accuracy of the model, or decreased to improve the
computation speed of the model.

This chapter discusses the relationship of power series modeling to the more
general case of Volterra series modeling. This relationship is important for several
reasons. First, since the present state of the art includes circuit simulation based
on power series modeling, this relationship gives us a foundation to extend this
simulation technique to the more general case of models based on Volterra series.
Secondly, since techniques already exist to extract power series models with order
dependent delays, a way to translate these existing power series models into Volterra
models is provided. Lastly, by understanding the relationship between power series
and Volterra series, we can gain insight into the limitations of the present power
series analysis.

This chapter �rst introduces power series analysis for the general case of a two{
input one{output system. This work gives the basis for using two{input models in a
power series based simulator. Second, the relationship between power series analysis
and Volterra series analysis will be shown. The univariate (single input) case of the
output described by a power series is derived �rst to an alternate form. Then the
univariate Volterra description will also be shown in that same form, thus providing a
means to derive the direct equation for the Volterra nonlinear transfer function given
that the power series description is known. The same is then done for the bivariate
(two{input) case. First deriving a form for the output of a bivariate power series,
and then by deriving the same form for a bivariate Volterra series, a direct equation
for the bivariate Volterra nonlinear transfer function as a function of the bivariate
power series description will be given. Using the derived relationship, the di�erences
and limitations of power series and Volterra series modeling is discussed. Although
the univariate relationship has previously been established [110], the method used
did not lend itself to the bivariate case.

The second section of this chapter shows how the indexing scheme for power
series simulation can be modi�ed so that Volterra descriptions can be used. First
the simpler case of a univariate description is given, and then the more complicated
case of a bivariate description. This modi�cation provides the basis of a general
Volterra simulator derived from an existing power series simulator, thus allowing a
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practical implementation of Volterra simulator.

3.2 Bivariate Generalized Power Series

This section presents the development of an algorithm for determining the steady{
state frequency domain description of the output of a system described by a bivariate
(i.e. two independent inputs) power series. This power series can have complex coef-
�cients and frequency{dependent time delays. Since the development is restricted to
the steady{state response of the system, we can restrict the inputs to be represented
as the sums of sinusoids.

A nonlinear element or system having the two multifrequency inputs, x(t) and
z(t), (each having N components)

x(t) =
NX
k=1

xk(t) =
NX
k=1

j Xk j cos(!kt+ �k) (3.1)

and

z(t) =
NX
k=1

zk(t) =
NX
k=1

j Zk j cos(!kt+ �k) (3.2)

can be represented by the bivariate generalized power series

y(t) =
1X
�=0

1X
�=0

a�;�E(�; x)F (�; z) (3.3)

with

E(�; x) =

 
NX
k=1

bkxk(t� �k;�)

!�

(3.4)

and

F (�; z) =

 
NX
k=1

dkzk(t� �k;�)

!�
: (3.5)

In these expressions, a�;� is a complex coe�cient, bk and dk are real, and �k;� and �k;�
are time delays that depend on both the order of the power series and the index of
the input frequency components. With these parameters a large variety of systems
can be modeled. Our aim is to rewrite (3.3) in terms of phasors. The x input can
be expressed as

xk(t� �k;�) = jXk j cos(!kt+ �k � !k�k;�)

=
1

2
Xk�k;�e

j!kt +
1

2
X�

k�
�
k;�e

�j!kt (3.6)

where Xk is the phasor of the component of xk(t) at the radian frequency !k and

�k;� = e�j!k�k;� (3.7)
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Similarly, for the other input z(t), we write

zk(t� �k;�) = jZk j cos(!kt+ �k � !k�k;�)

=
1

2
Zk�k;�e

j!kt +
1

2
Z�
k�

�
k;�e

�j!kt (3.8)

where Zk is the phasor of the component of zk(t) at the radian frequency !k and

�k;� = e�j!k�k;� (3.9)

Using the multinomial expansion theorem [111], we write (3.4) as

E(�; x) =
X

l1; : : : ; lN ;m1; : : : ;mN| {z }
l1 + � � �+ lN +m1 + � � �+mN = �

8<
:

"
exp

 
j

NX
k=1

(lk �mk)!kt

!#
�!

�
NY
k=1

 
(1
2
bk)lk+mk (Xk)lk(X�

k )
mk(�k;�)lk(��

k;�)
mk

lk! mk!

! 9=
; (3.10)

where the summation is over all combinations of the integers l1; : : : ; lN ;m1; : : : ;mn

such that
PN

k=1
lk+mk = �. Similarly, we can expand F in (3.5), and so the product

of E and F becomes

E(�; x)F (�; z) =
X

l1; : : : ; lN ;m1; : : : ;mN
i1; : : : ; iN ; j1; : : : ; jN| {z }

l1 + � � �+ lN +m1 + � � �+mN = �
i1 + � � � + iN + j1 + � � �+ jN = �

"
exp

 
j

NX
k=1

(lk + ik �mk � jk)!kt

!#
�!�!	

(3.11)
where

	=
NY
k=1

(1
2
bk)lk+mk (1

2
dk)ik+jk (Xk)lk(X�

k )
mk (Zk)ik(Z�

k )
jk(�k;�)lk(��

k;�)
mk(�k;�)ik(��

k;�)
jk

lk! mk! ik! jk!
(3.12)

and the above summation is over all combinations of the nonnegative integers l;m; i;
and j such that

PN
k=1

lk +mk = � and
PN

k=1
ik + jk = �. As with the single-variable

power series, the frequency of each component is

! =
NX
k=1

nk!k (3.13)

where nk is a set of integers, an intermodulation product description (IPD) where
nk = lk + ik �mk � jk. The intermodulation order is n, where n =

PN
k=1

j nk j :
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Letting (pk + qk) equal the larger of (lk + ik) and (mk + jk), and (rk + sk) equal the
smaller, we have pk + qk � rk � sk =jnk j where pk, qk, rk, sk � 0.

For a given set of nk's specifying an individual intermodulation product (IP), the
relevant components of E(�; x)F (�; z) can be written as the sum of two terms (for
n 6= 0)

(
1

2
C)ej!qt + (

1

2
C)�e�j!qt =

(
(1
2
U 0
q)e

j!qt + (1
2
U 0
q)

�e�j!qt for !q 6= 0
U 0
q for !q = 0

(3.14)

where

C = 2
X

p1; : : : ; pN ; r1; : : : ; rN
q1; : : : ; qN ; s1; : : : ; sN| {z }

p1 + � � �+ pN + r1 + � � �+ rN = �
q1 + � � �+ qN + s1 + � � �+ sN = �

pk + qk � rk � sk =j nk j

8<
:
�
1

2

��+�
�! �! �

9=
; (3.15)

and with

� =
NY
k=1

(bk)pk+rk(dk)qk+sk (X
y
k)

pk(Xz
k)

rk(Zy
k)

qk(Zz
k)

sk(�y
k;�)

pk(�z
k;�)

rk(�y
k;�)

qk(�z
k;�)

sk

pk! rk! qk! sk!
:

(3.16)
Here we de�ne

X
y
k =

(
Xk for nk � 0
X�

k for nk < 0
(3.17)

(where X�
k denotes the complex conjugate of Xk) and

Xz
k =

(
X�

k for nk � 0
Xk for nk < 0

(3.18)

(Zy
k, Z

z
k, �

y
k;�, �

z
k;�, �

y
k;�, and �z

k;� are similarly de�ned.) Thus,

U 0
q =

(
C for !q 6= 0

1

2
(C + C�) = Re(C) for n 6= 0 and !q = 0

(3.19)

Note that U 0
q is the contribution to E(�; x)F (�; y) of one intermodulation product

(IP). The two terms in (3.14) occur as for n 6= 0, pk and qk replace two sets of ik,
jk, lk, and mk, one set corresponding to (lk + ik) > (mk + jk) resulting in the ej!qt

term and a set corresponding to (lk + ik) < (mk + jk) resulting in the e�j!qt term.
For n = 0 there is only one set corresponding to (lk + ik) = (mk + jk). Thus, the
U 0
q expression is one-half that in (3.19) for the case n = 0. For (3.19) to hold we

make the restriction that no IPD be equal to the negative of another IPD. If Uq is
the component of Y due to a single intermodulation product then

Uq =
1X
�=0

1X
�=0

a�;�U
0
q: (3.20)
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Using the Neumann factor, �n (�n = 1, n = 0; �n = 2, n 6= 0),

Uq = Re f�nTg!q (3.21)

where Ref g!q is de�ned such that it is ignored for !q 6= 0 but for !q = 0 the real
part of the expression in brackets is taken. In (3.21)

T =
1X
�=0

X
p1; : : : ; pN ; r1; : : : ; rN
q1; : : : ; qN ; s1; : : : ; sN| {z }

p1 + � � � + pN + r1 + � � �+ rN = �
q1 + � � �+ qN + s1 + � � �+ sN = �

pk + qk � rk � sk =j nk j
� + � = n+ 2�

( 
�! �!a�;�
2(n+2�)

!
�

)
(3.22)

and � is given by (3.16). The phasor of the !q component of the output y(t) is
then given by

Yq =
1X
n=0

X
n1; : : : ; nN| {z }

j n1 j + � � �+ j nN j= n

Uq: (3.23)

We have thus derived an algebraic formula for the output of a bivariate power series
having two multifrequency inputs. These formulas reduce to those presented in [12]
for a single variable power series with the elimination of the appropriate variables
and subsequent grouping of terms.

3.3 The Relationship between Volterra Series and Power

Series

In this section an explicit relationship is developed between Volterra series and
power series both for the univariate (single input) and bivariate (two{input) case.
The strategy is to take both the equation for power series and the equation for
Volterra series and derive a form for both equations that show the same structure.
The relationship between the two can then be inferred by inspection. For clarity,
the simpler univariate case is shown �rst, and then the more general bivariate case
is presented in the same format.

3.3.1 Univariate Case

Generalized Power Series Analysis introduced by Steer and Khan [12] expresses the
output y(t) as a function of the input x(t) by the equation

y(t) = A
IX
i=1

Ai

1X
n=0

an;i

"
KX
k=1

bk;ixk(t� �k;n;i)

#n
(3.24)
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Where the input is steady{state given by

x(t) =
KX
k=1

xk(t) (3.25)

and xk(t) is a single frequency component of radian frequency !k. Thus xk(t) can
be expressed as

xk(t) = Xke
+j!kt (3.26)

Note that we must choose the xk(t)'s such that (3.25) yields a real x(t). For the
discussion here we will restrict A , Ai, an;i, bk;i, and �k;n;i to be real. Now we wish
to put (3.24) in a form which is close to a conventional Volterra series form. Thus
we rewrite (3.24) as

y(t) = c0 +
IX

i=1

1X
n=1

"
KX
k=1

ĉk;i;n xk(t� �k;n;i)

#n
(3.27)

where

c0 � A
IX
i=1

a0;i (3.28)

and
ĉk;i;n � [AAi an;i]

1
n bk;i (3.29)

Changing the summation order then gives

y(t) = c0 +
1X
n=1

IX
i=1

"
KX
k=1

ck;i;n xk(t)

#n
(3.30)

Where
ck;i;n � ĉk;i;n e

�j!k �k;n;i (3.31)

Or

y(t) =
1X
n=0

yn(t) (3.32)

Where

yn(t) =
IX

i=1

"
KX
k=1

ck;i;nxk(t)

#n
(3.33)

and
y0(t) = c0 (3.34)

By adding the new summation variable k1 we can factor the term in brackets in
(3.33) "

KX
k=1

ck;i;nxk(t)

#n
=

2
4 KX
k1=1

ck1;i;nxk1(t)

3
5" KX

k=1

ck;i;nxk(t)

#n�1

(3.35)

23



And again with k2 yields

"
KX
k=1

ck;i;nxk(t)

#n
=

2
4 KX

k1

ck1;i;nxk1=1(t)

3
5
2
4 KX
k2=1

ck2;i;nxk2(t)

3
5
"

KX
k=1

ck;i;nxk(t)

#n�2

(3.36)
Continuing this n times gives

"
KX
k=1

ck;i;nxk(t)

#n
=

2
4 KX
k1=1

ck1;i;nxk1(t)

3
5
2
4 KX
k2=1

ck2;i;nxk2(t)

3
5 � � �

2
4 KX
kn=1

ckn;i;nxkn(t)

3
5

(3.37)
Moving all the terms to the right

"
KX
k=1

ck;i;nxk(t)

#n
=

KX
k1=1

KX
k2=1

� � �
KX

kn=1

ck1;i;nxk1(t)ck2;i;nxk2(t) � � � ckn;i;nxkn(t) (3.38)

Or "
KX
k=1

ck;i;nxk(t)

#n
=

KX
k1=1

KX
k2=1

� � �
KX

kn=1

nY
�=1

ck� ;i;n xk� (t) (3.39)

Substituting (3.39) into (3.33) and changing the summation order gives

yn(t) =
KX

k1=1

KX
k2=1

� � �
KX

kn=1

IX
i=1

nY
�=1

ck� ;i;n xk� (t) (3.40)

or

yn(t) =
KX

k1=1

KX
k2=1

� � �
KX

kn=1

0
@
2
4 nY
�=1

xk�(t)

3
5 IX
i=1

nY
�=1

ck� ;i;n

1
A (3.41)

This is close to the form in which the output of Volterra series analysis is evaluated.
We will now consider the output of Volterra series analysis and list it in a form
corresponding to (3.41).

In Volterra series analysis the output of a nonlinear system is

y(t) =
1X
n=0

yn(t) (3.42)

where

yn(t) =
Z

+1

�n=�1

Z
+1

�n�1=�1
: : :

Z
+1

�1=�1
hn(�1; �2 : : : �n)

nY
i=1

x(t� �i)

d�1d�2 : : : d�n (3.43)

This is the integral form of Volterra series analysis and is analogous to a multidi-
mensional convolution. The hn() terms are known as Volterra kernels. For a linear
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system only the h0() and h1() kernels are non{zero, so that only y0(t) and y1(t) are
non{zero. The y0 term

y0(t) = h0 (3.44)

is just a DC output for no input. Equation (3.43) is a more general form of the
Volterra integral equation than is usually reported as most authors consider 1 �
n � 1 and so neglect the DC o�set. Now we want to put (3.43) in frequency
domain form and so we will present a number of Fourier transforms which will be
used during the development.

X(f) �
Z

+1

�1
x(t)e�j2�ftdt (3.45)

X(f)e+j2�f�i =
Z

+1

�1
x(t� �i)e

+j2�f�id�i (3.46)

x(t) =
Z

+1

�1
X(f)e+j2�ftdf (3.47)

Yn(f) �
Z

+1

�1
yn(t)e

�j2�ftdt (3.48)

yn(t) =
Z

+1

�1
Yn(f)e

+j2�ftdf (3.49)

Hn(f1; f2 : : : fn) �
Z

+1

�1

Z
+1

�1
� � �

Z
+1

�1
hn(�1; �2 : : : �n)

e�j2�(f1�1+f2�2+:::fn�n)d�1d�2 : : : d�n (3.50)

H0 � h0 (3.51)

and

hn(�1; �2 : : : �n) =
Z

+1

�1

Z
+1

�1
� � �
Z

+1

�1
Hn(f1; f2 : : : fn)

e+j2�(f1�1+f1�2+:::fn�n)df1df2 : : : dfn (3.52)

Thus by substituting (3.52) into (3.43) and rearranging the terms and order of
integration yields

yn(t) =
Z

+1

�1

Z
+1

�1
� � �
Z

+1

�1
Hn(f1; f2 : : : fn)�Z

+1

�1
x(t� �1)e

+j2�f1�1d�1

�
�Z

+1

�1
x(t� �2)e

+j2�f2�2d�2

�
...�Z
+1

�1
x(t� �n)e

+j2�fn�nd�n

�
df1df2 : : : dfn (3.53)
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Using (3.46), this reduces to

yn(t) =
Z

+1

�1

Z
+1

�1
� � �
Z

+1

�1
Hn(f1; f2 : : : fn)"

nY
i=1

X(fi)e
+j2�fit

#
df1df2 : : : dfn (3.54)

Substituting (3.54) into (3.48) and rearranging yields

Yn(f) =
Z

+1

�1

Z
+1

�1
� � �

Z
+1

�1
Hn(f1; f2 : : : fn)"

nY
i=1

X(fi)

# Z
+1

�1
e+j2�(f1+f2:::fn)te�j2�ftdt

df1df2 : : : dfn (3.55)

or

Yn(f) =
Z

+1

�1

Z
+1

�1
� � �
Z

+1

�1
Hn(f1; f2 : : : fn)

�(f � f1 � f2 : : :� fn)
nY
i=1

X(fi)dfi (3.56)

Where �(�) is the impulse function. This is the form of the Volterra series used for
frequency domain analysis. Note that the �rst order response, Y1 reduces to

Y1(f) =
Z

+1

�1
H1(f1)�(f � f1)X(f1)df1 (3.57)

This integral is trivial to evaluate because of the �(f � f1) in the integrand. Thus
we get the more common form of the frequency domain equation used for linear
analysis.

Y1(f) = H1(f)X(f) (3.58)

Note that (3.58) is valid for any frequency domain description of X(f). Thus in
general, Y1(f) could be considered a continuous spectrum representing any arbitrary
signal. Or alternately if X(f) was a phasor representing a single tone input (i.e.
an impulse in the frequency domain), then Y1(f) would also be a single phasor
representing the single tone output. Furthermore, if X(f) were a set of phasors,
each phasor representing the phase and amplitude of a single tone at a di�erent
frequency, then Y (f) would be a set of phasors, each corresponding to a frequency
of the resulting sum of output tones.

For n = 2, (3.56) becomes

Y2(f) =
Z

+1

�1

Z
+1

�1
H1(f1; f2)�(f � f1 � f2)X(f1)X(f2)df1df2 (3.59)

Here the double integral is not trivial to evaluate. So for frequency{domain Volterra
analysis to be useful for nonlinear circuits, a restriction must be applied to the input

26



of the circuit. Therefore, we require the input of the system to be steady{state.
Thus we can express x(t) in the form of (3.25) where xk(t) is de�ned by (3.26), then
from (3.47)

X(f) =
KX
k=1

Xk �(f �
!k

2�
) (3.60)

Note that the !k's are the radian frequencies of the input and f is the frequency of
the output. We will use this convention for clarity. Thus

Yn(f) =
Z

+1

�1

Z
+1

�1
� � �

Z
+1

�1
Hn(f1; f2 : : : fn)

�(f � f1 � f2 : : :� fn)

"
nY
i=1

KX
k=1

Xk �(fi �
!k

2�
)

#

df1df2 : : : dfn (3.61)

Expanding the multiplication by introducing the summation variables k1; k2 : : : kn
yields

Yn(f) =
Z

+1

�1

Z
+1

�1
� � �
Z

+1

�1
Hn(f1; f2 : : : fn)

�(f � f1 � f2 : : :� fn)2
4 KX
k1=1

Xk1 �(f1 �
!k1
2�

)

3
5

2
4 KX
k2=1

Xk2 �(f2 �
!k2
2�

)

3
5

...2
4 KX
kn=1

Xkn �(fn �
!kn
2�

)

3
5

df1df2 : : : dfn (3.62)

Changing the order of summation and integration

Yn(f) =
KX

k1=1

KX
k2=1

: : :
KX

kn=1

[
Z

+1

�1

Z
+1

�1
� � �
Z

+1

�1
Hn(f1; f2 : : : fn)�(f � f1 � f2 : : :� fn)

Xk1 �(f1 �
!k1
2�

)Xk2 �(f2 �
!k2
2�

) : : :Xkn �(fn �
!kn
2�

)

df1df2 : : : dfn] (3.63)
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Carrying out the integration is relatively simple since the only nonzero terms of the
integrand occur when fi = !ki=2� thus

Yn(f) =
KX

k1=1

KX
k2=1

: : :
KX

kn=1

[

Hn(
!k1
2�

;
!k2
2�

; : : :
!kn
2�

)�(f � !k1
2�

� !k2
2�

� : : :� !kn
2�

)

Xk1 Xk2 : : :Xkn] (3.64)

Now using (3.49) this becomes

yn(t) =
KX

k1=1

KX
k2=1

: : :
KX

kn=1

Hn(
!k1
2�

;
!k2
2�

; : : :
!kn
2�

)

ej(!k1+!k2+:::!kn )tXk1 Xk2 : : :Xkn (3.65)

and using (3.26) we have the desired form of the output of a nonlinear system
described by Volterra nonlinear transfer functions.

yn(t) =
KX

k1=1

KX
k2=1

: : :
KX

kn=1

2
4 nY
�=1

xk� (t)

3
5Hn(

!k1
2�

;
!k2
2�

; : : :
!kn
2�

) (3.66)

By comparing, the output of a nonlinear system described by generalized power
series, (3.41) with (3.66) we see that univariate Volterra series analysis is identical
to univariate generalized power series analysis when the nth order Volterra nonlinear
transfer function is given by

Hn(
!k1
2�

;
!k2
2�

; : : :
!kn
2�

) =
IX

i=1

nY
�=1

ck� ;i;n (3.67)

That is using (3.29) and (3.31), then

H0 = c0

IX
i=1

a0;i (3.68)

and for n = 1,

Hn(
!k1
2�

;
!k2
2�

; : : :
!kn
2�

) = A
IX

i=1

Ai an;i

nY
�=1

bk� ;i e
�j!k� �k� ;n;i (3.69)

Thus if we are now given a univariate generalized power series description, we can
directly calculate a Volterra nonlinear transfer function.
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3.3.2 Bivariate Case

Now that the relationship between univariate Volterra series and power series has
been developed, the bivariate case is considered. First a form of bivariate generalized
power series is derived, and then an equivalent form for bivariate Volterra series is
also derived. As with the univariate case, a direct relationship between the two
forms is demonstrated and a formula for the Volterra nonlinear transfer function as
a function of the generalized power series description is derived.

Changing the subscripts to be consistent with bivariate Volterra analysis, (3.3) can
be expressed as

y(t) = A
IX
i=1

Ai

1X
m=0

1X
n=0

am;n;i

"
KX
k=1

bk;ixk(t� �k;n;i)

#n" LX
l=1

dl;izl(t� �l;m;i)

#m
(3.70)

The sum of the �rst port is given by x(t) and is descibed by (3.25) and (3.26) as
was the case for the univariate system. The input at the second port is given by
z(t) and is given by

z(t) =
LX
l=1

zk(t) (3.71)

and zl(t) is a single frequency component of radian frequency !l. Thus zk(t) can be
expressed as

zl(t) = Zle
+j!lt (3.72)

As with xk(t), the values of zl(t) must be in complex conjugate pairs for !l 6= 0 such
that z(t) is real. The output can be expressed as

y(t) =
1X

m=0

1X
n=0

ym;n(t) (3.73)

Where

ym;n(t) =
IX
i=1

âm;n;i

"
KX
k=1

b̂k;i;nxk(t)

#n" LX
l=1

d̂l;i;nzl(t)

#m
(3.74)

âm;n;i = AAiam;n;i (3.75)

b̂k;i;n = bk;ie
�j!k�k;n;i (3.76)

d̂l;i;n = dl;ie
�j!l�l;n;i (3.77)

As was done in (3.35), the exponentation in (3.74) can be factored to yield

ym;n(t) = (3.78)

PI
i=1

âm;n;i

2
4 KX
k1=1

b̂k1;i;nxk1(t)

3
5" KX

k=1

b̂k;i;nxk(t)

#n�1
2
4 LX
l1=1

d̂l1;i;nzl1(t)

3
5" LX

l=1

d̂l;i;nzl(t)

#m�1

(3.79)
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Continuing this process results in

ym;n(t) =
IX

i=1

âm;n;i

2
4 KX
k1=1

KX
k2=1

: : :
KX

kn=1

nY
�=1

b̂k� ;i;nxk� (t)

3
5
2
4 LX
l1=1

LX
l2=1

: : :
LX

ln=1

mY
�=1

d̂l� ;i;nzl� (t)

3
5

(3.80)
or

ym;n(t) =
KX

k1=1

KX
k2=1

: : :
KX

kn=1

LX
l1=1

LX
l2=1

: : :
LX

ln=12
4 nY
�=1

xk� (t)

3
5
"

mY
�=1

zl�(t)

#
IX

i=1

âm;n;i

"
nY

�=1

b̂k�;i;n

# 2
4 mY
�=1

d̂l�;i;n

3
5 (3.81)

The output of a system described by a bivariate Volterra series is given by

y(t) =
1X
n=0

1X
m=0

ym;n(t) (3.82)

where

ym;n(t) =
Z

+1

�̂m=�1

Z
+1

�̂m�1=�1
: : :

Z
+1

�̂1=�1Z
+1

��n=�1

Z
+1

��n�1=�1
: : :

Z
+1

��1=�1

hm;n(�̂1; �̂2; : : : �̂m; ��1; ��2; : : : ��n)

"
mY
h=1

z(t� �̂h)

# "
nY
i=1

x(t� ��i)

#

d��1d��2 : : : d��nd�̂1d�̂2 : : : d�̂m (3.83)

in the sense that
y0;0(t) = h0;0 (3.84)

The y0;0 term is usually omitted but is kept here for generality. As in the univariate
case, we will use the Fourier transform pairs of (3.45) through (3.47) and

Ym;n(f) �
Z

+1

�1
ym;n(t)e

�j2�ftdt (3.85)

ym;n(t) =
Z

+1

�1
Ym;n(f)e

+j2�ftdf (3.86)

Z(f) �
Z

+1

�1
z(t)e�j2�ftdt (3.87)

z(t) =
Z

+1

�1
Z(f)e+j2�ftdf (3.88)
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Hm;n(f̂1; f̂2; : : : f̂m; �f1; �f2; : : : �fn) �
Z

+1

�1

Z
+1

�1
: : :

Z
+1

�1

hm;n(�̂1; �̂2; : : : �̂m; ��1; ��2; : : : ��n)

e�j2�(f̂1 �̂1+f̂2�̂2+:::f̂m�̂m+ �f1��1+ �f2��2+::: �fn��n)

d�̂1d�̂2 : : : d�̂md��1d��2 : : : d��n (3.89)

H0;0 � h0;0 (3.90)

and

hm;n(�̂1; �̂2; : : : �̂m; ��1; ��2; : : : ��n) =
Z

+1

�1

Z
+1

�1
: : :

Z
+1

�1

Hm;n(f̂1; f̂2; : : : f̂m; �f1; �f2; : : : �fn)

e+j2�(f̂1�̂1+f̂2 �̂2+:::f̂m�̂m+ �f1��1+ �f2��2+::: �fn��n)

df̂1df̂2 : : : df̂md �f1d �f2 : : : d �fn (3.91)

By substituting (3.91) into (3.83) and rearranging the terms and order of integration

ym;n(t) =
Z

+1

�1

Z
+1

�1
: : :

Z
+1

�1
Hm;n(f̂1; f̂2; : : : f̂m; �f1; �f2; : : : �fn)�Z

+1

�1
z(t� �̂1)e

+j2�f̂1 �̂1d�̂1

�
�Z

+1

�1
z(t� �̂2)e

+j2�f̂2 �̂2d�̂2

�
...�Z
+1

�1
z(t� �̂m)e

+j2�f̂m �̂md�̂m

�
�Z

+1

�1
x(t� ��1)e

+j2� �f1��1d��1

�
�Z

+1

�1
x(t� ��2)e

+j2� �f2��2d��2

�
...�Z
+1

�1
x(t� ��n)e

+j2� �fn��nd��n

�

df̂1df̂2 : : : df̂md �f1d �f2 : : : d �fn (3.92)

Using (3.45) and (3.87) this reduces to

ym;n(t) =
Z

+1

�1

Z
+1

�1
: : :

Z
+1

�1
Hm;n(f̂1; f̂2; : : : f̂m; �f1; �f2; : : : �fn)"

mY
h=1

Z(f̂h)e
+j2�f̂ht

# "
nY
i=1

X( �fi)e
+j2� �fit

#

df̂1df̂2 : : : df̂md �f1d �f2 : : : d �fn (3.93)
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Substituting this value of ym;n(t) into (3.85) yields

Ym;n(t) =
Z

+1

�1

Z
+1

�1
: : :

Z
+1

�1
Hm;n(f̂1; f̂2; : : : f̂m; �f1; �f2; : : : �fn)Z

+1

�1
e+j2�(f̂1+f̂2+:::f̂m+ �f1+ �f2+::: �fn)te�j2�ftdt"

mY
h=1

Z(f̂h)

# "
nY
i=1

X( �fi)

#

df̂1df̂2 : : : df̂md �f1d �f2 : : : d �fn (3.94)

or

Ym;n(t) =
Z

+1

�1

Z
+1

�1
: : :

Z
+1

�1
Hm;n(f̂1; f̂2; : : : f̂m; �f1; �f2; : : : �fn)

�(f � f̂1 � f̂2 � : : : f̂m � �f1 � �f2 � : : : �fn)"
mY
h=1

Z(f̂h)

# "
nY
i=1

X( �fi)

#

df̂1df̂2 : : : df̂md �f1d �f2 : : : d �fn (3.95)

Assuming x(t) is in the form of (3.25) where xk(t) is de�ned by (3.26) and z(t) is in
the form of

z(t) =
LX
l=1

zl(t) (3.96)

where zl(t) is de�ned by
zl(t) = Zle

+j!lt (3.97)

then from (3.88)

Z(f) =
LX
l=1

Zl �(f �
!l

2�
) (3.98)

Substituting the values of X(f) and Z(f) given by (3.60) and (3.98) into (3.95) gives

Ym;n(t) =
Z

+1

�1

Z
+1

�1
: : :

Z
+1

�1
Hm;n(f̂1; f̂2; : : : f̂m; �f1; �f2; : : : �fn)

�(f � f̂1 � f̂2 � : : : f̂m � �f1 � �f2 � : : : �fn)"
mY
h=1

LX
l=1

Zl �(f̂h �
!l

2�
)

# "
nY
i=1

KX
k=1

Xk �( �fi �
!k

2�
)

#

df̂1df̂2 : : : df̂md �f1d �f2 : : : d �fn (3.99)

Expanding the multiplication by introducing the summation variables l1; l2 : : : lm
and k1; k2 : : : kn yields

Ym;n(t) =
Z

+1

�1

Z
+1

�1
: : :

Z
+1

�1
Hm;n(f̂1; f̂2; : : : f̂m; �f1; �f2; : : : �fn)
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�(f � f̂1 � f̂2 � : : : f̂m � �f1 � �f2 � : : : �fn)2
4 LX
l1=1

Zl1 �(f̂1 �
!l1
2�

)

3
5
2
4 LX
l2=1

Zl2 �(f̂2 �
!l2
2�

)

3
5 : : :

2
4 LX
lm=1

Zlm �(f̂m �
!lm
2�

)

3
5

2
4 KX
k1=1

Xk1 �( �f1 �
!k1
2�

)

3
5
2
4 KX
k2=1

Xk2 �( �f2 �
!k2
2�

)

3
5 : : :

2
4 KX
kn=1

Xkn �( �fn �
!kn
2�

)

3
5

df̂1df̂2 : : : df̂md �f1d �f2 : : : d �fn (3.100)

Changing the order of summation and integration

Ym;n(t) =
KX

k1=1

KX
k2=1

: : :
KX

kn=1

LX
l1=1

LX
l2=1

: : :
LX

lm=1Z
+1

�1

Z
+1

�1
: : :

Z
+1

�1
Hm;n(f̂1; f̂2; : : : f̂m; �f1; �f2; : : : �fn)

�(f � f̂1 � f̂2 � : : : f̂m � �f1 � �f2 � : : : �fn)

Zl1 �(f̂1 �
!l1
2�

)Zl2 �(f̂2 �
!l2
2�

) : : :Zlm �(f̂m �
!lm
2�

)

Xk1 �( �f1 �
!k1
2�

)Xk2 �( �f2 �
!k2
2�

) : : :Xkn �( �fn �
!kn
2�

)

df̂1df̂2 : : : df̂md �f1d �f2 : : : d �fn (3.101)

Again carrying out the integration is relatively easy since the integrand is nonzero
only when �fi = !ki=2� and f̂i = !li=2� thus

Ym;n(t) =
KX

k1=1

KX
k2=1

: : :
KX

kn=1

LX
l1=1

LX
l2=1

: : :
LX

lm=1

Hm;n(
!l1
2�

;
!l2
2�

; : : :
!lm
2�

;
!k1
2�

;
!k2
2�

; : : :
!kn
2�

)

�(f � !l1
2�

� !l2
2�

� : : :
!lm
2�

� !k1
2�

� !k2
2�

� : : :
!kn
2�

)

Zl1 Zl2 : : : Zlm Xk1 Xk2 : : :Xkn (3.102)

Now substituting this value of Ym;n(f) into (3.86)

ym;n(t) =
KX

k1=1

KX
k2=1

: : :
KX

kn=1

LX
l1=1

LX
l2=1

: : :
LX

lm=1

Hm;n(
!l1
2�

;
!l2
2�

; : : :
!lm
2�

;
!k1
2�

;
!k2
2�

; : : :
!kn
2�

)e+j(!l1+!l2+:::!lm+!k1+!k2+:::!kn )t

Zl1 Zl2 : : :Zlm Xk1 Xk2 : : :Xkn (3.103)

and using (3.26) and (3.97)

ym;n(t) =
KX

k1=1

KX
k2=1

: : :
KX

kn=1

LX
l1=1

LX
l2=1

: : :
LX

lm=1
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2
4 nY
�=1

xk� (t)

3
5
"

mY
�=1

zl�(t)

#

Hm;n(
!l1
2�

;
!l2
2�

; : : :
!lm
2�

;
!k1
2�

;
!k2
2�

; : : :
!kn
2�

) (3.104)

As we did in the univariate case by comparing (3.41) and (3.66), we now do the
same in the bivariate case by comparing (3.104) and (3.81). Thus we observe that

Hm;n(
!l1
2�

;
!l2
2�

; : : :
!lm
2�

;
!k1
2�

;
!k2
2�

; : : :
!kn
2�

) =
IX

i=1

âm;n;i

"
nY

�=1

b̂k�;i;n

# 24 mY
�=1

d̂l�;i;n

3
5
(3.105)

or

Hm;n(
!l1
2�

;
!l2
2�

; : : :
!lm
2�

;
!k1
2�

;
!k2
2�

; : : :
!kn
2�

) = A
IX

i=1

Aiam;n;i

"
nY

�=1

bk�;i;ne
�j!k� �k�;i;n

#
2
4 mY
�=1

dl�;i;ne
�j!l��l�;i;m

3
5 (3.106)

H0;0 = A
IX
i=1

Aia0;0;i (3.107)

Chapter 5 will give an example of a bivariate Volterra description derived from a
bivariate power series used to describe the current source of a MESFET as a function
of the gate{to{source and drain{to{source voltages.

3.3.3 Discussion

In the previous two subsections the relationship between Volterra series analysis
and generalized power series analysis was derived. Although Volterra series is more
general than power series, the complexity of determining the nonlinear transfer func-
tions used to characterize a Volterra system can be overwhelming. A power series,
if it exists, is much easier to obtain. If the system can be described by a univariate
or bivariate power series, we have provided a direct and straightforward means to
calculate the Volterra nonlinear transfer function.

A generalized power series can contain frequency dependent delays, � , and these
delays are only calculated for a discrete set of input frequencies, thus the resulting
Volterra nonlinear transfer functions are only de�ned for points de�ned by those
input frequencies. However, as would be expected, these points are exactly the ones
needed for any simulation that contains only the prescribed input frequencies.

Further insight to the system representation of these two kinds of analyses can
be seen using graphical representations of the system model. In order to simplify
the discussion, for now we restrict A = Ai = I = 1 in (3.24) and (3.70). The
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diagrams shown can be extended to arbitrary A;Ai and I, but the comparisons
between Volterra and power series are more easily seen for the simpler case.

First let us look at equation (3.24) and at the e�ects of the parameters bk and
�k;n. Here the k subscript indicates the input frequency !k, and the n subscript
indicates the order of the calculation. The parameter bk is the ampli�cation of the
signal at the input frequency !k, and �k;n is the time delay equivalent to a phase
shift at the input frequency !k. Therefore for a given n, the e�ect of bk and �k;n is
equivalent to passing the input through a linear system characterized by amplitude
b(!) and delay �n(!). We de�ne Gb;�;n to be this linear system characterized by bk
and �k;n.

In generalized power series analysis, the coe�cients, an, can be complex. At �rst
glance, this appears to be impossible. The left side of (3.24) is a time domain signal,
and thus must be a pure real function. If the an on the right side are complex, how
can the right side be guaranteed to be real? The answer lies in the form of xk(t)
which is complex as given in (3.26), but x(t) is real. Thus the chosen values of xk(t)
must be in complex conjugate pairs so that (3.25) can remain real on the right side.
In the calculation of the output of a generalized power series, the requirement of the
complex conjugate pairs is used to reduce the complexity of calculating the output.
We know that the right side of (3.24) expands to a sum of complex conjugate pairs,
each pair corresponding to a single absolute output frequency, but one component of
the pair representing the positive frequency, and the other component representing
the negative frequency. Since we know apriori that these will be complex conjugate
pairs, only the positive frequencies need to be calculated. Thus when the an coe�-
cient is referred to as being complex, it is really implicitly a function of the output
frequency. For the negative output frequencies, the complex conjugate of an is used.
But in practice the phasors for the negative frequencies are inferred from the values
calculated for the positive frequencies. Thus the negative frequency phasors are not
directly calculated and in practice the coe�cients an can be complex numbers.

Previously we de�ned Gb;�;n to be the linear system characterized by bk and �k;n.
Likewise we de�ne Gan to be the linear system characterized by an. We have already
stated that a is implicitly a function of output frequency because we allowed them to
be complex. We can extend GPSA such that a is explicitly a function of the output
frequency. Thus Gan can be any arbitrary linear system. Moreover, to simplify the
calculation, we can restrict � to be independent of n, or conversely we could let b be
dependent on n, thus generalizing Gb;�;n to be any arbitrary linear system.

From examination of (3.24), we can see that the system representation for uni-
variate GPSA can be given as shown in Figure 3.1. Note that a0 is just the DC
output for the system when no inputs are applied. Figure 3.2 gives the standard
system representation for Volterra series analysis. By comparing �gures 3.1 and 3.2,
we can easily see that GPSA is equivalent to Volterra analysis if we restrict the
Volterra nonlinear transfer functions, Hn to be representable as shown in �gure 3.3.
The same representation can be applied to bivariate Volterra and GPSA analysis.
Figure 3.4 shows the equivalent bivariate Volterra nonlinear transfer function that
is represented by bivariate GPSA.

As previously stated, the equivalent linear systems (G) that we have used to
characterize power series analysis can be any arbitrary linear system. Furthermore,
these linear systems are not restricted to causal systems. For example, take the
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Figure 3.1: Univariate power series system representation.
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Figure 3.2: Illustration of nonlinear analysis using Volterra series.
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Volterra
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Figure 3.3: Equivalency of univariate Volterra analysis and generalized power series
analysis (GPSA).
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Bivariate Volterra
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Figure 3.4: Equivalency of bivariate Volterra analysis and generalized power series
analysis (GPSA).
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simple case of Ga when a is an arbitrary complex constant. As we discussed before,
a is implicitly a function of the output frequency. Thus even though we use a
constant to implement the calculation of y(t), the full function of Ga is

Ga(f) =

8><
>:

a if f > 0
Refag if f = 0
a� if f < 0

(3.108)

We can also express this function using the signum function (sgn) de�ned by

sgn(x) �

8><
>:

1 if x > 0
0 if x = 0

�1 if x < 0
(3.109)

Thus (3.108) is equivalent to

Ga(f) = Refag+ j Imfag sgn(f) (3.110)

To determine causality we can take the inverse fourier transform of the transfer
function. The inverse Fourier transform of (3.110) is given by

g(t) = Refag �(t)� Imfag
� t

(3.111)

We can now see that the impulse response of the system described by (3.108) has
nonzero values for t < 0 and thus the system is not causal. Of course it is impossible
to build a system that is not causal, but the non-causal system here is only a section
of a systemmodel used to represent the steady{state response of nonlinear systems.

3.4 Volterra Harmonic Balance Behavioral Simulation

Given that one has the Volterra descriptions of several subcircuits, one would like
to use those descriptions to simulate the entire system whose subcircuits have been
characterized. If the Volterra description is independent of the input and output
loading e�ects of the rest of the circuit, then the subcircuit can be modeled as a
black box voltage or current source. For instance, assuming that the input nodes
had high impedance, and the output nodes had low impedance, the subcircuit could
be modeled as a voltage{controlled voltage source as shown in �gure 3.5. The
output voltage is described by Volterra nonlinear transfer functions. If the input
and output loading e�ects were linear, then these loading e�ects could be taken
into account by adding an input impedance across the two input terminals, and an
output impedance in series with one of the output terminals. Thus a very general
behavioral model can be added to a circuit simulator, allowing it to act both as
a circuit and as a system simulator. The simulator, however, must be able to use
the Volterra description of the input{output relationship of the voltage-controlled
voltage source. The scheme presented here is to include this in a harmonic balance
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Figure 3.5: Equivalent Circuit model for Voltage controlled voltage source described
by Volterra nonlinear transfer functions.

simulator, such as FREDA [20] since the Volterra description used is most useful in
the frequency domain.

The idea of using a black box voltage{controlled voltage source can easily be ex-
tended to a current{controlled current source, a current{controlled voltage source,
or a voltage{controlled current source. The scheme has several advantages. The
simulator can be used for small circuits or large systems. Any mix of circuit com-
ponents and behavioral black box models can easily be simulated. Furthermore, the
calculation of the Volterra series description can use the same frequency indexing
scheme that is used for GPSA after some modi�cation. The scheme also can be
extended to bivariate models, e.g. a voltage source controlled by two input ports
(four terminals).

If the time domain form of Volterra series as given in (3.43) was used instead of
the frequency domain form as given in (3.66) there would be several disadvantages.
The �rst disadvantage would be the amount of data needed for a table based model.
The time domain calculation requires n{fold convolution integrals using the Volterra
kernels. Thus the entire continuous functions hn(t1; t2; : : : tn) must be stored. Not
only must they be stored, but it also must be somehow measured or derived. In
the scheme presented here, we have restricted the input to our simulation to be
represented by a set of Fourier series, thus if we know which input frequencies will
be used, we know the exact points on the nonlinear transfer functions that will be
needed. Note we do not need to know the values of the phases or amplitudes of the
input phasors, just a list of all of the possible input frequencies. So instead of storing
entire continuous n dimensional kernel functions, we only have to store a de�ned set
of points of the n dimensional nonlinear transfer functions. Furthermore, calculating
the n{fold convolution integrals in the time domain would be very expensive in terms
of computation time. The integral calculation can be simpli�ed if the form of the
kernel is known in advance, but such a restriction would limit either the accuracy of
the model or limit the class of circuits that could be modeled.
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3.4.1 Univariate Volterra and Power Series Simulation

In order to use a Volterra description of a subcircuit, one needs a simulator that
can calculate the output of the system described by the Volterra nonlinear transfer
functions H0, H1(f1), H2(f1; f2), H3(f1; f2; f3), : : : Hn(f1; f2; f3 : : : fn). Here we
present a modi�cation to an already existing indexing scheme for GPSA to allow
a GPSA simulator to use univariate Volterra nonlinear transfer functions as the
characterization of a black box model.

Consider the case of a single input consisting of a �nite sum of sinusoids

x(t) =
NX
k=1

xk(t) =
NX
k=1

j Xk j cos(!kt+ �k) (3.112)

where the output can be described as a power series

y(t) =
1X
`=0

2
4a`

(
NX
k=1

xk(t)

)`
3
5 (3.113)

The input can be expressed as a sum of complex exponentials

xk(t) = j Xk j cos(!kt+ �k)

=
1

2
Xke

j!kt +
1

2
X�

ke
�j!k t

where Xk is the phasor of xk. As discussed in subsection 2.3.2, the phasor of the
component of the output at frequency !q is given by

Yq =
1X
n=0

X
n1; : : : ; nN| {z }

j n1 j + � � �+ j nN j= n

Uq (3.114)

where !q =
NX
k=1

nk!k, a set of nk's de�nes an intermodulation product description

(called an IPD), and n is the order of intermodulation. The second summation is
over all possible combinations of n1; : : : ; nN such that jn1 j + � � �+ jnN j= n.

Uq = Re f�nTg!q (3.115)

where

T =
1X
�=0

X
s1; : : : ; sN| {z }

s1 + � � �+ sN = �

( 
(n+ 2�)!

2(n+2�)

!
an+2��

)
(3.116)

and

� =
NY
k=1

(Xy
k)

jnkj j Xk j2sk
sk!(j nk j +sk)!

(3.117)
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Where sk � 0. In these expressions Xk is the phasor of xk ,

X
y
k =

(
Xk nk � 0
X�

k nk < 0
; (3.118)

�n =

(
1 n = 0
2 n 6= 0

; (3.119)

and Refg!q is de�ned such that for !q 6= 0 it is ignored and for !q = 0 the real part
of the expression in braces is taken.

Assuming that the series (3.113) is convergent, then the summation may be
truncated and still represent an output arbitrarily close to the true value. Thus we
can specify

a` =

(
a` ` � nmax

0 ` > nmax
; (3.120)

Thus the in�nite summation limits in (3.113), (3.114) and (3.116) can be replaced by
nmax, nmax, and nmax=2. For the general case in which N components are considered
as inputs, a set of integers, denoted nk, are used to specify the frequency,

! =
NX
k=1

nk!k

As before the set of nk's is an IPD and the order of intermodulation is given by

n =
NX
k=1

j nk j :

IPD's up to a maximum order nmax are predetermined and stored in a database.
In the evaluation of the algebraic formula, all intermodulation products of the same
order are calculated and added to the total response for that frequency component
until the desired fractional accuracy is obtained.

Although a device described by a generalized power series, (3.113), has constant
Volterra nonlinear transfer functions

Hn(f1; f2 : : : fn) = an (3.121)

the techniques used in evaluating generalized power series cannot be directly ap-
plied to evaluating the output of a system described by Volterra nonlinear transfer
functions. In order to apply GPSA techniques to Volterra analysis, we need to re-
arrange (3.114) - (3.117). The value of n in (3.114) is the order of the IPD, but not
necessarily the order of the corresponding Volterra nonlinear transfer function. As
seen in (3.64) the �th order nonlinear transfer function H� is multiplied by � phasor
components of the input. By observing the form of (3.116) { (3.117) we can de�ne
� to be

� = n+ 2� (3.122)
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Thus we will rewrite (3.116) as

T =
1X
�=n|{z}

� odd for n odd

� even for n even

X
s1;:::;sN| {z }

s1+���+sN=(��n)=2

�!

2�
a� � (3.123)

If we rearrange the summation order of (3.114) { (3.117) and use (3.123) instead of
(3.116)

Yq =
1X
�=0

�X
n=0;1

n odd for � odd

n even for � even

X
n1; : : : ; nN| {z }

j n1 j + � � �+ j nN j= n

Uq (3.124)

Uq = Re

8>>>>>><
>>>>>>:
�n

X
s1; : : : ; sN| {z }

s1 + � � � + sN = (�� n)=2

a�
�!

2�

NY
k=1

(Xy
k)

jnkj j Xk j2sk
sk!(j nk j +sk)!

9>>>>>>=
>>>>>>;
!q

(3.125)

We now have an equation that is in the form for both GPSA and Volterra analysis.
Since a� is equivalent to the Volterra nonlinear transfer function, we can use (3.125)
to calculate the response to a system characterized by a Volterra series if we interpret
the argument of the nonlinear transfer function correctly. Thus

Uq = Re

8>>>>>>><
>>>>>>>:
�n

X
s1; : : : ; sN| {z }

s1 + � � �+ sN = ��n

2

H�(f1; f2 : : : f�)
�!

2�

NY
k=1

(Xy
k)

jnkj j Xk j2sk
sk!(j nk j +sk)!

9>>>>>>>=
>>>>>>>;
!q

(3.126)
Here the arguments ofH� are determined by the two sets of numbers nk and sk. The
value of si is the number of positive and negative pairs of f = �!i=2�. Since these
are pairs whose frequencies add to zero, they have no e�ect on the output frequency.
The value of a given jnij gives the number of additional times that f = �!i=2�
appears in the argument. A positive value of ni indicates that exactly jnij values
are +!i=2�, and a negative value of ni indicates that exactly jnij values are �!i=2�.
Since, without loss of generality, we can restrict the nonlinear transfer functions to
be symmetric [106], (see the discussion in section B.3) the order of the fi's has no
e�ect.

For example, suppose N = 3 , n1 = 0 , n2 = �1 , n3 = 1 , s1 = 1 , s2 = 2 , and
s3 = 0. Thus

� =
NX
i

jnij+ 2si = 8 (3.127)
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Thus for our example the arguments of H would be

H8(+
!1

2�
;�!1

2�
;| {z }

s1 = 1

+
!2

2�
;�!2

2�
;+

!2

2�
;�!2

2�
;| {z }

s2 = 2

�!2

2�
;| {z }

n2 = �1

+
!3

2�| {z }
n3 = +1

) (3.128)

Thus with a few modi�cations, a GPSA simulator can be turned into a general
purpose Volterra simulator. Furthermore, the method of nonlinear currents could
be used to solve the circuit equations. This is a direct calculation and does not
require iteration, thus also not requiring neither the evaluation of a Jacobian matrix
nor its inversion.

For the previous example with the spectrum shown in �gure 2.1, tables 3.1 and 3.2
show the correspondence between the IPD and the arguments of a Volterra nonlinear
transfer function. The arguments of the Volterra nonlinear transfer function is a set
of frequencies, and the value of the Volterra nonlinear transfer function at that
point corresponds to the intermodulation of those frequencies of the order of that
Volterra nonlinear transfer function. Thus we term this list of frequencies a frequency
intermodulation product description, or FIPD. The order of the FIPD is de�ned
as the number of frequencies in the FIPD and is the same as the order of the
corresponding Volterra nonlinear transfer function.

Table 3.1 gives the simpler case for � = 0. For � = 0, the order of the IPD is the
same as the order of the FIPD. The absolute value of n1 corresponds to the number
of times frequency f1 appears in the FIPD. The sign of n1 is the same as the sign of
the corresponding f1 entries. Thus if n1 = �2, then �f1 would appear in the FIPD
twice. The same relationship holds for n2 and f2, n3 and f3, and so on.

The case of � 6= 0 is more complicated and is shown in table 3.2. For nonzero �,
the order of the calculation (e.g. the order of the FIPD), is not equal to the order
of the IPD. Instead the order of the corresponding FIPD is the order of the IPD
plus 2�. For our example of three input frequencies, the value of � is the sum of
s1 + s2 + s3. The value of s1 corresponds to the number of +=� pairs of f1 present
in the FIPD. Thus if s1 = 2, then we would �nd two +=� pairs of f1 (i.e. f1, �f1,
f1, �f1) in the FIPD. These occurrences of f1 are in addition to any occurrences
associated with the value of n1. The same relationship holds for s2 and f2, s3 and
f3, and so on.
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Table 3.1: Relationship between IPD and arguments to Volterra nonlinear transfer
function for � = 0

IPD
Output Frequency n n1 n2 n3 FIPD

(arguments of Hn)

f1, IF 1 1 0 0 f1
2 0 1 -1 f2;�f3
4 2 -1 1 f1; f1;�f2; f3
5 -1 2 -2 �f1; f2; f2;�f3;�f3
7 3 -2 2 f1; f1; f1;�f2;�f2; f3; f3
8 -2 3 -3 �f1;�f1; f2; f2; f2;�f3;�f3;�f3

f2, LO 1 0 1 0 f2
2 1 0 1 f1; f3
4 -1 2 -1 �f1; f2; f2;�f3
5 2 -1 2 f1; f1;�f2; f3; f3
7 -2 3 -2 �f1;�f1; f2; f2; f2;�f3;�f3
8 3 -2 3 f1; f1; f1;�f2;�f2; f3; f3; f3

f3, RF 1 0 0 1 f3
2 -1 1 0 �f1; f1
4 1 -1 2 f1;�f2; f3; f3
5 -2 2 -1 �f1;�f1; f2; f2;�f3
7 2 -2 3 f1; f1;�f2;�f2; f3; f3; f3
8 -3 3 -2 �f1;�f1;�f1; f2; f2; f2;�f3;�f3
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Table 3.2: Example of relationship between IPD and arguments to Volterra nonlinear
transfer function for nonzero �

n1 n2 n3 � s1 s2 s3 FIPD

0 1 �1 0 0 0 0 f2;�f3

0 1 �1 1 1 0 0 f2;�f3; f1;�f1| {z }
s1

0 1 �1 1 0 1 0 f2;�f3; f2;�f2| {z }
s2

0 1 �1 1 0 0 1 f2;�f3; f3;�f3| {z }
s3

0 1 �1 2 1 1 0 f2;�f3; f1;�f1| {z }
s1

; f2;�f2| {z }
s2

0 1 �1 2 0 1 1 f2;�f3; f2;�f2| {z }
s2

; f3;�f3| {z }
s3

0 1 �1 2 2 0 0 f2;�f3; f1;�f1; f1;�f1| {z }
s1

0 1 �1 2 0 2 0 f2;�f3; f2;�f2; f2;�f2| {z }
s2

0 1 �1 2 0 0 2 f2;�f3; f2;�f3; f3;�f3| {z }
s3
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3.4.2 Bivariate Volterra and Power Series Simulation

In the previous section we discussed how a GPSA simulator can be modi�ed to accept
univariate Volterra nonlinear transfer functions as the subcircuit descriptions. Here
we present the same for the bivariate case.

For the case of a dual input structure with each input, x(t) and z(t), consisting
of a �nite sum of sinusoids

x(t) =
NX
k=1

xk(t) =
NX
k=1

jXkj cos(!kt+ �k) (3.129)

z(t) =
NX
k=1

zk(t) =
NX
k=1

jZkj cos(!kt+ �k) (3.130)

and where the output can be described as a power series

y(t) =
1X
�=0

1X
�=0

a�;� [x(t)]
� [z(t)]� (3.131)

! =
NX
k=1

nk!k (3.132)

The phasor of the !q component of the output y(t) is then given by

Yq =
1X
n=0

X
n1; : : : ; nN| {z }

jn1j+ � � �+ jnN j = n

Uq (3.133)

Uq = Re f�nTg!q (3.134)

The intermodulation order is n, where n =
PN

k=1
jnkj: where pk, qk, rk, sk � 0. �n is

the Neumann factor, (�n = 1, n = 0; �n = 2, n 6= 0), and Ref g!q is de�ned such
that it is ignored for !q 6= 0 but for !q = 0 the real part of the expression in brackets
is taken.

T =
1X
�=0

X
p1; : : : ; pN ; r1; : : : ; rN
q1; : : : ; qN ; s1; : : : ; sN| {z }

p1 + � � �+ pN + r1 + � � �+ rN = �
q1 + � � �+ qN + s1 + � � �+ sN = �

pk + qk � rk � sk = jnkj
� + � = n+ 2�

( 
�! �!a�;�
2(n+2�)

!
�

)
(3.135)

� =
NY
k=1

(Xy
k)

pk(Xz
k)

rk(Zy
k)

qk(Zz
k)

sk

pk! rk! qk! sk!
: (3.136)

Xy
k =

(
Xk for nk � 0
X�

k for nk < 0
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and

X
z
k =

(
X�

k for nk � 0
Xk for nk < 0

(Zy
k, and Z

z
k are similarly de�ned.)

As with the univariate case, our aim is to rewrite the equations with the leftmost
summation over the order of the response. For the bivariate case, the order is
� = �+ �, thus (3.135) can be rewritten as

T =
1X
�=n|{z}

� odd for n odd

� even for n even

X
p1; : : : ; pN ; r1; : : : ; rN
q1; : : : ; qN ; s1; : : : ; sN| {z }

p1 + � � � + pN + r1 + � � � + rN = �
q1 + � � �+ qN + s1 + � � �+ sN = �

pk + qk � rk � sk = jnkj
� + � = �

( 
�! �!a�;�

2�

!
�

)
(3.137)

As in the univariate case, we now rearrange the order of summation

Yq =
1X
�=0

�X
n=0;1| {z }

n odd for � odd

n even for � even

X
n1;:::;nN| {z }

jn1j+���+jnN j=n

Uq (3.138)

Where

Uq = Re

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

�n
X

p1; : : : ; pN ; r1; : : : ; rN
q1; : : : ; qN ; s1; : : : ; sN| {z }

p1 + � � �+ pN + r1 + � � �+ rN = �
q1 + � � �+ qN + s1 + � � � + sN = �

pk + qk � rk � sk = jnkj
� + � = �

a�;�
�! �!

2�
�

9>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>;
!q

(3.139)

As in the univariate case, a�;� can be replaced by the bivariate Volterra nonlinear

transfer function H�;�(f̂1; f̂2; : : : f̂m; �f1; �f2; : : : �fn) if the values of the f̂i's and �fi's are
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correctly interpreted as functions of the values of pk, qk, rk, and sk for all k. Thus

Uq = Re

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

�n
X

p1; : : : ; pN ; r1; : : : ; rN
q1; : : : ; qN ; s1; : : : ; sN| {z }

p1 + � � � + pN + r1 + � � � + rN = �
q1 + � � �+ qN + s1 + � � �+ sN = �

pk + qk � rk � sk = jnkj
� + � = �

H�;�(f̂1; f̂2 : : : f̂�; �f1; �f2 : : : �f�)
�! �!

2�
�

9>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>;
!q

(3.140)
The roll of the index vectors in the bivariate case is di�erent than that of the
univariate case. The values of pk and qk represent the number of times +!k

2�
occurs

in the f̂ and �f arguments respectively. The values of rk and sk represent the number
of times �!k

2�
occurs in the f̂ and �f arguments respectively. For the example of

p2 = 3

p4 = 1

r4 = 2

q3 = 1

all others = 0

would correspond to

H6;1(+
!2

2�
;+

!2

2�
;+

!2

2�
;| {z }

s2 = 3

+
!4

2�
;| {z }

s4 = 1

�!4

2�
;�!4

2�| {z }
r4 = 2

; +
!3

2�| {z }
q3 = 1

) (3.141)

Thus we can modify the indexing scheme for bivariate GPSA to make it more general
and to handle both bivariate GPSA models and bivariate Volterra models in the same
simulation. Thus a simulator could handle both bivariate power series models and
the more general bivariate Volterra series models.

3.5 Conclusion

In order to explore ways of general frequency domain modeling, this chapter has ex-
tensively reviewed two types of frequency domain analysis, generalized power series
analysis and Volterra analysis. The relationship between these has been shown for
both the single input, or univariate, system and the two input, or bivariate, system.
By understanding this relationship, the indexing scheme for GPSA was modi�ed
to provide a basis for simulation of Volterra models, both univariate and bivariate.
Since the Volterra model is more general, a Volterra simulation could include both
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Volterra models and GPSA models. This kind of simulation would extend the mod-
eling capability available, and provide a basis where complex subsystems could be
simulated using Volterra descriptions and device level circuits could, in the same
simulation, be modeled using power series techniques. Thus frequency domain cir-
cuit simulation could be generalized to include system level veri�cation. However,
this system level simulation is not possible without the ability to extract Volterra
models. This extraction is examined in the next chapter.
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Chapter 4

Volterra Behavioral Model Extraction

4.1 Introduction

The advantage of circuit and system simulation is the fact that a circuit can be
designed and tested before it is built, thus giving the designer a fast and inexpensive
way to test designs. But of course, for any simulation, the results are only as good as
the models. For simulating large circuits or systems, the compute resource required
can be prohibitive if transistor level SPICE{like simulations are used. In order to
provide a practical means of simulating large systems, the Volterra harmonic balance
technique proposed in section 3.4 can be used. But the work to date on extracting
table{based Volterra behavioral models has been restricted to simple models and ex-
traction techniques based on lab measurements. Thus a circuit can only be modeled
after it is built. The technique proposed here is shown to be applicable to extraction
by running circuit level simulations, thus allowing the designer to simulate the entire
system before the subcircuits are built. Furthermore, if the subcircuit description
can be simulated for various process variations, multiple behavioral models can be
extracted to represent the performance variation of the manufactured subcircuits,
and thus the manufactured system. This ability to predict not only the nominal
performance, but also the performance variation due to manufacturing tolerances
becomes increasingly important as systems become larger and more complex.

This chapter will present a procedure to extract the Volterra nonlinear transfer
function HN (f1; f2 : : : fn). This procedure requires only a circuit level description of
the subcircuit to be modeled and a circuit simulator that can simulate the steady{
state behavior of the circuit. This can be either a time{based simulator that uses
shooting methods [72{75,77,112] or a frequency{based simulator that uses harmonic
balance techniques [8, 78]. One also needs to know the possible discrete input fre-
quencies and the range of input amplitudes. An additional parameter that must be
speci�ed by the user is the maximum order of the system which will be the highest
order Volterra nonlinear transfer function to be extracted. The extraction process
uses this order as the order of multiple polynomial curve �ts, and assume Hn = 0 for
all n greater than the speci�ed maximum order. The error of this polynomial curve
�t can be used to determine if the speci�ed maximum order is su�ciently large.

4.2 Extraction procedure

A high{level 
ow chart of the overall extraction procedure is given in �gure 4.1.
The initialize portion of the program includes the determination of both how many
simulations are to be run and exactly what the input stimulus of each simulation will
be. In order to understand how this selection is determined, we must �rst review
how the Volterra nonlinear transfer function is calculated in the last step.
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Figure 4.1: High level 
ow chart for the procedure to extract the nonlinear Volterra
transfer functions using circuit simulation
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4.2.1 Output Decomposition

The extraction procedure is based on the fact that the mapping of the nth order
response, yn is homogeneous of degree n with respect to the input x. That is, for
the mapping x! yn, for any scalar �, then �x! �nyn. This property can be seen
by studying equation reqeq:volt.yn. As would be expected, this property also holds
for the frequency domain description. Thus

�X ! �nYn (4.1)

Our procedure now is to pick several sets of \runs". Each run is de�ned by a single
set of input frequencies and relative amplitudes of these frequencies. If a time{
domain shooting method simulator is going to be used, then these frequencies must
be commensurable. For each run, � simulations are performed, where � is greater
than or equal to the assumed order, n , of the system. Each simulation has the same
input frequencies, and the relative amplitudes and phases of the input frequencies are
the same with respect to each other, but the total input signal amplitude is changed
for each simulation. Thus the inputs of each simulation are only scalar multiples, �,
of a reference input x. We will characterize each simulation amplitude by the scalar
�i so the input amplitudes for the simulations of a given run are �1x; �2x; : : : ; ��x.
If we refer to the simulated responses of the system as ri where 1 � i � �, then

ri = y0 + �iy1 + �2

i y2 + : : :+ �ni yn (4.2)

Note here that ri and �i are known, and yn is the unknown nth order system response
as given in (3.43) for the known reference input x for a given run. Here y0 is just the
DC o�set of the output. We can easily determine y0 by simulating the system with a
zero value input. In our procedure, this is the �rst simulation and the resulting DC
output is subtracted from all subsequent simulations. For simplicity, we will drop
the y0 term and assume that this value has been subtracted from ri.

We can also look at the frequency domain representation of (4.2)

Rq;i = �iYq;1 + �2

iYq;2 + : : :+ �ni Yq;n (4.3)

Here the capital letter indicates that the value is a complex number representing a
phasor for a particular output frequency, !q. Rq;i represents the measured output at
frequency !q for the ith simulation of a given run. Yq;j is the jth order response of
the output frequency !q of the system simulated with the reference input x. Since
� is a real number, (4.3) can be easily separated into real and imaginary parts, or

Re fRq;ig = �iRe fYq;1g+ �2

iRe fYq;2g+ : : :+ �ni Re fYq;ng (4.4)

ImfRq;ig = �iImfYq;1g+ �2

i ImfYq;2g+ : : :+ �ni ImfYq;ng (4.5)

Using all � simulations for a given run, we can express (4.3) in matrix form.2
66666664

RefRq;1g
RefRq;2g
RefRq;3g

...
RefRq;�g

3
77777775
=

2
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�2 �2
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�3

3
: : : �n

3

...
...

...
...

...
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Re fYq;3g

...
Re fYq;ng

3
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(4.6)
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and 2
66666664
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...
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3
77777775
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ImfYq;ng

3
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(4.7)

Thus for each run, the response at output frequency !q can be decomposed into
the nth order responses by solving (4.6) and (4.7) for Yq;i. This is equivalent to
a polynomial curve �t of a real function. Of course the �{based matrix must not
be singular, but we are free to choose any �. For small n = � (� 3), the problem
of choosing a set of �'s such that the matrix is as well conditioned as possible has
been solved in closed form [109], but for the general case the equations become
too complicated to be practical. For our measurement procedure, we will use �i's
that alternate in sign and whose absolute values are equally spaced in the interval
0 < j�ij � 1:

�i = �1(i+1)
i

�
(4.8)

For some sets of input frequencies, especially those with few distinct input frequen-
cies, some output frequencies may have only even or odd order components. These
cases are known apriori and thus we can reduce the size of the � matrix and simplify
the decomposition. For example, for the case of a single input frequency (single{tone
excitation), only the even order responses contribute to the �rst harmonic output
frequency, and so (4.6) and (4.7) reduce to (assuming even n)
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(4.9)

and 2
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(4.10)

4.2.2 Transfer Function Calculation

Our goal is to calculate the Volterra nonlinear transfer function Hn for all n. Now
that we know the ith order output response at frequency !q, Yq;i, and the input
X, the problem is to calculate the appropriate H's. In order to understand the
problems of this calculation, we need to look at how Yq;i can be calculated from Hi

and X. From (3.65) we know that the nth order steady{state response at an output
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frequency of !q of a system characterized by Volterra nonlinear transfer functions
can be represented in the form

Yq;n =
JX
j

�jH
(j)
n

nY
i

Xi;j (4.11)

Where the arguments to H(j)
n are the frequencies corresponding to the frequencies

associated with Xi;j . We will refer to a given set of these frequencies as a Frequency
Intermodulation Product Description or FIPD. Thus an FIPD is just the arguments
to the Volterra nonlinear transfer function consisting of n frequencies. The sum of
the frequencies in an FIPD will be the value of the output frequency.

nX
1

!i = !q (4.12)

Note that the frequencies in an FIPD can be negative. Thus J is the number of
FIPD's of order n that contribute to the !q. The value of �j is known and a function
of the FIPD and is equivalent to the (n + 2�)!=(sk!(jnkj + s + k)!) term in (3.116).
The product

Qn
i Xi;j is the set of input phasors that correspond to the appropriate

components of an FIPD for the output frequency !q. Letting W (j) = �j
Qn
i Xi;j

represent the known values of the equation, (4.11) becomes

Yq;n =
JX
j=1

H(j)W (j) (4.13)

Letting an re subscript indicate the real part of the complex number and an im
subscript represent the imaginary part of a complex number, we can express (4.13)
as a real matrix equation.

"
W (1)

re �W (1)

im W (2)

re �W (2)

im : : : W (J)
re �W (J)

im

W
(1)

im W (1)

re W
(2)

im W (2)

re : : : W
(J)
im W (J)

re

#

2
66666666666664

H(1)

re

H
(1)

im

H(2)

re

H
(2)

im
...

H(J)
re

H
(J)
im

3
77777777777775
=

"
Yq;n;re
Yq;n;im

#

(4.14)
For J = 1, the number of knowns equal the number of unknowns and we can solve

for H(1)

re and H
(1)

im as long as the resulting 2 � 2 matrix is not singular. For J > 1,
we need either to know some of H, or we need to add some rows to the matrix, or
a combination of both.

We will now examine when the number of unknowns in (4.14) is greater than
the number of rows in the left matrix. For any �rst order system, the output at
any frequency is due only to a single input frequency, thus the number of unknowns
for a single output frequency is at most two, one for ImfH1g and one for RefH1g.
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Transfer Output
Function FIPD Order Frequency

(a) H0 0 0
(b) H1(1) 1 1 1
(c) H1(2) 2 1 2
(d) H2(�1; 1) -1 1 2 0
(e) H2(�2; 2) -2 2 2 0
(f) H2(1; 1) 1 1 2 2
(g) H2(�1; 2) -1 2 2 1
(h) H2(1; 2) 1 2 2 3
(i) H2(2; 2) 2 2 2 4

Table 4.1: All FIPD's for a second order system with a discrete input spectrum of
1Hz and 2Hz.

The exception to this is the DC or zero output frequency point. It can have two
components, one from H0 that is not associated with any input frequency, and one
from H1(0) if a DC input is present. However, we can easily determine the H0 value
by a single simulation with no inputs, but we must do this before we try to calculate
H1(0). Thus the order that we determine the values of H is important.

For systems of order less than or equal to two, (4.14) can always be solved by using
previously calculated values of H if the correct runs (i.e. sets of input frequencies)
are simulated and the Volterra nonlinear transfer functions calculated in the correct
order. As with the �rst order case above, the value of H0 must be calculated before
H1(0) can be found. The next question is what values of H1 are needed before some
value of H2 can be calculated, and how can one in general always have the needed
values of H1 available when calcuating H2. This can easily be accomplished by
picking which simulations are to be performed and in which order. All of the single{
tone inputs are simulated �rst, then the two{tone inputs are simulated. Since each
FIPD is limited to at most two frequencies, for the case of a second order system,
more than two tones are not required to �nd any value of the two transfer functions
H1 and H2. For instance, suppose that we were trying to calculate the values of H
for a second order system in order to be able to predict the response of that system
for any phase and amplitude combination of 1 Hz and 2 Hz. The needed values of
the Volterra nonlinear transfer functions would be as shown in table 4.1.

In this example the four di�erent runs indicated in Table 4.2 are required. Here
run (A) has no input, (B) has a single 1 Hz input, (C) has a single 2 Hz input, and
(D) had both 1 Hz and 2 Hz inputs. Run (A) would determine H0. Run (B) would
have two output frequencies, 0 Hz and 2 Hz. The 0 Hz output component would
be a sum of the e�ects of (a) and (f), but run (A) already determined the value
of H0, thus leaving only H2(�1; 1) unknown. Run (C) would also have two output
frequencies, 0 Hz and 4 Hz. As before, the 0 Hz output component would be a sum
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Input Output
Frequencies Frequencies

(A) no input 0
(B) 1 Hz 0, 1, 2
(C) 2 Hz 0, 2, 4
(D) 1 Hz and 2 Hz 0, 1, 2, 3, 4

Table 4.2: List of simulation runs for extracting all Volterra nonlinear transfer func-
tions points needed to calculate an output for a second order system with 1 Hz and
2 Hz input phasors

of two FIPD's, one from (a) and one from (e). And again H0 is already known,
leaving just H2(�2; 2). However, run (D) is more complicated. The output has all
of the components due to all of the FIPD's. But careful examination indicates that
at most only one value of H is now unknown for each output frequency. All of the
values of H contributing to an output frequency of 0 Hz (a,d,e) are already known.
For the output frequency of 1 Hz, only H2(�1; 2) is unknown. Both of the values of
H for an output frequency of 2 Hz are known. And there is only one FIPD for each of
the remaining output frequencies 3 Hz and 4 Hz. This method of measuring transfer
functions for low order systems is referred to as the harmonic probing method and
previously has been successfully used to measure systems of order less than or equal
to two [107].

For assumed system order of a value greater than two, the problem becomes
more complex. There are four situations where care must be taken when trying to
solve (4.14), balanced DC FIPD, unbalanced DC FIPD, FIPD with an unbalanced
DC FIPD subset, and other unique FIPD's with the same order and frequencies.

Balanced DC FIPD

When an FIPD is balanced with respect to zero (e.g. H4(�2;�1; 1; 2)), the value of
the nonlinear transfer function will be real. To be a balanced FIPD, each positive
frequency must have a corresponding negative frequency in the FIPD. For this case
we know that the value of H must be real. See Appendix B, section B.5 for further
discussion. This case of a pure real transfer function is not a problem as then (4.14)
will have the form "

W (1)

re 0
0 W (1)

re

# "
H(1)

re

H
(1)

im

#
=

"
Yq;n;re
0

#
(4.15)

We can see that H(1)

im = 0. Roundo� errors or other inaccuracies in the simulation

and Fourier transform process can cause W (1)

im and Yq;n;im to be very small nonzero
numbers. Since for this case we know ahead of time by inspecting the FIPD that

H
(1)

im = 0, we just set it to zero and calculate H(1)

re = Yq;3;re �W (1)

re .
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Unbalanced DC FIPD

For orders greater than two, there can be unbalanced arguments to the nonlinear
transfer function that add to zero. In these cases, the transfer function will not in
general be real. Of course, since the output frequency is zero, the imaginary part of
the measured output will be zero, (Yq;n;im = 0). Furthermore, the value of W (1) can
be complex.

For example, the third order DC response of a system with input of three sinu-
soids of frequencies 1 Hz, 2 Hz, and 3 Hz, the unknown values ofH3 areH3(�2;�1; 3)
and H3(�3; 2; 1). The other points contributing to the DC output of the system,
H3(�2; 1; 1), H3(�1;�1; 2) can be calculated from previous runs using simpler sim-
ulations with inputs of only two frequencies, 1 Hz and 2 Hz. H3(�2;�1; 3) can be in
general complex, but both H(1) = H3(�2;�1; 3) and H(2) = H3(�3; 1; 2) contribute
to the third order DC output. We also know that for this case H3(�2;�1; 3) =
H�

3
(�3; 1; 2) and W (1) = (W (2))�. (See appendix B for more information). Thus it

works out that H(1)W (1) + H(2)W (2) = 2RefH(1)W (1)g. Therefore (4.14) will have
the form

"
W (1)

re �W (1)

im W (1)

re W
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im

W
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im W (1)
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# 266664
H(1)
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im

H(1)
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im
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77775 =
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(4.16)

Which reduces to "
2W (1)

re �2W (1)

im

0 0

# "
H(1)

re

H
(1)

im

#
=

"
Yq;3;re
0

#
(4.17)

Note that we cannot solve (4.17) for H(1)

re and H
(1)

im . We need more information. To
solve this problem we can add two additional rows to the matrix equation. These
two rows would represent an additional run using the same input frequencies. The
additional run however, must be di�erent from the �rst run. The two things we
can change and still keep the same input frequencies are the relative amplitudes of
the input signals and the relative phases of the input signals. Careful examination
of (4.14) will show that system will still not be solvable if we change the relative
amplitudes of the input signals. For example, let us assume that our original run
had equal amplitudes of each of the three signals, 1 Hz, 2 Hz, and 3 Hz. If we double
the amplitude of the 1 Hz signal and half the amplitude of the 2 Hz signal, then
the response associated with H3(�2;�1; 3) and H3(�3; 1; 2) will not change. This
is because the W 's will be the same. Thus the two rows we added to (4.14) are
identical to the �rst two. If we double just the 1 Hz input signal and leave the 2 Hz
and 3 Hz the same, then the two rows that we add will just be a copy of the �rst
two rows multiplied by 2.

If, on the other hand, we change the relative phases of the input signals, say shift
the 1 Hz signal by 90 degrees, then the value of W (1) will have the same amplitude
but be shifted in phase by -90 degrees, and the value of W (2) will have the same
amplitude but be shifted in phase by 90 degrees. Thus the matrix equation to be
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solved will be of the form2
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which reduces to 2
66664

2W (1)

re �2W (1)

im

0 0

�2W (1)

re �2W (1)

im

0 0

3
77775
"
H(1)

re

H
(1)

im

#
=

2
6664
Yq;3;re
0

Y 0
q;3;re

0

3
7775 (4.19)

or "
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re �2W (1)

im

�2W (1)
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im
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im
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(4.20)

which can be solved.

FIPD with Unbalanced DC FIPD subset

The case of an FIPD which contains a subset of an unbalanced DC FIPD is very
similar to the case of an unbalanced DC FIPD. Each FIPD of this type will have
a corresponding mate FIPD which is the same except that the frequencies of the
unbalanced subset have been multiplied by -1. Since it takes at least 3 frequencies
to make an unbalanced DC FIPD, these types of FIPD's must be at least order 4.
For example, both H4(�2;�1; 3; 4) and H4(�3; 1; 2; 4) contain the unbalanced DC
FIPD �(�2;�1; 3). As before, the matrix equation cannot be solved without adding
an additional run. The new run should be such that the resulting W phasor of the
unbalanced DC FIPD is rotated by 90 degrees with respect to the other FIPD. In
this example, shifting the phase of the 4 Hz input would not work since it has the
same sign in both FIPD's.

Other unique FIPD's with same order and frequencies

Beginning with third order, there are some circumstances where there can be more
than one FIPD of the same order, which contain the same frequency magnitudes,
and have the same output frequency (i.e. add to the same positive frequency). For
example, both H(1) = H(�1; 3; 3) and H(2) = H(1; 1; 3) contain only the frequencies
1 and 3, and both add to 5. For this example, (4.14) would be of the form

"
W (1)

re �W (1)

im W (2)
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im
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#
(4.21)
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Here all four values of H are unknown and we have no additional information. As
before we must simulate an additional run in order to calculate the transfer function
values. For this case we choose to vary the relative amplitudes of the input frequency
components, instead of the relative phases. For our example, let us add an additional
run with the 3 Hz signal increased in amplitude by 1/3 and the 1 Hz signal decreased
in amplitude by 1/3. Assuming the �rst run had both signals at equal amplitude,
then the peak value of the second run will be the same, and the ratio of the 3 Hz
to 1 Hz amplitude will be 1/2. The amplitude of W (1) will increase by a factor of
2

3
� 4

3
� 4

3
= 32

27
and the amplitude of W (2) will decrease by a factor of 2

3
� 2

3
� 4

3
= 16

27
.

Now (4.21) becomes
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Note that if we have more runs than we have unknown FIPD's, then (4.14) will be
underconstrained, the number of equations is greater than the number of unknowns.
In our algorithm, we would actually add two more runs for the case of H(1) =
H(�1; 3; 3) and H(2) = H(1; 1; 3), one case where the 3 Hz signal was increased and
one case where the 1 Hz signal was increased. This poses no mathematical problem,
since we solve (4.14) using least squares techniques.

Maximum Input Amplitude and Assumed Order of System

Since the set of extracted nonlinear transfer functions is intended to be used to
simulate the subcircuit as a black box, it is important to know the maximum peak
amplitude in the black box simulation. If the amplitude is very small, it may be suf-
�cient to extract only the �rst order transfer function. For larger input amplitudes,
and for increasingly nonlinear circuits, the extraction needs to include the higher
order transfer functions. Furthermore, it is important to extract all of the transfer
functions in the same procedure. In other words, one should not extract, say the
�rst and second order functions, and then go back and start the procedure again
extracting just the third and fourth order functions while keeping the same �rst and
second order functions extracted in the �rst procedure. Remember that when we
solve (4.6), we are essentially performing a polynomial least squares �t. In order to
get the best �t and thus the most accurate behavioral model over the entire input
range, we need to extract all transfer functions in the same procedure.

On the other hand, if one wanted to trade o� accuracy in one amplitude range for
accuracy in another amplitude range, then one could use the two procedure method.
For example, suppose the behavioral model were to be used primarily in two modes,
small signal (i.e. linear) simulation, and large signal (i.e. nonlinear) simulation.
The small signal simulation would be much faster and would only be valid for small
inputs to the circuit. Whereas the large signal simulation would accurately simulate
the nonlinear e�ects. For this case, another possibility would be to use standard AC
simulation to extract the �rst order transfer function. This would be much faster
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than the running of the extraction procedure and specifying order=1. Section 5.5
will show example results of this process.

Another important aspect of the extraction procedure concerns the peak am-
plitude of the test signal. We want to be sure that the test signals used in the
extraction procedure have a peak absolute value amplitude equal to that speci�ed
by the user at the beginning of the extraction process. This is to ensure that the
extracted model is valid for the range for which it will be used. Thus for each run,
the peak input amplitude absolute value will equal that speci�ed by the user. This
is easily accomplished by searching the input amplitude waveform to �nd the peak
(absolute value) and then scaling the input waveform accordingly. But we also want
to maximize the energy to the circuit to get the maximum energy output and thus
obtain a more accurate extraction. For any measurement or simulation system, there
will be some unwanted noise injected into the measurement or simulation. Larger
power input signals help to reduce the e�ects of this noise.

In order to maximize input energy, we adjust the relative phases of the input
tones to minimize the absolute value of the input peak before we scale the signal as
discussed above. In our procedure, we will use tree annealing [90] to accomplish this
minimization.

4.2.3 Algorithm Flow Description

First we will examine the box labeled \Initialize" in �gure 4.1. Figure 4.2 gives a
more detailed description of this block. First the data from a �le created by the
user is read. A sample of this �le is given in �gure 4.3. The �rst line of the �le
is a description that is used to annotate other �les. The second line speci�es the
maximum input value to the circuit. The value is the peak absolute voltage of the
input. The maximum order speci�ed on the next line is the assumed order of the
system. The next line speci�es the number of additional simulations to be run for
each set of relative input phasors. As explained in section 4.2, the given set of input
frequencies will be simulated n times, each with a di�erent input amplitude, but
with the same relative input phasors. The output is decomposed into the various
mth order responses. The decomposition is basically a series of polynomial curve �ts
where the polynomial has the order equal to the assumed order of the system. The
number of di�erent amplitudes, n, must therefore be equal to or greater than the
assumed order of the system. The number of extra simulations is just m� n, which
must be a non{negative integer. A larger number will require more simulations and
more extraction calculations. If no extra simulations are used, then the number of
points for the polynomial would equal the order of the polynomial (the zeroth order
component being known) and thus the polynomial would always pass through all of
the points given. If the number of di�erent input amplitude simulations is greater
than the order of the system then there are two advantages:

1. The measurement noise will have a reduced e�ect on the calculation. Even
though the circuit output voltage used is from a simulation as opposed to a
lab measurement, there is still noise present in the values.

2. The value of the assumed order can be veri�ed. Though this is not a rigor-
ous veri�cation, the goodness of �t of the oversampled polynomial �t is an
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Figure 4.2: High level 
ow chart for the procedure to initialize the extraction pro-
cedure. This 
ow chart represents the box labeled \Initialize" in �gure 4.1
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low pass filter with pole at 3MHz

max_input: 1.0

max_order: 3

xtra_runs: 1

fn: lp1

test_model_lib: /u/lunsford/asxlib/lowpass

runcontrol: /u/lunsford/asxlib/stdrun

acruncontrol: /u/lunsford/asxlib/acrun

loadlib: /u/lunsford/asxlib/libspi31.o

num_extract_runs: -1

tot_runs: 18

run_num: -1

calc_dc: yes

out_dc_offset: 0

num_freq: 4

freq[0]: 0

freq[1]: 1000

freq[2]: 2000

freq[3]: 3000

Figure 4.3: The input �le for low{pass RC �lter.
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indication of the validity of the assumed order.

The next �ve lines of �gure 4.3 are related to the simulator used, ASTAP [113].
The �rst is the �le name containing the circuit description, the second is the name
of the directory that contains this �le and other �les that contain needed subcircuit
models. The fourth and �fth are �le names that contain run control statements for
the simulations. And the last of the �ve lines gives the name of a �le that contains
compiled fortran used to model the nonlinear characteristics of the circuit elements.

The next three lines, num extract runs, tot runs, and run num, are set by the
program as it goes through the various steps and are not set by the user. These
values are written to the �le during the initialization phase of the program. The
following two lines, calc dc and out dc o�set are used to calculate the value of H0,
which is just DC output voltage for the circuit when the input value is a constant
value of zero. If calc dc is set to \yes", then the value of out dc o�set will be
calculated by the program by running a simulation with an input voltage of zero
volts. If the value of calc dc is set to \no", then the program will take the value
entered for out dc o�set and use it as the value of H0.

Lastly, the discrete values of the assumed input frequencies are given, �rst the
number of frequencies, then each frequency in hertz.

The third block in �gure 4.2 is for determining how many simulations are needed
and what the input conditions will be for each simulation. This is a complicated
procedure and is shown in more detail in �gure 4.4. The list of basic runs created in
the �rst block is just all the di�erent possible combinations of the input frequencies
in groups of 1; 2; : : : n where n is the assumed order of the system. Table 4.3 gives an
example of the basic runs that correspond to �gure 4.3. Run 0 is used to determine
the DC operation point, or H0. For table 4.3, we have chosen the amplitudes of
each input phasor to be the maximum allowed amplitude divided by the number of
input phasors, thus guaranteeing that the peak amplitude will not be greater than
the maximum speci�ed in the \max input:" �eld in the input �le. Table 4.3 gives
just a starting point for determining all of the inputs for the simulations. There are
four adjustments that are made to this table. They are, (a) adjusting the relative
phases of the input phase for the minimum peak value, (b) adding extra runs, (c)
shifting the input in time such that the average value of the signal occurs at time
equal to zero and (d) adjusting input amplitudes for exact peak value.

Table 4.4 is table 4.3 with the addition of the extra runs needed to calculate all
of the nonlinear transfer functions. Run 8 has been duplicated with a 90 degree
phase change in the 1 MHz signal because run 8 determines the H value at an
unbalanced DC FIPD, (�1;�1; 2). Run 9 is duplicated with di�erent input phasor
amplitudes because H3(1; 1; 3) and H3(�1; 3; 3) are uniquely determined only with
two runs as they both have the same output frequency. This type of situation was
discussed above on page 60 under the heading \Other unique FIPD's with same
order and frequencies". Run 14 determines an H value at an unbalanced DC FIPD,
(�2;�1; 3), thus a second simulation was added that shifted one of the input phasors
by 90 degrees. The actual algorithm used to determine the cases where additional
runs are required is shown in �gures 4.5 and 4.6.
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Figure 4.4: Flow chart for determining simulation conditions. This represents the
block labeled \Determine Simulation Conditions" in �gure 4.2.
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Input Amplitudes
Run 0 Hz 1 MHz 2 MHz 3 MHz

Number Real Imag. Real Imag. Real Imag. Real Imag.

0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0
2 0 0 0 1 0 0 0 0
3 0 0 0 0 0 1 0 0
4 0 0 0 0 0 0 0 1
5 0.5 0 0 0.5 0 0 0 0
6 0.5 0 0 0 0 0.5 0 0
7 0.5 0 0 0 0 0 0 0.5
8 0 0 0 0.5 0 0.5 0 0
9 0 0 0 0.5 0 0 0 0.5
10 0 0 0 0 0 0.5 0 0.5
11 0.3333 0 0 0.3333 0 0.3333 0 0
12 0.3333 0 0 0.3333 0 0 0 0.3333
13 0.3333 0 0 0 0 0.3333 0 0.3333
14 0 0 0 0.3333 0 0.3333 0 0.3333

Table 4.3: Basic list of runs for third order and f =0, 1MHz, 2MHz, 3MHz. without
peak minimization, without additional needed runs, without time shift, and without
amplitude adjustment.
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Input Amplitudes
Run 0 Hz 1 MHz 2 MHz 3 MHz

Number Real Imag. Real Imag. Real Imag. Real Imag.

0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0
2 0 0 0 1 0 0 0 0
3 0 0 0 0 0 1 0 0
4 0 0 0 0 0 0 0 1
5 0.5 0 0 0.5 0 0 0 0
6 0.5 0 0 0 0 0.5 0 0
7 0.5 0 0 0 0 0 0 0.5
8 0 0 0.5 0.0000 0 0.5 0 0
9 0 0 -0.4330 -0.2501 0 0 0 0.5
10 0 0 0 0 0.0001 0.5 0 0.5
11 0.3333 0 0.2357 -0.2357 0 0.3333 0 0
12 0.3333 0 -0.2886 -0.1667 0 0 0 0.3333
13 0.3333 0 0 0 -0.1667 -0.2886 0 0.3333
14 0 0 0.2232 -0.2476 0.0525 -0.3292 0 0.3333

Table 4.4: Basic list of runs for third order and f =0, 1MHz, 2MHz, 3MHz. with
peak minimization, without additional needed runs, without time shift, and without
amplitude adjustment. A value of 0.0000 indicates a nonzero number whose absolute
value is less than 0.0001.
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Figure 4.5: Flow chart for determining indeterminant conditions. This represents
the block labeled \Determine the indeterminent conditions" in �gure 4.4.
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Input Amplitudes
Run 0 Hz 1 MHz 2 MHz 3 MHz

Number Real Imag. Real Imag. Real Imag. Real Imag.

0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0
2 0 0 0 1 0 0 0 0
3 0 0 0 0 0 1 0 0
4 0 0 0 0 0 0 0 1
5 0.5 0 0 0.5 0 0 0 0
6 0.5 0 0 0 0 0.5 0 0
7 0.5 0 0 0 0 0 0 0.5
8a 0 0 0.5 0.0000 0 0.5 0 0
8b 0 0 0.3535 0.3535 0 0.5 0 0
9a 0 0 -0.4330 -0.2501 0 0 0 0.5
9b 0 0 -0.5773 -0.3335 0 0 0 0.3333
9c 0 0 0 -0.2886 -0.1667 0 0 0.6666
10 0 0 0 0 0.0001 0.5 0 0.5
11 0.3333 0 0.2357 -0.2357 0 0.3333 0 0
12 0.3333 0 -0.2886 -0.1667 0 0 0 0.3333
13 0.3333 0 0 0 -0.1667 -0.2886 0 0.3333
14a 0 0 0.2232 -0.2476 0.0525 -0.3292 0 0.3333
14b 0 0 0.2232 -0.2476 0.3292 0.0525 0 0.3333

Table 4.5: List of runs for third order and f =0, 1MHz, 2MHz, 3MHz. with peak
minimization, with additional needed runs, without time shift, and without ampli-
tude adjustment. A value of 0.0000 indicates a nonzero number whose absolute value
is less than 0.0001.

Table 4.5 gives the values of the input phasors of table 4.4 after the phase has
been adjusted to maximize the input power relative to the maximumpeak amplitude.
Since we will later adjust the overall amplitude, the step here is just a minimization
of the peak voltage as a function of the relative phases of the input vectors. Tree
annealing [90] is well suited for the phase adjustment and is used in this procedure.
Note that the runs added in table 4.4 required a certain phase relationship to another
run, e.g. the phase of the 1 MHz phasor in run 8b is the phase of the 1 MHz
phasor in run 8a shifted by 90 degrees. Thus the same relative phase adjustment
for maximizing power calculated for 8a is used in 8b. Table 4.6 gives table 4.5
with the input delayed such that the value at time equal zero is the average value
of the signal. This is equivalent to shifting the time such that the value of all of
the non{DC input phasors add to zero. This adjustment can help to speed the
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Figure 4.6: Flow chart for determining additional required runs. This represents the
block labeled \Determine additional required runs" in �gure 4.5.
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Input Amplitudes
Run 0 Hz 1 MHz 2 MHz 3 MHz

Number Real Imag. Real Imag. Real Imag. Real Imag.

0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0
2 0 0 0 1 0 0 0 0
3 0 0 0 0 0 1 0 0
4 0 0 0 0 0 0 0 1
5 0.5 0 0 0.5 0 0 0 0
6 0.5 0 0 0 0 0.5 0 0
7 0.5 0 0 0 0 0 0 0.5
8a 0 0 0.5 0.0000 0.0000 0.5 0 0
8b 0 0 0.3535 0.3535 0.0000 0.5 0 0
9a 0 0 -0.4330 -0.2501 0 0 0 0.5
9b 0 0 -0.5773 -0.3335 0 0 0 0.3333
9c 0 0 -0.2886 -0.1667 0 0 0 0.6666
10 0 0 0 0 0.0001 0.5 0 0.5
11 0.3333 0 0.2357 -0.2357 0 0.3333 0 0
12 0.3333 0 -0.2886 -0.1667 0 0 0 0.3333
13 0.3333 0 0 0 -0.1667 -0.2886 0 0.3333
14a 0 0 0.2232 -0.2476 0.0525 -0.3292 0 0.3333
14b 0 0 0.2232 -0.2476 0.3292 0.0525 0 0.3333

Table 4.6: List of runs for third order and f =0, 1MHz, 2MHz, 3MHz. with peak
minimization, with additional needed runs, with time shift, and without amplitude
adjustment. A value of 0.0000 indicates a nonzero number whose absolute value is
less than 0.0001.
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simulations if a shooting method simulator is used. If the circuit being simulated
has widely varying time constants, and if the input frequencies are high compared
to the inverse of the smallest time constant of the circuit, then this adjustment can
signi�cantly reduce the simulation time. This reduction in simulation time can be
understood by looking at the example of a series resistor{capacitor pair in the circuit.
Given that the pole associated with the RC pair is much lower in frequency than the
input frequencies, then the voltage across that capacitor will remain relatively steady
through the simulation. Since shooting methods �rst solve for the DC solution to
the circuit using the input conditions at time equal zero, the value of the voltage
across our example capacitor will often be the same for the DC solution as for the
steady{state solution. Thus if we adjust the time such that the DC solution at
time equal zero is the average, we can reduce the simulation time for some circuits
if a shooting method simulator is used. This will be true for the case of a linear
circuit where the input frequencies are much higher than the pole associated with
the example resistor-capacitor pair, but for the general case of nonlinear circuits,
this is not guaranteed. For memoryless circuits, this time shift has no e�ect on the
simulation time.

Table 4.7 gives table 4.6 with the input phasor amplitudes adjusted so that the
peak absolute value matches the value of the \max input:" �eld in the input �le.
This adjustment is accomplished by calculating all of the time{domain values of the
input at a su�ciently small time step and taking the largest absolute value. This
value is then compared to the value given in the input �le and the phasor amplitudes
are adjusted accordingly.

Now that the \Initialize" block in �gure 4.1 has been completed, the next step
is to create the simulation �les. These �les depend on the simulator to be used and
have the input conditions as described by the runs calculated in the previous step.
Note that for each run, several simulations are performed, all with the same relative
phases, but with di�erent input amplitudes. The last simulation for each run is the
one with largest input amplitude and the peak absolute value of the input for this
simulation equals that speci�ed in the input �le.

After the simulation �les are created, all of the simulation �les are simulated.
This section uses the majority of the computor resources and can take days or
weeks depending on several factors. The biggest factor is the speed of the circuit
simulator being used relative to the complexity of the circuit being modeled. The
more complex the subcircuit, the longer it takes to simulate the circuit. A second
factor is the value chosen for \xtra runs" in the input �le. This is a relatively small
factor since the total number of runs varies linearly with the sum of the \xtra runs"
parameter summedwith the \max order" parameter. Thirdly, both the \max order"
and the \num freq" parameters in the input �le together determine how many points
of H values will be calculated. This is an extremely nonlinear relationship and is
the biggest factor in determining how many runs must be simulated. Lastly, for a
shooting method type of circuit simulator, the actual values of the input frequencies
can drastically e�ect the simulation time. Since shooting methods require that the
input be periodic, the smallest period for two almost incomensurable frequencies
can be very large. For example, if the input frequencies were chosen to be 2 Hz and
4 Hz, then the input signal is periodic in a time of 0.5 s. But if the input frequencies
were chosen to be 2.01 and 4, then the input signal is periodic in a time of 100 s.
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Input Amplitudes
Run 0 Hz 1 MHz 2 MHz 3 MHz

Number Real Imag. Real Imag. Real Imag. Real Imag.

0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0
2 0 0 0 1 0 0 0 0
3 0 0 0 0 0 1 0 0
4 0 0 0 0 0 0 0 1
5 0.5 0 0 0.5 0 0 0 0
6 0.5 0 0 0 0 0.5 0 0
7 0.5 0 0 0 0 0 0 0.5
8a 0 0 0.5697 0.0000 0.0000 0.5697 0 0
8b 0 0 0.3535 0.3536 0.0000 0.5 0 0
9a 0 0 -0.5636 -0.3255 0 0 0 0.6508
9b 0 0 0 -0.8053 -0.4652 0 0 0.4650
9c 0 0 0 -0.3440 -0.1987 0 0 0.7945
10 0 0 0 0 0.0001 0.5250 0 0.5250
11 0.4713 0 0.3333 -0.3333 0 0.4713 0 0
12 0.3942 0 -0.3414 -0.1972 0 0 0 0.3942
13 0.3801 0 0 0 -0.1901 -0.3291 0 0.3801
14a 0 0 0.3373 -0.3742 0.0794 -0.4975 0.0000 0.5038
14b 0 0 0.2421 -0.2686 0.3571 0.0570 0.0000 0.3616

Table 4.7: Final list of runs for third order and f =0, 1MHz, 2MHz, 3MHz. Peak
minimization, additional needed runs, time shift, and amplitude adjustment are all
included. A value of 0.0000 indicates a nonzero number whose absolute value is less
than 0.0001.
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After the simulations are complete, the values of H can �nally be calculated.
This process is complicated but very similar to the algorithm used to determine
the needed additional runs in the initialization phase. Figure 4.7 gives the overall

ow of the calculation procedure. The �rst step deals with multiple runs with the
same input frequencies. This step will be discussed later. For each run, all of the
FIPD's and their corresponding output frequencies are calculated. This calculation
is the same as performed in the initialization procedure. The next step is to take the
time{domain output waveform and convert it to frequency{domain phasors using
the FFT algorithm. Then each output phasor, Yq, in a run is decomposed into the
order responses Yq;1, Yq;2, : : : Yq;n. This procedure is just a polynomial least squares
�t and is done with the SVD algorithm [114]. Then for each order response the H
values are calculated if possible. The details of this block are shown in �gure 4.8.
For each FIPD that corresponds to a particular output frequency and order, �rst
the previously calculated values of H are checked to see if the value of H at this
FIPD is known. If it is known, then the response due to this FIPD is calculated and
subtracted from Yq;i. If not, then the unknown FIPD is added to a list. After all of
the FIPD's have been checked, the length of the list is checked. If the length is zero,
then all of the values of H contributing to the response at this order and at this
output frequency have already been calculated. If there is only one FIPD in the list,
then the value of H at this point can be found by solving (4.14). If there is more than
one FIPD in the list, then there are more than two columns in the corresponding
decomposition matrix equation (4.14) and we need information of more than one
run. Therefore we save the current value of Yq;i and the set of unknown FIPD's to a
linked list. This linked list is used in the box marked \Deal with multiple runs with
the same input frequencies" in �gure 4.7. Figure 4.9 gives the detailed algorithm

ow for this procedure. Remember that the order of runs is important. We �rst
simulated all of the runs that had a single frequency input, then a two frequency
input, and so on. The additional run(s) that are added to the basic list during the
\Add needed runs" block of �gure 4.5 have the same input frequencies as one of the
runs in the basic list. These additional run(s) are added adjacent to that run. Thus
when a list of FIPD's is added to the linked list in �gure 4.8 it is because there is
more than one run with the same input frequencies. Thus the matrix in (4.14) has
more than two columns. The information needed to formulate and solve (4.14) is
contained in the linked list.

4.2.4 Summary

The extraction procedure consists of three major steps, initialization, simulation,
and calculation. First the number of simulations and the conditions for these sim-
ulations must be determined. This determination is done by �rst determining all
the di�erent possible combinations of the input frequencies taken at most n at a
time where n is the assumed order of the system. For each combination of input
frequencies, at least n di�erent simulations are required, each with di�erent input
amplitudes, keeping constant the relative phases and relative amplitudes of the com-
ponents of the input frequencies. Furthermore, for systems of order three and higher,
additional simulations with di�erent relative phases and di�erent relative amplitudes
of the components of the input frequencies may be required. Secondly, the actual
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Figure 4.7: High level 
ow chart for the procedure to go through all of the runs and
calculate the transfer function once the simulations are �nished.
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simulations are run and the output values saved in �les. And lastly, the results from
the simulations are used to calculate the Volterra nonlinear transfer functions.

4.3 Conclusion

The extraction procedure described in this chapter provides an automatic way to
�rst determine the needed simulations, perform the needed simulations, and then
extract the Volterra nonlinear transfer function values from the simulation results.
The compute time needed for the entire process is mainly dependent on the number
of input frequencies and the assumed order of the system. The complexity of the
system and the e�ciency of the circuit simulator being used also e�ect the amount
of required compute resource. Typically, the actual simulation is the part of the
procedure that uses the majority of the needed compute resource.

The resulting calculated points of the Volterra nonlinear transfer function are
stored in �les and can be used to calculate the steady{state response of the system
as long as two conditions are satis�ed. First, the input amplitude must not be greater
than the maximum amplitude speci�ed for the extraction. And secondly, the input
spectrum must be comprised soley of discrete frequency values that belong to the
list of input frequencies speci�ed for the extraction.
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Chapter 5

Veri�cation

5.1 Introduction

This chapter presents examples and measurements of the techniques proposed in
chapters 3 and 4. Various examples verify the individual techniques developed in
this thesis. A �nal example provides veri�cation of the integration of the techniques
in the analysis of a subsystem using a behavioral model developed in a systematic
manner from circuit level simulations. First an example of bivariate generalized
power series analysis as proposed in chapter 3 is given. The �rst example is a
ring diode mixer that is modeled as a two input voltage controlled voltage source.
Results of the bivariate power series analysis are compared to results from a time
domain circuit simulator. Secondly, a MESFET ampli�er with a bivariate series
characterization of the current source in the equivalent circuit model is examined.
By using the relationship between generalized power series and bivariate Volterra
series, the circuit is analyzed using signal 
ow analysis for bivariate Volterra series.
Comparison to lab measurements show good results.

Finally, examples of the extraction technique proposed in chapter 4 are given.
Circuits with known Volterra nonlinear transfer functions are used to quantify the
accuracy of the extraction technique. Lastly, a nonlinear equalization circuit is used
as an example of a circuit that does not have a known Volterra series representation.
The output predicted by the extracted nonlinear transfer functions is compared to
that of the original circuit level simulation.

5.2 Bivariate Generalized Power Series { Ring DiodeMixer

An example of a circuit that can be modeled using bivariate generalized power
series analysis is the diode ring mixer shown in Fig. 5.1. In order to calculate a
behavioral model for this entire circuit, we need to �nd an approximation to the
output voltage VIF as a function of the two input voltages VLO and VRF . Moreover,
this approximation needs to be in the form of (3.3). Thus the entire circuit is
modeled as a two-input voltage controlled voltage source.

The current-voltage relationship for the individual diodes are modeled by the
Shockley diode equation:

Ij = I0j(e
Vj=Vt � 1) (5.1)

Where Ij is the current through diodeDj , Vj is the voltage acrossDj , Vt = �kT=q, I0j
is the saturation current for diode j, T is the junction temperature, k is Boltzmann's
constant, and � is the ideality factor.
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Figure 5.1: Ring Diode Mixer

Assuming that the transformers are ideal, the KCL and KVL equations for this
circuit reduce to:

V1(t) =
1

2
VLO(t)�

1

2
VRF (t)� VIF (t) (5.2)

V2(t) =
1

2
VLO(t) +

1

2
VRF (t) + VIF (t) (5.3)

V3(t) =
1

2
VRF (t)�

1

2
VLO(t)� VIF (t) (5.4)

V4(t) = VIF (t)�
1

2
VLO(t)�

1

2
VRF (t) (5.5)

I1(t)� I2(t) + I3(t)� I4(t)�
VIF (t)

RIF

= 0 (5.6)

The explicit notation of time (t) will be dropped for simpli�cation.
Equations (5.2) { (5.6) were solved for VIF by means of the computer-algebra

program MAPLE [115] to perform the algebra and calculus operations. The MAPLE
code used is included in appendix C. Although all of the operations are straightfor-
ward, some of the equations are so large that manual calculations are impractical.
As an intermediate step, a function f having the desired solution at f = 0 was
obtained:

f = I01

�
e(

1

2
VLO � 1

2
VRF � VIF )=Vt � 1

�

�I02
�
e(

1

2
VLO + 1

2
VRF + VIF )=Vt � 1

�
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+I03

�
e
(1
2
VRF � 1

2
VLO � VIF )=Vt � 1

�

�I04
�
e
(VIF � 1

2
VLO � 1

2
VRF )=Vt � 1

�
� VIF

RIF

(5.7)

Since we want a closed form solution for VIF we now estimate f by a third degree
Taylor series in VIF .

f � f(VIF = 0) + f
0

(VIF = 0) VIF +
1

2
f
00

(VIF = 0) V 2

IF +
1

6
f
000

(VIF = 0) V 3

IF (5.8)

This third order polynomial in VIF can be solved in closed form [111]. In general,
of the three solutions to this third order equation, two are complex and one is real.
Using the real solution, we get a very large equation which we will call g. The
full solution of g is too large to be included here, but is given in appendix C for
completeness. The function g has the form VIF = g(VRF ; VLO; I01; I02; I03; I04; Vt) to
which a bivariate power series of the form

g(VRF ; VLO) =
9X

�=0

9X
�=0

a�;�V
�
RFV

�
LO (5.9)

can be �tted using least square techniques over a given range. Thus (5.9) has the
form of (3.3) with bk = 1, �k;� = 0, dk = 1, and �k;� = 0. For our investigation
we used the voltage ranges �0:6 � VLO � 0:6, and �0:2 � VRF � 0:2. and the
RMS �t error was less than 1 %. For the ring mixer of Fig. 1, � = 1, I01 =
1:00 pA, I02 = 1:01 pA, I03 = 1:03 pA, I04 = 1:06 pA, Vt = 0:02569 Volts, and the
transformers are ideal and have 1:1 turns ratios. The solid lines in Fig. 5.2 give
the steady-state conversion power gain of PIF=PRF for several LO powers. Since
the power series (5.9) is valid only for a given range of the inputs, the macromodel
is only valid within that range. The circles are simulation results using the time
domain simulator ASTAP [113], and show good agreement.

The dashed lines in Fig. 5.2 demonstrate an important property of bivariate
GPSA. Since the summation given by (3.114) contains powers of the phasor compo-
nents as given by (3.16), any arbitrary input-output transfer characteristic is of the
form

Yq =
X
i

Hi;j(Xj) (5.10)

Where Hi;j is an ith order nonlinear transfer function for the input phasor Xj (or set
of Xj 's). In general,Hi;j is a function of the other input phasors. The dashed lines in
Fig. 5.2 give (a) �rst order, H1, and (b) third order, H3, transfer characteristics for
the IF phasor when PLO = 2:0 dBm. In our example, the even-order transfer func-
tions are zero. Note that in Fig. 5.2, the vertical axis is gain, not output amplitude;
thus the lines represent the 0 th order and 2 nd order transfer characteristics for
the gain, corresponding to the 1st and 3rd order transfer characteristics for output
amplitude. For the range modeled, all higher order transfer functions are negligible.
Adding (a) and (b) yields a value within 1 percent of the total characteristic (solid
line) shown for PLO = 2 dBm. Thus a simple behavioral model is obtained by using
only lower order powers of the input. Here, the nonlinear RF to IF characteristics
can be described by the sum of two components. Each component can be represented
as a linear function when expressed in log-log form.
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Figure 5.2: Conversion Gain for di�erent LO power levels. Solid lines are bivari-
ate GPSA calculations. Circles are ASTAP (time domain simulation) calculations.
Dashed lines are the �rst two terms of the decomposition of the solid line for
PLO = 2:0 dBm. (a) is the constant term: RF 0. (b) is the second order term:
RF 2.
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Figure 5.3: Full circuit for measurement of MESFET ampli�er characteristics

5.3 Signal Flow Analysis for Bivariate Volterra Series

One form of Volterra series analysis of nonlinear circuits casts the nonlinear circuit
into block diagram form, each block being described by linear transfer functions for
linear subcircuits and by Volterra nonlinear transfer functions for nonlinear subcir-
cuits [116]. Here we apply this technique to the Volterra series{based analysis of a
MESFET ampli�er and compare the simulated results to experimental results.

The MESFET ampli�er used here was previously analyzed by Chang et al. [20].
The model schematic is shown in Fig. 5.3, and the measured parameter values are

given in table 5.1. Using the substitution theorem [79, Section 2.2.1] the equivalent
signal 
ow graph of the circuit is shown in Fig. 5.4. The input is the value of
the source voltage VIN . This signal passes through the linear systems GIN�GS and
GIN�DS . Each of these systems is characterized by all of the linear components of the
circuit. VGS and VDS are the inputs to the two-input nonlinear block B characterized
by � and table 5.2. Using (3.106) we can directly calculate the bivariate Volterra
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Element Value

Cg1 0:1386 pF

Lg 0:69414 nH

Cg2 0:30707 pF

Rg 2:9


Rs 2:4


Ls 0:00323 nH

Rd 5:3


Ld 0:41143 nH

Cd2 0:09012 pF

Cd1 0:00341 pF

R1 10


� 6:56 ps

Cds 0:25050 pF

Cgs 0:50150 pF

Cgd 0:08637 pF

Table 5.1: Element values for MESFET circuit

Order of Order of Vds Term

Vgs Term 0 1 2 3

0 0:0211092 0:00467136 0:00004985 0:00026358

1 0:0689287 0:00307239 �0:000616581 0:00244648

2 0:0552606 �0:0158083 0:00336844 0:00931433

3 �0:0241834 �0:0132546 0:00541917 0:0127004

4 �0:0328935 0:0236952 �0:00941775 �0:0136877

5 0:00865757 0:0340615 �0:0131895 �0:0366089

6 0:00689521 �0:00467676 0:0034243 �0:00190339

7 �0:00616748 �0:0241809 0:00856464 0:0253214

8 �0:0029458 �0:00895554 0:00252446 0:0105268

Order of Order of Vds Term

Vgs Term 4 5 6 7

0 0:00006759 �0:000138752 �0:000008659 0:0000154853

1 �0:000132799 �0:000942032 0:0000306236 0:000105969

2 �0:00214949 �0:00326047 0:000315678 0:000336661

3 �0:00146277 �0:00362775 0:000207059 0:000290322

4 0:00546728 0:00528516 �0:000791546 �0:000575213

5 0:00563955 0:0110368 �0:000849452 �0:000954538

6 �0:00231212 �0:000264063 0:000324688 0:00010378

7 �0:00426292 �0:00775008 0:000655445 0:000683864

8 �0:001237 �0:00305257 0:00019882 0:000254013

Table 5.2: Coe�cients for bivariate power series of Ids about DC operating point
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Figure 5.4: Nonlinear signal 
ow graph for MESFET ampli�er. GIN�GS , GIN�DS ,
GFB�GS , GFG�DS , and GOUT are linear systems. B is a bivariate nonlinear system.
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nonlinear transfer function and thus can calculate the value IDS. The value of the
output voltage VL is the output of the linear system GOUT which has as its input
IDS. The two linear systems GFB�DS and GFB�GS provide the feedback to the two
inputs of the bivariate block.

The aim now is to solve for the steady{state output of the system given a steady{
state input signal VIN . The two feedback paths do not allow a straightfoward closed
form solution. However, the steady{state output of the system can be solved rel-
atively easily by iteration for low input powers. For the �rst iteration, we assume
that the feedback contributions are negligible and calculate the system response.
Then using the new calculated value of IDS we calculate a new VDS and VGS and
use the new values for the next iteration. This process is continued until there is no
appreciable change of any of the values from one iteration to the next.

Figure 5.5 gives the results of a two{tone test for the circuit using two equal-
amplitude signals at input frequencies of 2.35 GHz and 2.4 GHz. The horizontal
axis is the input power for one of the tones, and the vertical axis is the output power
at the fundamental frequency of 2.35 GHz and the image frequency of 2.3 GHz.
The points are experimentally measured values and the solid lines are the simulated
values and show good agreement. These simulated values also agree closely with
those given by Chang et al. [20]. Note that a linear simulation would predict no
power at 2.3 GHz.

Another technique for solving nonlinear circuits, that is based on the work of
Volterra, is the method of nonlinear currents [116], [79]. This technique has the
advantage of a closed form solution to a nonlinear system which consists of (a)
linear subsystems and (b) simple nonlinear systems described by univariate power
series. Strictly speaking, the generalized form of the power series (which includes
the time delays � ) cannot be used with this analysis. However, a pure delay can be
lumped into the linear systems, and thus a generalized power series can be adapted
to this analysis. This method has been used to analyze MESFET ampli�ers [81], but
since the nonlinear blocks are characterized by univariate power series, the VDS{VGS
cross product terms of the bivariate power series are ignored. Thus the coe�cients
in table 5.2 that are neither in the �rst row nor the �rst column are assumed to be
negligible. The work presented here can be used to extend the method of nonlinear
currents to include more general nonlinearities.

5.4 New Volterra Extraction

5.4.1 Linear RC Filter

The single{pole low pass �lter circuit shown in �gure 5.6 was used to test the extrac-
tion procedure described in chapter 5. The circuit was simulated using the ASTAP
circuit simulator [113]. This circuit is linear and thus the nonlinear transfer function
is equal to zero for orders higher than 1. The input �le used was that shown in
�gure 4.3. Note that we assumed an order of 3 and thus we expect to extract values
equal to zero for H2 and H3. Figures 5.7 and 5.8 show the tables that were extracted
using the procedure. These tables show the general form of the output �les. This
�rst line contains two numbers, the number of inputs and the number of outputs.
Since the functions Hn are complex, the number of outputs is always two, one for
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Figure 5.5: The results of a two tone test for the circuit using two equal-amplitude
signals at input frequencies of 2.35 GHz and 2.4 GHz. The horizontal axis is the
input power for one of the tones, and the vertical axis is the output power at the
fundamental frequency of 2.35 GHz and the image frequency of 2.3 GHz. The solid
lines are the simulated values and the points are experimentally measured values.

88



Figure 5.6: Schematic of simple RC �lter used to test extraction technique.

number of inputs number of output

format: type of format

f1 f2 : : : fn RefHng ImfHng
...

...
...

...
...

...

Table 5.3: General output format for nth order H's

the real part and one for the imaginary part. The number of inputs corresponds to
the order of the nonlinear transfer function. The general form of the tables is shown
in table 5.3.

In �gure 5.7 the value of H0 is equal to 0 as expected. The known linear charac-
teristics are shown by the values of H1 and show the expected roll o� of a single pole
at 3MHz. The point for H2 in �gure 5.7 and the points for H3 in �gure 5.8 are close
to zero as expected. These values are not exactly equal to zero due to computational
noise present in the simulation results.

5.4.2 Power Series Device, 7th order

Now that a linear circuit with memory has been used to test the extraction algorithm,
we move onto the case of a nonlinear system with apriori known values of H. In
this example we will use a memoryless sytem that can be described by the equation

y = x7 + x6 + x5 + x4 + x3 + x2 + x1 + 1 (5.11)
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--------------------------------------------------------------------

0 2

Format: ascii

+0 +0

--------------------------------------------------------------------

1 2

Format: ascii

+0 +0.999817 +0

+1e+06 +0.899975 +0.300012

+2e+06 +0.692269 +0.461544

+3e+06 +0.49996 +0.499993

--------------------------------------------------------------------

2 2

Format: ascii

-3e+06 +3e+06 -1.01562e-07 +0

-2e+06 +2e+06 -3.78306e-08 +0

-2e+06 +3e+06 +6.53864e-07 +1.35933e-06

-1e+06 +1e+06 -1.91459e-09 +0

-1e+06 +2e+06 -2.07609e-06 +6.26003e-07

-1e+06 +3e+06 -1.13393e-07 -2.99255e-07

+0 +0 +2.78369e-08 +0

+0 +1e+06 +9.48788e-07 -9.2115e-07

+0 +2e+06 +1.64792e-07 +5.84656e-08

+0 +3e+06 -8.97048e-07 -5.75013e-09

+1e+06 +1e+06 -1.54333e-08 +3.31582e-08

+1e+06 +2e+06 +5.14803e-07 -7.56933e-07

+1e+06 +3e+06 -1.14537e-07 +3.2733e-07

+2e+06 +2e+06 +5.75729e-09 +5.225e-08

+2e+06 +3e+06 +3.02006e-07 +1.144e-06

+3e+06 +3e+06 -2.74028e-08 +1.12958e-07

Figure 5.7: The results for H0, H1, and H2 of a low{pass RC �lter. Pole is at
3MHz. The last two columns are the real and imaginary part of the extracted
transfer function. The beginning columns are the arguments in hertz to the transfer
function.
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3 2

Format: ascii

-3e+06 +0 +3e+06 -0.000170968 +0

-3e+06 +1e+06 +3e+06 +2.95559e-06 +5.03615e-06

-3e+06 +2e+06 +2e+06 +1.60853e-05 -2.08472e-05

-3e+06 +2e+06 +3e+06 +2.08938e-06 +3.12744e-06

-3e+06 +3e+06 +3e+06 +1.19571e-06 +1.75821e-07

-2e+06 -1e+06 +3e+06 -0 +1.3751e-05

-2e+06 +0 +2e+06 -0.000168853 +0

-2e+06 +0 +3e+06 -1.95233e-05 +9.20555e-06

-2e+06 +1e+06 +2e+06 -0.00010614 -3.1055e-05

-2e+06 +1e+06 +3e+06 +0.000408738 +0.0002841

-2e+06 +2e+06 +2e+06 +1.31617e-06 -3.43648e-07

-2e+06 +2e+06 +3e+06 +9.4762e-06 +4.53258e-07

-2e+06 +3e+06 +3e+06 +2.57414e-05 +2.58141e-05

-1e+06 -1e+06 +2e+06 -0 +7.18017e-06

-1e+06 -1e+06 +3e+06 -5.91117e-06 -1.00723e-05

-1e+06 +0 +1e+06 -0.000169207 +0

-1e+06 +0 +2e+06 -0.00019892 +0.000616142

-1e+06 +0 +3e+06 -3.37367e-05 +2.5736e-05

-1e+06 +1e+06 +1e+06 +4.16386e-07 -3.29523e-07

-1e+06 +1e+06 +2e+06 -7.65668e-05 -5.72107e-05

-1e+06 +1e+06 +3e+06 +1.01919e-05 +1.59415e-06

-1e+06 +2e+06 +2e+06 +7.87875e-06 +6.11655e-06

-1e+06 +2e+06 +3e+06 +1.23486e-05 +4.00424e-06

-1e+06 +3e+06 +3e+06 +5.42847e-06 +9.70645e-06

+0 +0 +0 +1.23999e-05 +0

+0 +0 +1e+06 -0.000106029 -3.70775e-05

+0 +0 +2e+06 -8.27047e-05 -5.50806e-05

+0 +0 +3e+06 -5.96541e-05 -5.90868e-05

+0 +1e+06 +1e+06 +9.42825e-08 +2.04803e-06

+0 +1e+06 +2e+06 -7.71757e-06 -1.48022e-05

+0 +1e+06 +3e+06 -1.73463e-05 -3.431e-05

+0 +2e+06 +2e+06 -2.02255e-06 +1.45229e-06

+0 +2e+06 +3e+06 -2.10179e-05 -1.00984e-06

+0 +3e+06 +3e+06 -4.61831e-06 +9.56671e-07

+1e+06 +1e+06 +1e+06 +2.79563e-06 +1.35041e-06

Figure 5.8: Sample of results for H3 of low{pass RC �lter. Pole is at 3MHz. The
�rst three columns represent the argument to H3. The last two columns are the real
and imaginary part of the value of the function.
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Transfer Function Number of

indicating order Calculated points

H0 1

H1 4

H2 16

H3 32

H4 60

H5 87

H6 131

H7 179

Total 510

Table 5.4: Number of points calculated for each H for 7th order system

From (3.69) we know that the nonlinear transfer function for a memoryless system
described by a polynomial is just the constant coe�cient of that order. Thus for
this system we know that

H0 = 1 (5.12)

H1(fa) = 1 (5.13)

H2(fa; fb) = 1 (5.14)

H3(fa; fb; fc) = 1 (5.15)

H4(fa; fb; fc; fe) = 1 (5.16)

H5(fa; fb; fc; fe; ff) = 1 (5.17)

H6(fa; fb; fc; fe; ff ; fg) = 1 (5.18)

H7(fa; fb; fc; fe; ff ; fg; fh) = 1 (5.19)

This polynomial characteristic was simulated using ASTAP with a voltage controlled
voltage source with the speci�ed polynomial characteristics. The number of transfer
function points extracted for each order is indicated in table 5.4. Figure 5.9 is a
scattergram of the extracted values of the transfer functions as functions of transfer
function order.

5.5 Four Megabit Token Ring Equalizer Circuit

In order to test the extraction procedure, an existing circuit was chosen that exhibits
linear behavior for small inputs, and nonlinear behavior for large inputs. This circuit
will be used to test the theory and practicality of the development presented in this
thesis. The circuit shown in �gure 5.10 is an active equalizer circuit for the IBM
4M bit token ring local area network. Terminals IN HI and IN LO are the high and
low inputs, and the output is the voltage across OUT HI and OUT LO. For long
cable lengths, and thus low power input signals, both input transistors remain in the
active region and the small signal, or linear model of the circuit accurately predicts

92



Cut and paste. from �le 7ordho.ps

Figure 5.9: Extracted value of the nonlinear transfer function for a memoryless
7th order system with known characteristics. All values should be equal to (1,0).
Di�erent symbols represent the order of the nonlinear transfer function.
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the performance of the circuit. But for short cable lengths, and thus large input
signals, the input signal is strong enough to alternately turn o� both transistors and
the output signal is clipped. This behavior is shown in �gures 5.11 and 5.12 for
various input signal levels and at two di�erent frequencies. Note also the frequency{
dependent nonlinear a�ects of the zero crossing shift. The phase of the input signal
is the same for all signals.

Since we will use the extraction algorithm described in section 4.2 to develop
the transfer functions used in simulating a steady{state system, we must know the
frequencies which will be used. Furthermore, we must be able to make the tradeo�
between accuracy and speed of both the simulation and the extraction procedure.
Let us examine a lower bound for the number of simulations needed for our extraction
routine. If F is the number of input frequencies and N is the assumed order of the
system, then the number of simulations needed, S, is

S � 1 +N

min(N;F )X
k=1

0
@Fk

1
A (5.20)

Here the 1 represents the single simulation that is needed to determine H0. The

value
Pmin(N;K)

k=1

0
@Fk

1
A is the sum of all of the possible combinations of the input

frequencies starting with a single input frequency up to the maximum number of
input frequencies. This maximum is the lesser of either the assumed order of the
system, or the number of input frequencies. Since each run represents at least N
simulations, this sum is multiplied by N . Table 5.5 shows the relationship between
this lower bound for the number of required simulations as a function of the number
of frequencies, and the assumed order of the system. This table represents a lower
bound in the sense that it will be exactly the minimum number of simulations
needed if and only if there are no unique FIPD's with the same order and frequency
as discussed in section 4.2.2. Additional runs must be added either because of
(a) unbalanced DC FIPD's, (b) FIPD's with unbalanced DC FIPD subsets or (c)
other unique FIPD's with the same order and frequencies. The actual number of
runs used can be greater than the minimum required as discussed here. This is
denoted by the value of xtra runs as described in �gure 4.3 being greater than zero.
The term xtra runs is somewhat misleading because it really refers to the number
of extra simulations that are done for each run. For a nth order system, each
run must have at least n di�erent simulations at di�erent input amplitudes. The
equivalent of a polynomial �t is performed on the varying output amplitudes in
order to decompose the output into the 1st, 2nd, etc. order response. Increasing
xtra runs only allows for extra points on the polynomial �t for each output phasor.
Addional runs added because (a), (b) and (c) listed above are required to separate
out di�erent components of an output frequency that are caused by the same set of
input frequencies.

Table 5.6 shows the same relationship of table 5.5 for the special case of all input
frequencies being the lowest possible harmonics of a fundamental. So, for instance,
for 3 frequencies, the frequencies used would be the �rst harmonic (the fundamental),
the second harmonic, and the third harmonic. The value of the fundamental does
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Figure 5.10: Schematic of equalizer circuit
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Runs: [equalize.grf1] equalize.grf2 equalize.grf3 equalize.grf4 equalize.grf5 

-5.63e-01

-2.81e-01

-2.87e-05

2.81e-01

5.63e-01

0.00e+00 6.25e+01 1.25e+02 1.88e+02 2.50e+02
’TIME’

PVOUT

PVOUT

PVOUT

PVOUT

PVOUT

0

4 MHz Input

Input peak = 0.1, 0.2, 0.3, 0.4, 0.5 Volts

Time in ns

Figure 5.11: Output of the equalizer circuit shown in �gure 5.10 with a single sinu-
soidal 4 MHz input signal of 100mV, 200mV, 300mV, 400 mV and 500mV. Note the
nonlinear a�ect of the clipping and the zero crossing. The phase of the input is the
same for all signals.
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Runs: [equalizec.grf1] equalizec.grf2 equalizec.grf3 equalizec.grf4 equalizec.grf5 

-5.71e-01

-2.86e-01

-1.61e-05

2.86e-01

5.71e-01

0.00e+00 3.12e+01 6.25e+01 9.38e+01 1.25e+02
’TIME’

PVOUT

PVOUT

PVOUT

PVOUT

PVOUT

0

8 MHz Input

Input peak = 0.1, 0.2, 0.3, 0.4, 0.5 Volts

Time in ns

Figure 5.12: Output of the equalizer circuit shown in �gure 5.10 with a single sinu-
soidal 8 MHz input signal of 100mV, 200mV, 300mV, 400 mV and 500mV. Note the
nonlinear a�ect of the clipping and the zero crossing. The phase of the input is the
same for all signals.
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Number of Assumed Order of the System

Frequencies 1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8 9

2 3 7 10 13 16 19 22 25

3 4 13 22 29 36 43 50 57

4 5 21 43 61 76 91 106 121

5 6 31 76 121 156 187 218 249

6 7 43 124 225 311 379 442 505

7 8 57 190 393 596 757 890 1017

8 9 73 277 649 1091 1477 1779 2041

Table 5.5: The lower bound of the miminumnumber of simulations needed to extract
the nonlinear transfer functions as a function of the number of frequencies and the
order of the system. No assumption is made on the relationship between the input
frequencies. This lower bound will be exactly the same as the minimum if there are
no additional runs required because of multiple unique FIPD's with the same order
and frequencies.

not a�ect this table as long as DC (zero hertz) is not considered an input frequency.
Note the striking di�erence between table 5.6 and table 5.5. For example, the lower
bound for the number of simulations needed for a third order system with four input
frequencies is 43. By looking at the similar input shown in table 4.3 one can derive
this number of simulations. Run 0 in table 4.3 represents a single simulation, and
runs 1 through 14 represent 3 (because the system is 3rd order) runs each. Thus a
total of 1 + 3 � 14 = 43 simulations are needed. Note that tables 4.3 through 4.7
correspond to a system of 4 input frequencies that include DC (zero hertz). This is
slightly di�erent from table 5.5 which represents input frequencies that are harmonics
and do not include DC. When DC is an input frequency, fewer additional runs need
to be added because DC mixed with any other frequency can produce only that
other frequency, whereas a non-DC frequency, say f1 mixed with another frequency,
say f2 produces two frequencies, f1+f2 and f1�f2. Thus the number of simulations
represented in tables 4.5 through 4.7 (1+3� (14+4) = 55) is slightly di�erent from
the number of simulations shown for third order and 4 input frequencies in table 5.5
(61). The additional simulations over the lower bound given in table 5.6 are due to:
(a) unbalanced DC FIPD's, (b) FIPD's with unbalanced DC FIPD subsets or (c)
other unique FIPD's with the same order and frequencies. As the assumed order of
the system increases, and as the number of input frequencies increases, the number
of additional runs needed increases dramatically.

Since the number of additional runs is related to the number of unique FIPD's
that add to the same number, it can be conjectured that table 5.5 represents the
worst case condition, or the upper bound, for the minimum number of simulations
needed. Of course the number of actual simulations can be made arbitrarily high by
chosing a large value for xtra runs, as described in �gure 4.3.

The circuit shown in �gure 5.10 was extracted assuming a 5th order system and
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Number of Assumed Order of the System

Frequencies 1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8 9

2 3 7 13 81 101 175 302 665

3 4 13 34 165 355 625 1261 3169

4 5 21 61 393 891 2131 4383 10209

5 6 31 100 825 2546 5587 12776 �

6 7 43 163 1445 5436 13273 30864 �

7 8 57 238 2345 11241 30787 � �

8 9 73 337 3529 20556 65131 � �

Table 5.6: The minimum number of simulations needed to extract the nonlinear
transfer functions as a function of the number of frequencies and the order of the
system. The frequencies consist of a fundamental and the lowest harmonics. A value
of \-" indicates that the run time to calculate the number of simulations was over
24 hours on an IBM RS/6000 model 530.

a maximum input amplitude of 0.5 Volts. The number of extra simulations per
run, xtra runs, as described in �gure 4.3 was set to 1. The input frequencies to be
extracted were 2MHz, 4MHz, 6MHz, 8MHz, and 10MHz. A total of 509 simulation
runs, each consisting of 6 simulations, resulted in a total of 3054 individual simu-
lations. The total number of points extracted for each transfer function is shown
in table 5.7. Figures 5.13 and 5.14 show the response of the equalizer circuit at
4MHz and 8MHz respectively when the input amplitude is 0.5 volts. In addition to
the simulated response, the response as predicted by the extracted Volterra model is
shown. The Volterra model is truncated to various orders to show the signi�cance of
the various order contributions. For the 4MHz sine waves in �gure 5.13 the full �fth

Transfer Number of
Function Points

H0 1
H1 5
H2 30
H3 110
H4 365
H5 1001

Table 5.7: Number of points calculated for each nonlinear transfer function. The
assumed order of the system equals 5 and the number of frequencies equals 5.
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Frequency Input Output
(MHz) Real Imag. Real Imag.

0 0 0 -0.0989567 0
2 -0.225079 0 -0.183574 0.0982065
4 0.15915494 0 0.189815 -0.0831388
6 -0.07502636 0 -0.110332 0.0315885
8 0 0 0.000159172 0.00230049
10 0.04501582 0 0.079895 -0.010912
12 0 0 0.00254697 0.00186382
14 0 0 -0.000943781 -0.00189096
16 0 0 0.000206277 -0.000143682
18 0 0 0.000110684 0.00111191
20 0 0 0.000420457 -0.000757654
22 0 0 0.000282121 8.05754e-05
24 0 0 -6.52212e-05 -0.000271398
26 0 0 -9.02686e-05 0.000133352
28 0 0 -3.43362e-05 -7.49608e-05
30 0 0 -8.13724e-06 -2.21758e-05
32 0 0 -3.3284e-05 5.19877e-05
34 0 0 1.86298e-05 -1.66032e-05
36 0 0 -2.2996e-06 4.43709e-06
38 0 0 -8.14703e-06 2.89457e-06
40 0 0 3.18382e-06 -2.25542e-06
42 0 0 2.58058e-07 -3.26546e-07
44 0 0 -8.20489e-07 4.53726e-07
46 0 0 3.38836e-08 -1.49648e-07
48 0 0 0 0
50 0 0 -2.44766e-08 4.77152e-09

Table 5.8: Input and output phasors as an example of the response predicted by the
extracted Volterra model. The input is derived from a pulse train with truncated
harmonics.
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order Volterra model prediction is indistinguishable from the simulated response.
The results in �gure 5.14 are similar, but because of the more pronounced clipping,
a slight di�erence can be distinguished between the �fth order Volterra model re-
sponse and the simulated response. Figures 5.15 and 5.16 show the same curves as
�gures 5.13 and 5.14, but with an input amplitude of 0.1 volts. With this lower
input amplitude, the circuit exhibits a linear response, and thus the various trunca-
tions of the Volterra model are indistinguishable, i.e. only the �rst order response
(H1) is signi�cant. Figure 5.17 shows the various truncated Volterra models
for an arbitrary input with non{zero amplitudes for all �ve valid input frequencies
(2MHz, 4MHz, 6MHz, 8MHz, and 20MHz). The output phasors for the full �fth
order Volterra model and the input phasors are given in table 5.9. Note that the
output components are negligible at high frequencies. As in �gures 5.13 and 5.14
the higher order Volterra model yields better results and the full �fth order model
is almost indistinguishable from the simulated result. Figure 5.18 shows the e�ect
increasing the input amplitude 10 percent over the maximum valid range for the
model. Although the �fth order model closely matches the simulated result for most
of the waveform, the area where the circuit clipps the output (and is thus highly
nonlinear), the Volterra model di�ers from the simulated result.
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Runs: [ord1.volt] ord2.volt ord3.volt ord4.volt ord5.sim ord5.volt input 

-6.71e-01

-3.35e-01

-8.93e-06

3.35e-01

6.71e-01

0.00e+00 6.20e+01 1.24e+02 1.86e+02 2.48e+02
’TIME’

Volterra_Model_Order=1

Volterra_Model_Order=2

Volterra_Model_Order=3

Volterra_Model_Order=4

Circuit_Simulation

Volterra_Model_Order=5

Input

0

<-- Input

Figure 5.13: Output of the equalizer circuit shown in �gure 5.10 with a single sinusoid
4 MHz input signal of 500mV. The Volterra model is truncated at various orders.
The even order contributions are negligible, thus model order = 1 is indistinguishable
from order=2, and model order = 3 is indistinguishable from order=4.
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Runs: [ord1.volt] ord2.volt ord3.volt ord4.volt ord5.sim ord5.volt input 

-8.47e-01

-4.24e-01

-9.42e-06

4.23e-01

8.47e-01

0.00e+00 3.07e+01 6.15e+01 9.22e+01 1.23e+02
’TIME’

Volterra_Model_Order=1

Volterra_Model_Order=2

Volterra_Model_Order=3

Volterra_Model_Order=4

Circuit_Simulation

Volterra_Model_Order=5

Input

0

<-- Input

Figure 5.14: Output of the equalizer circuit shown in �gure 5.10 with a single sinusoid
8 MHz input signal of 500mV. The Volterra model is truncated at various orders.
The even order contributions are negligible, thus model order = 1 is indistinguishable
from order=2, and model order = 3 is indistinguishable from order=4.
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Runs: [ord1.volt] ord2.volt ord3.volt ord4.volt ord5.sim ord5.volt input 

-1.34e-01

-6.69e-02

-5.65e-06

6.69e-02

1.34e-01

0.00e+00 6.20e+01 1.24e+02 1.86e+02 2.48e+02
’TIME’

Volterra_Model_Order=1

Volterra_Model_Order=2

Volterra_Model_Order=3

Volterra_Model_Order=4

Circuit_Simulation

Volterra_Model_Order=5

Input

0

Figure 5.15: Output of the equalizer circuit shown in �gure 5.10 with a single sinusoid
4 MHz input signal of 100mV. The Volterra model is truncated at various orders.
Since the input signal is relatively low, only the �rst order contribution is signi�cant,
and thus the higher order models are indistinguishable from order=1.
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Runs: [ord1.volt] ord2.volt ord3.volt ord4.volt ord5.sim ord5.volt input 

-1.69e-01

-8.47e-02

-3.77e-07

8.47e-02

1.69e-01

0.00e+00 3.07e+01 6.15e+01 9.22e+01 1.23e+02
’TIME’

Volterra_Model_Order=1

Volterra_Model_Order=2

Volterra_Model_Order=3

Volterra_Model_Order=4

Circuit_Simulation

Volterra_Model_Order=5

Input

0

Figure 5.16: Output of the equalizer circuit shown in �gure 5.10 with a single sinusoid
8 MHz input signal of 100mV. The Volterra model is truncated at various orders.
Since the input signal is relatively low, only the �rst order contribution is signi�cant,
and thus the higher order models are indistinguishable from order=1.
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Frequency Input Output
(MHz) Real Imag. Real Imag.

0 0 0 -0.00384618 0
2 0.076699 0 0.0509467 -0.0313206
4 0.092379 0.056737 0.127815 0.0184941
6 0.060898 0.13464 0.134272 0.169927
8 0.037567 0.056706 0.0633615 0.0743186
10 0.073445 0.094801 0.132349 0.14164
12 0 0 -0.0100938 -0.0144004
14 0 0 -0.00250643 -0.0140619
16 0 0 -0.000236111 -0.011516
18 0 0 -0.000133463 -0.00812579
20 0 0 0.00386777 -0.00955325
22 0 0 0.00535749 -0.00760273
24 0 0 0.00463715 -0.00487514
26 0 0 0.00574414 -0.00363565
28 0 0 0.00321482 -0.00160746
30 0 0 0.00239918 0.000292326
32 0 0 0.00159212 0.000290928
34 0 0 0.000995979 0.000390799
36 0 0 0.000660513 0.000468547
38 0 0 0.000339444 0.000447438
40 0 0 0.000207854 0.000320117
42 0 0 5.34351e-05 0.000139171
44 0 0 5.94764e-05 9.18203e-05
46 0 0 2.15796e-05 2.31651e-05
48 0 0 2.04514e-06 7.53843e-06
50 0 0 1.13676e-06 3.14699e-06

Table 5.9: Input and output phasors as an example of the response predicted by the
extracted Volterra model. The corresponding waveforms are shown in �gure 5.17.
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5.5.1 Problems

The DC or zero Hz output component is, in general, the most di�cult to predict
because in there are more distinct contributions to DC than to any other frequency.
One problem with the extraction algorithm presented here is that previously calcu-
lated values of the Volterra nonlinear transfer function are used to subtract \known"
contributions of the outputs of later simulations. Since there are so many di�erent
FIPD's, and thus points on the Volterra nonlinear transfer functions, that contribute
to DC, the \known" contributions that are subtracted out are more sensitive to er-
ror. This error in the \known" contributions leads to error in the calculated values
of the Volterra nonlinear transfer function, and these errors lead to larger errors
later on in the extraction process. This e�ect can be seen in �gure 5.19. The input
in this case is a truncated Fourier series of a pulse train. The DC error of the �fth
order Volterra model is about 0.15 Volts. If the DC component is removed from the
output of the Volterra model and the simulated output, the higher order Volterra
models give very good agreement as shown in �gure 5.20. The output phasors for
the �fth order Volterra model and the input phasors as shown in �gure 5.19 are
given in table 5.8.

5.5.2 Discussion

The computation needed in the extraction process is dominated by the simulations.
The resource needed for simulations is determined by the number of simulations
needed and the individual simulation times. The number of simulations needed is
a function of the number of input frequencies and the assumed order of the sys-
tem. On the other hand, the individual simulation times depend on the inputs to
the simulator, the simulator itself, and the complexity of the circuit. In the equal-
izer example, the input frequencies were required to be commensurable because the
simulator employed shooting methods and thus required a periodic input. Large
di�erences in the values of the input frequencies would result in small time steps
relative to the input period, and thus long run times and large output �les. For
our case, only simple harmonics were used as input frequencies, and thus, relative
to the highest input frequency, the simulation period is kept to a minimum. If a
frequency domain simulator were used in the extraction process, these would not be
the dominating factors.

The extracted �fth order Volterra nonlinear transfer function of the equalizer
circuit agrees well with simulated data with the exception of the DC component for
some sets of input frequencies. This disagreement is due to the error accumulated
during the extraction process.
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Runs: [ord1.volt] ord2.volt ord3.volt ord4.volt ord5.sim ord5.volt input 

-3.89e-01

-7.96e-02

2.30e-01

5.40e-01

8.49e-01

0.00e+00 1.24e+02 2.49e+02 3.73e+02 4.98e+02
’TIME’

Volterra_Model_Order=1

Volterra_Model_Order=2

Volterra_Model_Order=3

Volterra_Model_Order=4

Circuit_Simulation

Volterra_Model_Order=5

Input

0

<-- Input

Figure 5.17: Sample output predicted by extracted Volterra model for arbitrary
input with maximum allowable input amplitude. The peak value of the input is 0.5
volts. Higher order Volterra models more closely match the output as predicted by
simulation. The full 5th order Volterra model output is almost indistinguishable
from the simulated output.
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Runs: [ord1.volt] ord2.volt ord3.volt ord4.volt ord5.sim ord5.volt input 

-4.33e-01

-8.48e-02

2.63e-01

6.11e-01

9.59e-01

0.00e+00 1.24e+02 2.49e+02 3.73e+02 4.98e+02
’TIME’

Volterra_Model_Order=1

Volterra_Model_Order=2

Volterra_Model_Order=3

Volterra_Model_Order=4

Circuit_Simulation

Volterra_Model_Order=5

Input

Figure 5.18: Sample output predicted by extracted Volterra model for arbitrary
input with input amplitude 10 percent greater than maximum valid level. The peak
value of the input is 0.55 volts. Higher order Volterra models more closely match
the output as predicted by simulation.
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Runs: [ord1.volt] ord2.volt ord3.volt ord4.volt ord5.sim ord5.volt input 

-7.46e-01

-3.78e-01

-9.36e-03

3.59e-01

7.27e-01

0.00e+00 1.24e+02 2.49e+02 3.73e+02 4.98e+02
’TIME’

Volterra_Model_Order=1

Volterra_Model_Order=2

Volterra_Model_Order=3

Volterra_Model_Order=4

Circuit_Simulation

Volterra_Model_Order=5

Input

<-- Input

Figure 5.19: The characteristics of the equalizer with a pulse with truncated har-
monics. The output predicted by the Volterra model closely matches the output
predicted by time domain simulation if the Volterra model curve is shifted up by
0.15 volts. The phasors for the Volterra output are given in table 5.8.
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Runs: [nodcord1.volt] nodcord2.volt nodcord3.volt nodcord4.volt nodcord5.sim nodcord5.volt 

-4.81e-01

-2.07e-01

6.68e-02

3.41e-01

6.14e-01

0.00e+00 1.24e+02 2.49e+02 3.73e+02 4.98e+02
’TIME’

Volterra_Model_Order=1

Volterra_Model_Order=2

Volterra_Model_Order=3

Volterra_Model_Order=4

Circuit_Simulation

Volterra_Model_Order=5

Figure 5.20: The characteristics of the equalizer with a pulse with truncated har-
monics. This is �gure 5.19 with the DC component removed for all signals. The
higher order Volterra model more closely matches the simulated results.
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Chapter 6

Conclusion

6.1 Summary

In this work, a new technique for the characterization of nonlinear analog circuits
was developed. As a preliminary, the analysis of univariate and bivariate generalized
power series and their relationship to univariate and bivariate Volterra series was
examined both mathematically and experimentally.

The relationship between Volterra series analysis and generalized power series
analysis was established for both the single input (univariate) and two input (bi-
variate) system representations. A general power series is equivalent to a Volterra
system if the form of the Volterra nonlinear transfer function is restricted to a linear
system followed by an ideal integer exponentiation (�)n followed by a second linear
system. A similar restriction applies to the bivariate case.

The experimentally derived bivariate power series characteristics of the drain
current of a MESFET ampli�er were used to calculate the bivariate Volterra nonlin-
ear transfer function, and thus the output of a MESFET circuit can be represented
by a nonlinear signal 
ow graph. If feedback is present in the 
ow graph, iterative
techniques can be used to solve for the steady{state response entirely in the fre-
quency domain. The predicted output calculated in this way matches experimental
data closely.

A new general method to measure nonlinear transfer functions was presented.
The method is applicable to extraction from circuit level simulation, and the results
could be used in a table{based frequency{domain simulator. As an example of this
extraction technique, several test circuits were examined including a simple linear
circuit, a memoryless seventh order system, and a practical circuit whose transfer
functions were unknown. Predicted values based on the extracted table show good
agreement with the behavior predicted by circuit level simulations with the exception
of the DC output value for some input conditions.

This new method of extracting Volterra nonlinear transfer functions lends to ap-
plications for large analog system simulation. The system is broken up into small
subsystems, especially subsystems that are linear with some distortion. The extrac-
tion process is then applied to each subsystem. A harmonic balance type simulator
could then be used to e�ciently predict the behavior of the entire system. If a sub-
system was used in di�erent systems, or more than once in the same system, then
the extraction procedure would only be performed once on the subsystem.

Furthermore, with a harmonic balance simulator, these black box characteriza-
tions of the subsystems could be mixed with device level elements. Thus a simulation
would not necessarily be at the system level or the device level, but rather something
in between. This ability greatly increases the 
exibility of the simulator and allows
the designer to seamlessly choose the level and detail of the simulation.
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6.2 Suggestions for Further Work

Several aspects of this study can possibly be extended. Firstly, several mathematical
treatments need to be further studied. The indexing scheme given in appendix A
for determining the IPD's of a bivariate simulation is much faster than a brute
force approach, but could possibly still be improved with further work. Secondly,
a rigorous mathematical treatment of the best and necessary choices of the phase
and amplitude for the test signals used in extraction could provide more insight and
better extraction techniques.

Furthermore, practical applications using the extraction work could be investi-
gated. The black{box extracted model can be integrated into a harmonic balance
simulator as proposed in section 3.4. Ways to reduce the amount of data stored need
to be investigated. Possibilities include:

1. Extract complex polynomial coe�cient form for Volterra nonlinear transfer
functions instead of table of values.

2. Investigate restricted forms of the Volterra nonlinear transfer functions and
develop optimum ways to extract the necessary parameters.

The extraction examples given were based on a time{domain shooting method
simulator. Integrating a harmonic balance simulator into the extraction system
could improve the accuracy of the model and speed up the extraction process. This
would also allow for incommensurable input frequencies. A harmonic balance simu-
lator based approach could also be extended to perform the extraction process on a
system consisting of subsystems that were previously characterized by the extraction
process. Thus a complicated system described only by black box elements charac-
terized by several sets of Volterra nonlinear transfer functions could be reduced to a
single black box characterized by a single set of Volterra nonlinear transfer functions.

Solutions to the DC error problems could be investigated. One possible approach
would be to form the problem as a large error minimization system. The existing
extraction process would �rst be run to extract best guesses for all of the input
values. Then these values (all calculated points on the Volterra nonlinear transfer
functions) would be used as starting points in a many-input simulated annealing
process. The existing simulation data would be used as the target behavior and thus
be used to calculate the error function. Thus no new simulations would be needed.
Di�erent combinations of input sets, error functions, and annealing techniques could
be investigated.

Lastly, an investigation of application of the algorithm used to choose the input
conditions could be applied to analog test vector generation. As analog systems
becomemore complex, the cost of testing in the manufacturing environment becomes
more and more important.
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Appendix A

Algorithm for Bivariate GPSA Indexing

In order to calculate T in (3.22) the set of conditions on the second summation
give restrictions that are less than obvious to implement:

� =
NX
i=0

pi + ri (A.1)

� =
NX
i=0

qi + si (A.2)

for 1 � i � N : pi + qi � ri � si = jnij (A.3)

� + � = n+ 2� (A.4)

At this point we know the value of n, �, and the IPD vector �n which consists of
integers such that

PN
k=1

jnkj = n. We also know that �, �, pi, qi, ri, and si are all non-
negative integers. From (A.4) it follows that 0 � � � (n+2�) and 0 � � � (n+2�)
since both � and � are nonnegative. We can therefore step through all possible � and
� by the algorithm given in �gure A.1. Thus the only remaining task is to identify
all sets of vectors for a given �n, �, and � such that that all equations are satis�ed.

In order to facilitate further explanation, a specialized ripple algorithm is de�ned.
The purpose of the algorithm is to sequence through all possible sets of vectors of
length N such that the sum of the components is a given constant S, i.e.

PN
i=1

vi = S.
We further restrict all of the components of the vectors to be non-negative integers,
i.e. vi � 0. Since all the components of �v are non-negative, the sum is equivalent
to the L1 norm, jj�vjj1 =

P
i jvij. It follows that maxi vi � S. Our algorithm �rst

initializes v1 = S and all other vi = 0. Since
PN

i=1
vi = S, then this initial vector is

the only vector with v1 = S. We then �nd all the possible vectors with v1 = S � 1,
then all possible vectors with v1 = S � 2, and so on. The key to this algorithm is in
recognizing that the problem of �nding all valid vectors with v1 = S�j is equivalent
to the problem of �nding all possible vectors of length N � 1 with jj�vjj1 = j. Thus
our algorithm is recursive. Let us de�ne the number of vectors to be FN(S). From

� initialize � = 0 and � = n+ 2�.

� Increment � and decrement � until � = n+ 2� and � = 0.

Figure A.1: Algorithm for stepping through � and �
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� Let v1 = S; S � 1; S � 2 : : : 0.

� for each value of v1, de�ne a new vector �v0 of length N�1 de�ned by v0i = vi+1,
and a new constant value S0 de�ned by S0 = S � v1.

{ let v0
1
= S0; S0 � 1; S0 � 2 : : : 0.

{ for each value of v0
1
, de�ne a new vector �v00 of length N � 2 de�ned by

v00i = v0i+1
, and a new constant value S00 de�ned by S00 = S0 � v0

1
.

{ Continue the process until the vector de�ned is of length 1, and thus the
vector has only one possible value for a given L1 norm.

Figure A.2: Recursive ripple algorithm

our recursive algorithm we know that

FN(S) =
SX

K=0

F(N�1)(K) (A.5)

and
F1(S) = 1 (A.6)

Thus

FN(S) =
SX

KN=0

KNX
K(N�1)=0

K(N�1)X
K(N�2)=0

K(N�2)X
K(N�3)=0

: : :
K4X

K3=0

K3X
K2=0

1 (A.7)

It follows that the number of vector combinations FN(S) is of order
SN�1

(N�1)!
. In order

to better illustrate this sequence, let us look at the example of N = 4 and S = 3.
Here our algorithm produces the vectors shown in �gure A.3. In order to more easily
implement this ripple algorithm, we will use the non-recursive procedure shown in
�gure A.4 that takes a vector of length N and �nds the next vector in the sequence.
If the input vector is the last in the sequence, then the over
ow 
ag is set and the
�rst vector of the sequence is returned. The following algorithm will take any of the
above vectors and produce the next vector.

The problem now is to �nd all sets of vectors �v, �q, �r, and �s for a given �, �, and
�n. We now de�ne a new vector �u of length 2N that consists of the concatination of
�p and �r, i.e. ui = pi for i � N and ui = r(i�N) for i > N . From (A.1) and (A.2)
we know that the L1 norm of u is equal to �, thus we can step through all possible
values of �p and �r using our ripple algorithm on �u with jj�ujj1 = �.

Our only remaining task is to �nd all valid values of �q and �s for a given �n, �, �,
�p, and �r. By solving (A.3) for qi and substituting into (A.2) we get:

� =
NX
i=1

jnij+ ri + 2si � pi (A.8)
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(3; 0; 0; 0)

(2; 1; 0; 0)

(2; 0; 1; 0)

(2; 0; 0; 1)

(1; 2; 0; 0)

(1; 1; 1; 0)

(1; 1; 0; 1)

(1; 0; 2; 0)

(1; 0; 1; 1)

(1; 0; 0; 2)

(0; 3; 0; 0)

(0; 2; 1; 0)

(0; 2; 0; 1)

(0; 1; 2; 0)

(0; 1; 1; 1)

(0; 1; 0; 2)

(0; 0; 3; 0)

(0; 0; 2; 1)

(0; 0; 1; 2)

(0; 0; 0; 3)

Figure A.3: Example of ripple sequence for S = 3 and N = 4
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� Calculate L1 norm = S.

� If S = 0 then

{ set the over
ow 
ag

{ end

� Find imax = maxvi 6=0 i.

� If imax = N then

{ Find inext = maxvi 6=0 i < N

{ If inext does not exist

� v1 = vN

� If N 6= 1 then vN = 0

� set over
ow 
ag

� end

{ If inext = N � 1 then

� vN�1 = vN�1 � 1

� vN = vN + 1

� end

{ If inext 6= N � 1 then

� vinext = vinext � 1

� vinext+1 = 1 + vN

� vN = 0

� end

� If imax 6= N then

{ vimax = vimax + 1

{ vimax+1 = 1

{ end

Figure A.4: Nonrecursive ripple algorithm
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Rearranging for jj�sjj1 yields

NX
i=1

si =
�+

PN
i=1

pi � ri � jnij
2

(A.9)

Thus using (A.9) we can determine jj�sjj1 and ripple through all possible combinations
of �s. If the right side of (A.9) yields a negative or a noninteger value, then we know
that no solutions exist for the current set of �n, �, �, �p, and �r.

Rearranging (A.3) for qi yields

qi = jnij+ ri + si � pi (A.10)

Thus for a given set of �n, �, �, �p, �r, and �s, we can calculate �q. If any qi is negative,
then no solution exists for the current set of �n, �, �, �p, �r, and �s.

The alternate way of �nding all of the possible values �p, �r,�q, and �s that �t our
criterion is to go through all possible combinations with components less than or
equal to n+ 2�. The number of possibilities is (n+ 2� + 1)N .
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Appendix B

Properties of Volterra Nonlinear Transfer

Functions

B.1 Introduction

In order to gain a better understanding of Volterra nonlinear transfer functions,
we will look at the basic formula and the implications of its form. Speci�cally, we
will look at the basic forumla, the idea of kernel symmetry, and the relationship of
transfer functions whose arguments are related.

B.2 Basic Formula

The output y(t) of a system described by Volterra kernels hn(�1; �2 : : : �n) stimulated
by an input x(t) is given by

y(t) =
1X
n=0

yn(t) (B.11)

where

yn(t) =
Z

+1

�n=�1

Z
+1

�n�1=�1
: : :

Z
+1

�1=�1
hn(�1; �2 : : : �n)

nY
i=1

x(t� �i)

d�1d�2 : : : d�n (B.12)

y0(t) = h0 (B.13)

The nth order nonlinear transfer function Hn(f1; f2 : : : fn) is de�ned to be the multi{
dimensional Fourier transform of the nth order kernel hn(�1; �2 : : : �n).

Hn(f1; f2 : : : fn) =
Z

+1

�1

Z
+1

�1
� � �
Z

+1

�1
hn(�1; �2 : : : �n)

e�j2�(f1�1+f2�2+:::fn�n)d�1d�2 : : : d�n (B.14)

H0 = h0 (B.15)

and

hn(�1; �2 : : : �n) =
Z

+1

�1

Z
+1

�1
� � �
Z

+1

�1
Hn(f1; f2 : : : fn)

e+j2�(f1�1+f1�2+:::fn�n)df1df2 : : : dfn (B.16)
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B.3 Symmetry of Kernels and Transfer Functions

The Volterra kernels, hn are used to completely characterize the system. But there
can be more than one set of kernels that are equivalent and predict the exact same
system response. In order to simplify the output calculations, and to specify a unique
set of kernels, we can require that all of the kernels be symmetric with respect to
their input arguments.

From (B.12)

yn(t) =
Z

+1

�n=�1

Z
+1

�n�1=�1
: : :

Z
+1

�2=�1

Z
+1

�1=�1
hn(�1; �2 : : : �n)x(t� �1)x(t� �2)

nY
i=3

x(t� �i)

d�1d�2 : : : d�n (B.17)

Or by interchanging the dummy integration variables �1 and �2, i.e. �1 ! �2 and
�2 ! �3

yn(t) =
Z

+1

�n=�1

Z
+1

�n�1=�1
: : :

Z
+1

�1=�1

Z
+1

�2=�1
hn(�2; �1 : : : �n)x(t� �2)x(t� �1)

nY
i=3

x(t� �i)

d�2d�1 : : : d�n (B.18)

and changing the order of integration

yn(t) =
Z

+1

�n=�1

Z
+1

�n�1=�1
: : :

Z
+1

�2=�1

Z
+1

�1=�1
hn(�2; �1 : : : �n)x(t� �2)x(t� �1)

nY
i=3

x(t� �i)

d�1d�2 : : : d�n (B.19)

Or

yn(t) =
Z

+1

�n=�1

Z
+1

�n�1=�1
: : :

Z
+1

�2=�1

Z
+1

�1=�1
hn(�2; �1 : : : �n)

nY
i=1

x(t� �i)

d�1d�2 : : : d�n (B.20)

Therefore we see that changing the order of the arguments of hn yields the same out-
put. Thus we can restrict the kernels to be symmetric, (hn(�1 : : : �i; �i+1 : : : �j; �j+1 : : : �n)
= hn(�1 : : : �i; �j+1 : : : �j ; �i+1 : : : �n) ) and thus uniquely specify the kernels. Note that
symmetry implies that any two arguments of the function can be interchanged and
the resulting value will be the same.

From (B.14) we can see that if we restrict hn to be symmetric, then the nonlinear
transfer functions Hn(f1; f2 : : : fn) are also symmetric. This property simpli�es the
calculation of determining the steady{state frequency domain response of the system
described by a set of nonlinear transfer functions.
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B.4 Negative Argument of a Transfer Function

In extracting symmetric nonlinear transfer functions, it is useful to understand
the relationship between the value of Hn(f1; f2 : : : fn) and Hn(�f1;�f2 : : : � fn).
From (B.14)

Hn(�f1;�f2 : : :� fn) =
Z

+1

�1

Z
+1

�1
� � �
Z

+1

�1
hn(�1; �2 : : : �n)

e�j2�(�f1�1�f2�2:::�fn�n)d�1d�2 : : : d�n (B.21)

Multiplying out the �1 in the exponent yields

Hn(�f1;�f2 : : :� fn) =
Z

+1

�1

Z
+1

�1
� � �
Z

+1

�1
hn(�1; �2 : : : �n)

e+j2�(f1�1+f2�2+:::fn�n)d�1d�2 : : : d�n (B.22)

Taking the complex conjugate twice of the right hand side results in

Hn(�f1;�f2 : : :� fn) =
��Z

+1

�1

Z
+1

�1
� � �
Z

+1

�1
hn(�1; �2 : : : �n)

e+j2�(f1�1+f2�2+:::fn�n)d�1d�2 : : : d�n
i���

(B.23)

Since hn is a real function, and f and � are real variables, we can take the complex
conjugate of the integrand.

Hn(�f1;�f2 : : :� fn) =
�Z

+1

�1

Z
+1

�1
� � �
Z

+1

�1
hn(�1; �2 : : : �n)

e�j2�(f1�1+f2�2+:::fn�n)d�1d�2 : : : d�n
��

(B.24)

By using (B.14) we show

Hn(�f1;�f2 : : :� fn) = (Hn(f1; f2 : : : fn))
�

= H�
n(f1; f2 : : : fn) (B.25)

Since the value of a transfer function with all of the arguments multiplied by -1 is
just the complex conjugate of the transfer function at the original point, we can
reduce the number of transfer function points that need to be stored in order to
characterize a system. For our case, we choose to store only those transfer function
points where the sum of the frequencies is non{negative.

B.5 Balanced Transfer Function Arguments that Add to

Zero

We know that the transfer functions are symmetric, and also that the value of the
arguments to a transfer function multiplied by -1 is just the complex conjugate of
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the original transfer function. Using these two properties, we can show that the
value of any transfer function whose arguments are a symmetric DC FIPD is a real
number. A balanced argument to a transfer function is one where every frequency
value has a corresponding negative pair, e.g. H(fa; fb : : :�fb;�fa). For an odd order
balanced argument, there of course will be a single frequency input that does not
have a matching negative pair. For a DC FIPD, the values of the frequencies sum to
zero, thus all even balanced symmetric FIPD's are DC FIPD's. An odd symmetric
FIPD is DC if and only if the frequency with the unmatching pair is equal to zero.
Thus for a symmetric DC FIPD as the input to a transfer function

H(fa; fb : : :� fb;�fa) = H�(�fa;�fb : : : fb; fa)
H�(fa; fb : : :� fb;�fa) (B.26)

Therefore for any balaned DC FIPD

ImfH(fa; fb : : :� fb;�fa)g = 0 (B.27)

B.6 Conclusion

We have presented the basic equations of Volterra series and shown several properties
that can be derived from its form. Without loss of generality, we can restrict all
kernels, and thus all Volterra nonlinear transfer functions, to be symmetric with
respect to their arguments. This simpli�es some of the output calculations and
guarantees a unique description of a system. We also have looked at properties
relating to the signs (+ or �) of the nonlinear transfer functions. These properties
help us in developing a process to characterize an unknown system by extracting
their nonlinear transfer functions.
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printlevel:=-1;

Digits:=20;

rIF:=1000;

i01:=0.00000000100;

i02:=0.00000000101;

i03:=0.00000000103;

i04:=0.00000000106;

vt:=(0.00008617349*(25+273.15));

e1:= i1 = i01*(exp(v1/vt)-1);

e2:= i2 = i02*(exp(v2/vt)-1);

e3:= i3 = i03*(exp(v3/vt)-1);

e4:= i4 = i04*(exp(v4/vt)-1);

e5:= v1 = (1/2)*vLO - (1/2)*vRF - vIF ;

e6:= v2 = (1/2)*vLO + (1/2)*vRF + vIF ;

e7:= v3 = (1/2)*vRF - (1/2)*vLO - vIF ;

e8:= v4 = vIF - (1/2)*vLO - (1/2)*vRF ;

e9:= iIF = vIF/rIF ;

f1:= i1 - i2 + i3 - i4 - iIF ;

f2:= subs(e5,e6,e7,e8,subs(e1,e2,e3,e4,e9,f1));

vIF1:= taylor(f2,vIF,4);

save rIF,i01,i02,i03,i04,vt,vIF1,`VIF`;

quit;

Figure C.5: MAPLE code for creating taylor series to solve KCL and KVL of a ring
diode mixer.

Appendix C

MAPLE Code for Ring Diode Mixer

C.1 Formulation

The KVL and LCL equations for the circuit in �gure 5.1 are given by (5.1){(5.6).
In order to solve these equations for VIF we use the computer{algebra program
MAPLE [115]. The MAPLE code given in �gure C.5 de�nes the relationships given
in (5.1){(5.6) and then tells MAPLE to solve for function f2. The relationships of
(5.1){(5.6) are met when f2=0. A taylor series of f2 is then taken with respect to
the MAPLE variable vIF (VIF in (5.2){(5.6)). This taylor series is saved in the �le
VIF. The resulting �le VIF is shown in �gure C.6 The �le VIF is then copied to
VIFt and the \O(vIF**4)" is removed from the last line. Thus when the code in
�gure C.7 reads the �le VIFt, the higher order terms (4th order and higher) are
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rIF := 1000;

i01 := Float(100,-11);

i02 := Float(101,-11);

i03 := Float(103,-11);

i04 := Float(106,-11);

vt := Float(256926260435,-13);

vIF1 := (Float(100,-11)*exp(19.460836706744324355*vLO-19.460836706744324355*vRF

)+Float(4,-11)+Float(-101,-11)*exp(19.460836706744324355*vLO+19.

460836706744324355*vRF)+Float(-106,-11)*exp(-19.460836706744324355*vLO-19.

460836706744324355*vRF)+Float(103,-11)*exp(19.460836706744324355*vRF-19.

460836706744324355*vLO))+(Float(-41256973818297967632,-27)*exp(-19.

460836706744324355*vLO-19.460836706744324355*vRF)+Float(-38921673413488648709,-

27)*exp(19.460836706744324355*vLO-19.460836706744324355*vRF)+Float(-

10000000000000000000,-22)+Float(-39310890147623535196,-27)*exp(19.

460836706744324355*vLO+19.460836706744324355*vRF)+Float(-40089323615893308170,-

27)*exp(19.460836706744324355*vRF-19.460836706744324355*vLO))*vIF+(Float(

75744833065313455975,-26)*exp(19.460836706744324355*vLO-19.460836706744324355*

vRF)+Float(78017178057272859654,-26)*exp(19.460836706744324355*vRF-19.

460836706744324355*vLO)+Float(-80289523049232263334,-26)*exp(-19.

460836706744324355*vLO-19.460836706744324355*vRF)+Float(-76502281395966590535,-

26)*exp(19.460836706744324355*vLO+19.460836706744324355*vRF))*vIF**2+(Float(-

10121863749957223487,-24)*exp(19.460836706744324355*vRF-19.460836706744324355*

vLO)+Float(-10416675315489958152,-24)*exp(-19.460836706744324355*vLO-19.

460836706744324355*vRF)+Float(-98270521844244888226,-25)*exp(19.

460836706744324355*vLO-19.460836706744324355*vRF)+Float(-99253227062687337108,-

25)*exp(19.460836706744324355*vLO+19.460836706744324355*vRF))*vIF**3+O(vIF**4);

Figure C.6: MAPLE output of taylor series expansion.
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printlevel:=-1;

Digits:=20;

gc(1000);

maxm:=1;

maxn:=1;

read `VIFt`;

VIF:= solve(vIF1,vIF)[1];

save rIF,i01,i02,i03,i04,vt,VIF,`VIFclosed`;

quit;

Figure C.7: MAPLE code to create closed form equation of VIF .

e�ectively truncated.

C.2 Solution

Since the MAPLE equation vIF1 is now a third order polynomial, it can be solved
in closed form for the MAPLE variable vIF. This is easily accomplished by line 7 in
�gure C.7 and the result is saved in the �le VIFclosed shown here for completeness.
This �le can be read into MAPLE and any values of vIF can be calculated for any
given vLO and vRF. These calculated points are then used to �t a bivariate power
series of the form given in (5.9).
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-------------- begin file VIFclosed ----------------------------------------

rIF := 1000;

i01 := Float(100,-11);

i02 := Float(101,-11);

i03 := Float(103,-11);

i04 := Float(106,-11);

vt := Float(256926260435,-13);

VIF := (.16666666666666666667*(Float(75744833065313455978,-26)*exp(19.

460836706744324355*vLO-19.460836706744324355*vRF)+Float(78017178057272859655,-

26)*exp(19.460836706744324355*vRF-19.460836706744324355*vLO)+Float(-

80289523049232263339,-26)*exp(-19.460836706744324355*vLO-19.460836706744324355*

vRF)+Float(-76502281395966590536,-26)*exp(19.460836706744324355*vLO+19.

460836706744324355*vRF))/(Float(-10121863749957223487,-24)*exp(19.

460836706744324355*vRF-19.460836706744324355*vLO)+Float(-10416675315489958152,-

24)*exp(-19.460836706744324355*vLO-19.460836706744324355*vRF)+Float(-

98270521844244888230,-25)*exp(19.460836706744324355*vLO-19.460836706744324355*

vRF)+Float(-99253227062687337108,-25)*exp(19.460836706744324355*vLO+19.

460836706744324355*vRF))**2*(Float(-41256973818297967632,-27)*exp(-19.

460836706744324355*vLO-19.460836706744324355*vRF)+Float(-38921673413488648709,-

27)*exp(19.460836706744324355*vLO-19.460836706744324355*vRF)+Float(-

10000000000000000000,-22)+Float(-39310890147623535196,-27)*exp(19.

460836706744324355*vLO+19.460836706744324355*vRF)+Float(-40089323615893308170,-

27)*exp(19.460836706744324355*vRF-19.460836706744324355*vLO))-.

50000000000000000000*(Float(10000000000000000000,-28)*exp(19.460836706744324355

*vLO-19.460836706744324355*vRF)+Float(40000000000000000000,-30)+Float(-

10100000000000000000,-28)*exp(19.460836706744324355*vLO+19.460836706744324355*

vRF)+Float(-10600000000000000000,-28)*exp(-19.460836706744324355*vLO-19.

460836706744324355*vRF)+Float(10300000000000000000,-28)*exp(19.

460836706744324355*vRF-19.460836706744324355*vLO))/(Float(-10121863749957223487

,-24)*exp(19.460836706744324355*vRF-19.460836706744324355*vLO)+Float(-

10416675315489958152,-24)*exp(-19.460836706744324355*vLO-19.460836706744324355*

vRF)+Float(-98270521844244888230,-25)*exp(19.460836706744324355*vLO-19.

460836706744324355*vRF)+Float(-99253227062687337108,-25)*exp(19.

460836706744324355*vLO+19.460836706744324355*vRF))+Float(-37037037037037037037,

-21)*(Float(75744833065313455978,-26)*exp(19.460836706744324355*vLO-19.

460836706744324355*vRF)+Float(78017178057272859655,-26)*exp(19.

460836706744324355*vRF-19.460836706744324355*vLO)+Float(-80289523049232263339,-

26)*exp(-19.460836706744324355*vLO-19.460836706744324355*vRF)+Float(-

76502281395966590536,-26)*exp(19.460836706744324355*vLO+19.460836706744324355*

vRF))**3/(Float(-10121863749957223487,-24)*exp(19.460836706744324355*vRF-19.

460836706744324355*vLO)+Float(-10416675315489958152,-24)*exp(-19.

460836706744324355*vLO-19.460836706744324355*vRF)+Float(-98270521844244888230,-

25)*exp(19.460836706744324355*vLO-19.460836706744324355*vRF)+Float(-

99253227062687337108,-25)*exp(19.460836706744324355*vLO+19.460836706744324355*

vRF))**3+Float(11941715590486027987,-190)*(Float(52550011397152175827,503)*exp(

-19.460836706744324355*vLO-19.460836706744324355*vRF)*exp(19.460836706744324355

*vLO-19.460836706744324355*vRF)*exp(19.460836706744324355*vRF-19.

460836706744324355*vLO)+Float(26574461505079066841,498)*exp(-19.

460836706744324355*vLO-19.460836706744324355*vRF)**2*exp(19.460836706744324355*

vLO-19.460836706744324355*vRF)*exp(19.460836706744324355*vLO+19.

460836706744324355*vRF)+Float(26080577645031842674,498)*exp(-19.
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460836706744324355*vLO-19.460836706744324355*vRF)*exp(19.460836706744324355*vRF

-19.460836706744324355*vLO)*exp(19.460836706744324355*vLO+19.460836706744324355

*vRF)**2+Float(11404101640068168948,499)*exp(19.460836706744324355*vLO+19.

460836706744324355*vRF)**2*exp(19.460836706744324355*vRF-19.460836706744324355*

vLO)**2+Float(80421882583752094722,497)*exp(19.460836706744324355*vLO-19.

460836706744324355*vRF)*exp(19.460836706744324355*vLO+19.460836706744324355*vRF

)**3+Float(46480237387185462213,499)*exp(-19.460836706744324355*vLO-19.

460836706744324355*vRF)*exp(19.460836706744324355*vRF-19.460836706744324355*vLO

)*exp(19.460836706744324355*vLO-19.460836706744324355*vRF)*exp(19.

460836706744324355*vLO+19.460836706744324355*vRF)+Float(36866910405991707208,

507)*exp(-19.460836706744324355*vLO-19.460836706744324355*vRF)*exp(19.

460836706744324355*vLO-19.460836706744324355*vRF)+Float(95755765911700743143,

497)*exp(-19.460836706744324355*vLO-19.460836706744324355*vRF)**3*exp(19.

460836706744324355*vRF-19.460836706744324355*vLO)+Float(82834539061264657556,

497)*exp(19.460836706744324355*vLO+19.460836706744324355*vRF)**3*exp(19.

460836706744324355*vRF-19.460836706744324355*vLO)+Float(12421550871993125888,

498)*exp(19.460836706744324355*vLO-19.460836706744324355*vRF)**2*exp(19.

460836706744324355*vRF-19.460836706744324355*vLO)**2+Float(85247195538777220412

,497)*exp(-19.460836706744324355*vLO-19.460836706744324355*vRF)*exp(19.

460836706744324355*vLO+19.460836706744324355*vRF)**3+Float(13238403108869299838

,511)*exp(19.460836706744324355*vLO-19.460836706744324355*vRF)+Float(

13370787139957992836,511)*exp(19.460836706744324355*vLO+19.460836706744324355*

vRF)+Float(14032707295401457828,511)*exp(-19.460836706744324355*vLO-19.

460836706744324355*vRF)+Float(13635555202135378832,511)*exp(19.

460836706744324355*vRF-19.460836706744324355*vLO)+Float(90412328280280632285,

497)*exp(-19.460836706744324355*vLO-19.460836706744324355*vRF)*exp(19.

460836706744324355*vRF-19.460836706744324355*vLO)**3+Float(80398387520991106075

,497)*exp(19.460836706744324355*vLO-19.460836706744324355*vRF)**3*exp(19.

460836706744324355*vRF-19.460836706744324355*vLO)+Float(22143886679744017374,

499)*exp(19.460836706744324355*vLO-19.460836706744324355*vRF)*exp(19.

460836706744324355*vRF-19.460836706744324355*vLO)*exp(19.460836706744324355*vLO

+19.460836706744324355*vRF)**2+Float(25091532761426114289,498)*exp(19.

460836706744324355*vLO-19.460836706744324355*vRF)*exp(19.460836706744324355*vRF

-19.460836706744324355*vLO)**2*exp(19.460836706744324355*vLO+19.

460836706744324355*vRF)+Float(51529652910629730461,503)*exp(-19.

460836706744324355*vLO-19.460836706744324355*vRF)*exp(19.460836706744324355*vLO

-19.460836706744324355*vRF)*exp(19.460836706744324355*vLO+19.460836706744324355

*vRF)+Float(22563222032614302045,499)*exp(-19.460836706744324355*vLO-19.

460836706744324355*vRF)*exp(19.460836706744324355*vLO-19.460836706744324355*vRF

)**2*exp(19.460836706744324355*vLO+19.460836706744324355*vRF)+Float(

53075542497948622374,503)*exp(-19.460836706744324355*vLO-19.460836706744324355*

vRF)*exp(19.460836706744324355*vRF-19.460836706744324355*vLO)*exp(19.

460836706744324355*vLO+19.460836706744324355*vRF)+Float(50071237274644997721,

503)*exp(19.460836706744324355*vLO-19.460836706744324355*vRF)*exp(19.

460836706744324355*vLO+19.460836706744324355*vRF)*exp(19.460836706744324355*vRF

-19.460836706744324355*vLO)+Float(25320949169933827841,498)*exp(-19.

460836706744324355*vLO-19.460836706744324355*vRF)*exp(19.460836706744324355*vLO

-19.460836706744324355*vRF)*exp(19.460836706744324355*vLO+19.460836706744324355

*vRF)**2+Float(13420103060064928758,498)*exp(-19.460836706744324355*vLO-19.

460836706744324355*vRF)**2*exp(19.460836706744324355*vLO+19.460836706744324355*

vRF)**2+Float(23937322254400513039,499)*exp(-19.460836706744324355*vLO-19.
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460836706744324355*vRF)*exp(19.460836706744324355*vRF-19.460836706744324355*vLO

)**2*exp(19.460836706744324355*vLO+19.460836706744324355*vRF)+Float(

86147595814229659060,497)*exp(19.460836706744324355*vLO+19.460836706744324355*

vRF)*exp(19.460836706744324355*vRF-19.460836706744324355*vLO)**3+Float(

25509714270462221276,503)*exp(-19.460836706744324355*vLO-19.460836706744324355*

vRF)*exp(19.460836706744324355*vLO-19.460836706744324355*vRF)**2+Float(

85294649321019464429,497)*exp(19.460836706744324355*vLO-19.460836706744324355*

vRF)*exp(19.460836706744324355*vRF-19.460836706744324355*vLO)**3+Float(

27371695350231438844,498)*exp(-19.460836706744324355*vLO-19.460836706744324355*

vRF)**2*exp(19.460836706744324355*vRF-19.460836706744324355*vLO)*exp(19.

460836706744324355*vLO+19.460836706744324355*vRF)+Float(25566687231675171726,

498)*exp(-19.460836706744324355*vLO-19.460836706744324355*vRF)*exp(19.

460836706744324355*vRF-19.460836706744324355*vLO)*exp(19.460836706744324355*vLO

-19.460836706744324355*vRF)**2+Float(26333687848625426878,498)*exp(-19.

460836706744324355*vLO-19.460836706744324355*vRF)*exp(19.460836706744324355*vRF

-19.460836706744324355*vLO)**2*exp(19.460836706744324355*vLO-19.

460836706744324355*vRF)+Float(24390619619018113835,499)*exp(-19.

460836706744324355*vLO-19.460836706744324355*vRF)**2*exp(19.460836706744324355*

vRF-19.460836706744324355*vLO)*exp(19.460836706744324355*vLO-19.

460836706744324355*vRF)+Float(12561169103794328625,499)*exp(-19.

460836706744324355*vLO-19.460836706744324355*vRF)**2*exp(19.460836706744324355*

vRF-19.460836706744324355*vLO)**2+Float(24360711418860305134,498)*exp(19.

460836706744324355*vLO-19.460836706744324355*vRF)**2*exp(19.460836706744324355*

vRF-19.460836706744324355*vLO)*exp(19.460836706744324355*vLO+19.

460836706744324355*vRF)+Float(-79723384515248745789,496)*exp(-19.

460836706744324355*vLO-19.460836706744324355*vRF)**2*exp(19.460836706744324355*

vLO+19.460836706744324355*vRF)+Float(72358548768884447996,496)*exp(19.

460836706744324355*vLO-19.460836706744324355*vRF)**2*exp(19.460836706744324355*

vRF-19.460836706744324355*vLO)+Float(37972917718171458423,507)*exp(-19.

460836706744324355*vLO-19.460836706744324355*vRF)*exp(19.460836706744324355*vRF

-19.460836706744324355*vLO)+Float(28961044932830794533,507)*exp(-19.

460836706744324355*vLO-19.460836706744324355*vRF)*exp(19.460836706744324355*vLO

+19.460836706744324355*vRF)+Float(35127905198161909698,507)*exp(19.

460836706744324355*vLO-19.460836706744324355*vRF)*exp(19.460836706744324355*vLO

+19.460836706744324355*vRF)+Float(27862690703834496137,507)*exp(19.

460836706744324355*vLO-19.460836706744324355*vRF)*exp(19.460836706744324355*vRF

-19.460836706744324355*vLO)+Float(24549504452705673474,503)*exp(19.

460836706744324355*vLO-19.460836706744324355*vRF)*exp(19.460836706744324355*vLO

+19.460836706744324355*vRF)**2+Float(36181742354106766988,507)*exp(19.

460836706744324355*vLO+19.460836706744324355*vRF)*exp(19.460836706744324355*vRF

-19.460836706744324355*vLO)+Float(27063255869533370550,503)*exp(-19.

460836706744324355*vLO-19.460836706744324355*vRF)*exp(19.460836706744324355*vRF

-19.460836706744324355*vLO)**2+Float(15197380014257743666,507)*exp(-19.

460836706744324355*vLO-19.460836706744324355*vRF)**2+Float(74529305231951860686

,496)*exp(19.460836706744324355*vLO-19.460836706744324355*vRF)*exp(19.

460836706744324355*vRF-19.460836706744324355*vLO)**2+Float(13525578011570143756

,507)*exp(19.460836706744324355*vLO-19.460836706744324355*vRF)**2+Float(

13797478953848633244,507)*exp(19.460836706744324355*vLO+19.460836706744324355*

vRF)**2+Float(-75962847509810592238,496)*exp(-19.460836706744324355*vLO-19.

460836706744324355*vRF)*exp(19.460836706744324355*vLO+19.460836706744324355*vRF

)**2+Float(27851522300903732533,503)*exp(-19.460836706744324355*vLO-19.
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460836706744324355*vRF)**2*exp(19.460836706744324355*vRF-19.460836706744324355*

vLO)+Float(25786687196442173826,503)*exp(19.460836706744324355*vLO+19.

460836706744324355*vRF)*exp(19.460836706744324355*vRF-19.460836706744324355*vLO

)**2+Float(24306425861478154234,503)*exp(19.460836706744324355*vLO-19.

460836706744324355*vRF)**2*exp(19.460836706744324355*vLO+19.460836706744324355*

vRF)+Float(14349285712474765510,507)*exp(19.460836706744324355*vRF-19.

460836706744324355*vLO)**2+Float(23417006074072360633,496)*exp(19.

460836706744324355*vLO-19.460836706744324355*vRF)**3+Float(10749459553273794842

,499)*exp(19.460836706744324355*vLO-19.460836706744324355*vRF)**2*exp(19.

460836706744324355*vLO+19.460836706744324355*vRF)**2+Float(25588394796303774045

,496)*exp(19.460836706744324355*vRF-19.460836706744324355*vLO)**3+Float(

27040312913498769450,503)*exp(-19.460836706744324355*vLO-19.460836706744324355*

vRF)**2*exp(19.460836706744324355*vLO-19.460836706744324355*vRF)+Float(-

27890028906325338380,496)*exp(-19.460836706744324355*vLO-19.460836706744324355*

vRF)**3+Float(-24126564775127920530,496)*exp(19.460836706744324355*vLO+19.

460836706744324355*vRF)**3+Float(21963372200162512090,497)*exp(19.

460836706744324355*vRF-19.460836706744324355*vLO)**4+Float(78837253782719434090

,497)*exp(19.460836706744324355*vLO-19.460836706744324355*vRF)**3*exp(19.

460836706744324355*vLO+19.460836706744324355*vRF)+Float(25285989586286843678,

503)*exp(19.460836706744324355*vLO+19.460836706744324355*vRF)**2*exp(19.

460836706744324355*vRF-19.460836706744324355*vLO)+Float(82740088128398613999,

497)*exp(-19.460836706744324355*vLO-19.460836706744324355*vRF)*exp(19.

460836706744324355*vLO-19.460836706744324355*vRF)**3+Float(19514171728395899533

,497)*exp(19.460836706744324355*vLO-19.460836706744324355*vRF)**4+Float(

20306525352397403919,497)*exp(19.460836706744324355*vLO+19.460836706744324355*

vRF)**4+Float(24636192200583200914,497)*exp(-19.460836706744324355*vLO-19.

460836706744324355*vRF)**4+Float(11840106611173841668,499)*exp(-19.

460836706744324355*vLO-19.460836706744324355*vRF)**2*exp(19.460836706744324355*

vLO-19.460836706744324355*vRF)**2+Float(93896430651279369523,497)*exp(-19.

460836706744324355*vLO-19.460836706744324355*vRF)**3*exp(19.460836706744324355*

vLO+19.460836706744324355*vRF)+Float(92966763021068682671,497)*exp(-19.

460836706744324355*vLO-19.460836706744324355*vRF)**3*exp(19.460836706744324355*

vLO-19.460836706744324355*vRF))**(1/2)/(Float(85898953831112912821,26)*exp(19.

460836706744324355*vRF-19.460836706744324355*vLO)+Float(88400865107747269507,26

)*exp(-19.460836706744324355*vLO-19.460836706744324355*vRF)+Float(

83397042554478556142,26)*exp(19.460836706744324355*vLO-19.460836706744324355*

vRF)+Float(84231012980023341699,26)*exp(19.460836706744324355*vLO+19.

460836706744324355*vRF))**2)**(1/3)+(.16666666666666666667*(Float(

75744833065313455978,-26)*exp(19.460836706744324355*vLO-19.460836706744324355*

vRF)+Float(78017178057272859655,-26)*exp(19.460836706744324355*vRF-19.

460836706744324355*vLO)+Float(-80289523049232263339,-26)*exp(-19.

460836706744324355*vLO-19.460836706744324355*vRF)+Float(-76502281395966590536,-

26)*exp(19.460836706744324355*vLO+19.460836706744324355*vRF))/(Float(-

10121863749957223487,-24)*exp(19.460836706744324355*vRF-19.460836706744324355*

vLO)+Float(-10416675315489958152,-24)*exp(-19.460836706744324355*vLO-19.

460836706744324355*vRF)+Float(-98270521844244888230,-25)*exp(19.

460836706744324355*vLO-19.460836706744324355*vRF)+Float(-99253227062687337108,-

25)*exp(19.460836706744324355*vLO+19.460836706744324355*vRF))**2*(Float(-

41256973818297967632,-27)*exp(-19.460836706744324355*vLO-19.460836706744324355*

vRF)+Float(-38921673413488648709,-27)*exp(19.460836706744324355*vLO-19.

460836706744324355*vRF)+Float(-10000000000000000000,-22)+Float(-
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39310890147623535196,-27)*exp(19.460836706744324355*vLO+19.460836706744324355*

vRF)+Float(-40089323615893308170,-27)*exp(19.460836706744324355*vRF-19.

460836706744324355*vLO))-.50000000000000000000*(Float(10000000000000000000,-28)

*exp(19.460836706744324355*vLO-19.460836706744324355*vRF)+Float(

40000000000000000000,-30)+Float(-10100000000000000000,-28)*exp(19.

460836706744324355*vLO+19.460836706744324355*vRF)+Float(-10600000000000000000,-

28)*exp(-19.460836706744324355*vLO-19.460836706744324355*vRF)+Float(

10300000000000000000,-28)*exp(19.460836706744324355*vRF-19.460836706744324355*

vLO))/(Float(-10121863749957223487,-24)*exp(19.460836706744324355*vRF-19.

460836706744324355*vLO)+Float(-10416675315489958152,-24)*exp(-19.

460836706744324355*vLO-19.460836706744324355*vRF)+Float(-98270521844244888230,-

25)*exp(19.460836706744324355*vLO-19.460836706744324355*vRF)+Float(-

99253227062687337108,-25)*exp(19.460836706744324355*vLO+19.460836706744324355*

vRF))+Float(-37037037037037037037,-21)*(Float(75744833065313455978,-26)*exp(19.

460836706744324355*vLO-19.460836706744324355*vRF)+Float(78017178057272859655,-

26)*exp(19.460836706744324355*vRF-19.460836706744324355*vLO)+Float(-

80289523049232263339,-26)*exp(-19.460836706744324355*vLO-19.460836706744324355*

vRF)+Float(-76502281395966590536,-26)*exp(19.460836706744324355*vLO+19.

460836706744324355*vRF))**3/(Float(-10121863749957223487,-24)*exp(19.

460836706744324355*vRF-19.460836706744324355*vLO)+Float(-10416675315489958152,-

24)*exp(-19.460836706744324355*vLO-19.460836706744324355*vRF)+Float(-

98270521844244888230,-25)*exp(19.460836706744324355*vLO-19.460836706744324355*

vRF)+Float(-99253227062687337108,-25)*exp(19.460836706744324355*vLO+19.

460836706744324355*vRF))**3+Float(-11941715590486027987,-190)*(Float(

52550011397152175827,503)*exp(-19.460836706744324355*vLO-19.460836706744324355*

vRF)*exp(19.460836706744324355*vLO-19.460836706744324355*vRF)*exp(19.

460836706744324355*vRF-19.460836706744324355*vLO)+Float(26574461505079066841,

498)*exp(-19.460836706744324355*vLO-19.460836706744324355*vRF)**2*exp(19.

460836706744324355*vLO-19.460836706744324355*vRF)*exp(19.460836706744324355*vLO

+19.460836706744324355*vRF)+Float(26080577645031842674,498)*exp(-19.

460836706744324355*vLO-19.460836706744324355*vRF)*exp(19.460836706744324355*vRF

-19.460836706744324355*vLO)*exp(19.460836706744324355*vLO+19.460836706744324355

*vRF)**2+Float(11404101640068168948,499)*exp(19.460836706744324355*vLO+19.

460836706744324355*vRF)**2*exp(19.460836706744324355*vRF-19.460836706744324355*

vLO)**2+Float(80421882583752094722,497)*exp(19.460836706744324355*vLO-19.

460836706744324355*vRF)*exp(19.460836706744324355*vLO+19.460836706744324355*vRF

)**3+Float(46480237387185462213,499)*exp(-19.460836706744324355*vLO-19.

460836706744324355*vRF)*exp(19.460836706744324355*vRF-19.460836706744324355*vLO

)*exp(19.460836706744324355*vLO-19.460836706744324355*vRF)*exp(19.

460836706744324355*vLO+19.460836706744324355*vRF)+Float(36866910405991707208,

507)*exp(-19.460836706744324355*vLO-19.460836706744324355*vRF)*exp(19.

460836706744324355*vLO-19.460836706744324355*vRF)+Float(95755765911700743143,

497)*exp(-19.460836706744324355*vLO-19.460836706744324355*vRF)**3*exp(19.

460836706744324355*vRF-19.460836706744324355*vLO)+Float(82834539061264657556,

497)*exp(19.460836706744324355*vLO+19.460836706744324355*vRF)**3*exp(19.

460836706744324355*vRF-19.460836706744324355*vLO)+Float(12421550871993125888,

498)*exp(19.460836706744324355*vLO-19.460836706744324355*vRF)**2*exp(19.

460836706744324355*vRF-19.460836706744324355*vLO)**2+Float(85247195538777220412

,497)*exp(-19.460836706744324355*vLO-19.460836706744324355*vRF)*exp(19.

460836706744324355*vLO+19.460836706744324355*vRF)**3+Float(13238403108869299838

,511)*exp(19.460836706744324355*vLO-19.460836706744324355*vRF)+Float(
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13370787139957992836,511)*exp(19.460836706744324355*vLO+19.460836706744324355*

vRF)+Float(14032707295401457828,511)*exp(-19.460836706744324355*vLO-19.

460836706744324355*vRF)+Float(13635555202135378832,511)*exp(19.

460836706744324355*vRF-19.460836706744324355*vLO)+Float(90412328280280632285,

497)*exp(-19.460836706744324355*vLO-19.460836706744324355*vRF)*exp(19.

460836706744324355*vRF-19.460836706744324355*vLO)**3+Float(80398387520991106075

,497)*exp(19.460836706744324355*vLO-19.460836706744324355*vRF)**3*exp(19.

460836706744324355*vRF-19.460836706744324355*vLO)+Float(22143886679744017374,

499)*exp(19.460836706744324355*vLO-19.460836706744324355*vRF)*exp(19.

460836706744324355*vRF-19.460836706744324355*vLO)*exp(19.460836706744324355*vLO

+19.460836706744324355*vRF)**2+Float(25091532761426114289,498)*exp(19.

460836706744324355*vLO-19.460836706744324355*vRF)*exp(19.460836706744324355*vRF

-19.460836706744324355*vLO)**2*exp(19.460836706744324355*vLO+19.

460836706744324355*vRF)+Float(51529652910629730461,503)*exp(-19.

460836706744324355*vLO-19.460836706744324355*vRF)*exp(19.460836706744324355*vLO

-19.460836706744324355*vRF)*exp(19.460836706744324355*vLO+19.460836706744324355

*vRF)+Float(22563222032614302045,499)*exp(-19.460836706744324355*vLO-19.

460836706744324355*vRF)*exp(19.460836706744324355*vLO-19.460836706744324355*vRF

)**2*exp(19.460836706744324355*vLO+19.460836706744324355*vRF)+Float(

53075542497948622374,503)*exp(-19.460836706744324355*vLO-19.460836706744324355*

vRF)*exp(19.460836706744324355*vRF-19.460836706744324355*vLO)*exp(19.

460836706744324355*vLO+19.460836706744324355*vRF)+Float(50071237274644997721,

503)*exp(19.460836706744324355*vLO-19.460836706744324355*vRF)*exp(19.

460836706744324355*vLO+19.460836706744324355*vRF)*exp(19.460836706744324355*vRF

-19.460836706744324355*vLO)+Float(25320949169933827841,498)*exp(-19.

460836706744324355*vLO-19.460836706744324355*vRF)*exp(19.460836706744324355*vLO

-19.460836706744324355*vRF)*exp(19.460836706744324355*vLO+19.460836706744324355

*vRF)**2+Float(13420103060064928758,498)*exp(-19.460836706744324355*vLO-19.

460836706744324355*vRF)**2*exp(19.460836706744324355*vLO+19.460836706744324355*

vRF)**2+Float(23937322254400513039,499)*exp(-19.460836706744324355*vLO-19.

460836706744324355*vRF)*exp(19.460836706744324355*vRF-19.460836706744324355*vLO

)**2*exp(19.460836706744324355*vLO+19.460836706744324355*vRF)+Float(

86147595814229659060,497)*exp(19.460836706744324355*vLO+19.460836706744324355*

vRF)*exp(19.460836706744324355*vRF-19.460836706744324355*vLO)**3+Float(

25509714270462221276,503)*exp(-19.460836706744324355*vLO-19.460836706744324355*

vRF)*exp(19.460836706744324355*vLO-19.460836706744324355*vRF)**2+Float(

85294649321019464429,497)*exp(19.460836706744324355*vLO-19.460836706744324355*

vRF)*exp(19.460836706744324355*vRF-19.460836706744324355*vLO)**3+Float(

27371695350231438844,498)*exp(-19.460836706744324355*vLO-19.460836706744324355*

vRF)**2*exp(19.460836706744324355*vRF-19.460836706744324355*vLO)*exp(19.

460836706744324355*vLO+19.460836706744324355*vRF)+Float(25566687231675171726,

498)*exp(-19.460836706744324355*vLO-19.460836706744324355*vRF)*exp(19.

460836706744324355*vRF-19.460836706744324355*vLO)*exp(19.460836706744324355*vLO

-19.460836706744324355*vRF)**2+Float(26333687848625426878,498)*exp(-19.

460836706744324355*vLO-19.460836706744324355*vRF)*exp(19.460836706744324355*vRF

-19.460836706744324355*vLO)**2*exp(19.460836706744324355*vLO-19.

460836706744324355*vRF)+Float(24390619619018113835,499)*exp(-19.

460836706744324355*vLO-19.460836706744324355*vRF)**2*exp(19.460836706744324355*

vRF-19.460836706744324355*vLO)*exp(19.460836706744324355*vLO-19.

460836706744324355*vRF)+Float(12561169103794328625,499)*exp(-19.

460836706744324355*vLO-19.460836706744324355*vRF)**2*exp(19.460836706744324355*
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vRF-19.460836706744324355*vLO)**2+Float(24360711418860305134,498)*exp(19.

460836706744324355*vLO-19.460836706744324355*vRF)**2*exp(19.460836706744324355*

vRF-19.460836706744324355*vLO)*exp(19.460836706744324355*vLO+19.

460836706744324355*vRF)+Float(-79723384515248745789,496)*exp(-19.

460836706744324355*vLO-19.460836706744324355*vRF)**2*exp(19.460836706744324355*

vLO+19.460836706744324355*vRF)+Float(72358548768884447996,496)*exp(19.

460836706744324355*vLO-19.460836706744324355*vRF)**2*exp(19.460836706744324355*

vRF-19.460836706744324355*vLO)+Float(37972917718171458423,507)*exp(-19.

460836706744324355*vLO-19.460836706744324355*vRF)*exp(19.460836706744324355*vRF

-19.460836706744324355*vLO)+Float(28961044932830794533,507)*exp(-19.

460836706744324355*vLO-19.460836706744324355*vRF)*exp(19.460836706744324355*vLO

+19.460836706744324355*vRF)+Float(35127905198161909698,507)*exp(19.

460836706744324355*vLO-19.460836706744324355*vRF)*exp(19.460836706744324355*vLO

+19.460836706744324355*vRF)+Float(27862690703834496137,507)*exp(19.

460836706744324355*vLO-19.460836706744324355*vRF)*exp(19.460836706744324355*vRF

-19.460836706744324355*vLO)+Float(24549504452705673474,503)*exp(19.

460836706744324355*vLO-19.460836706744324355*vRF)*exp(19.460836706744324355*vLO

+19.460836706744324355*vRF)**2+Float(36181742354106766988,507)*exp(19.

460836706744324355*vLO+19.460836706744324355*vRF)*exp(19.460836706744324355*vRF

-19.460836706744324355*vLO)+Float(27063255869533370550,503)*exp(-19.

460836706744324355*vLO-19.460836706744324355*vRF)*exp(19.460836706744324355*vRF

-19.460836706744324355*vLO)**2+Float(15197380014257743666,507)*exp(-19.

460836706744324355*vLO-19.460836706744324355*vRF)**2+Float(74529305231951860686

,496)*exp(19.460836706744324355*vLO-19.460836706744324355*vRF)*exp(19.

460836706744324355*vRF-19.460836706744324355*vLO)**2+Float(13525578011570143756

,507)*exp(19.460836706744324355*vLO-19.460836706744324355*vRF)**2+Float(

13797478953848633244,507)*exp(19.460836706744324355*vLO+19.460836706744324355*

vRF)**2+Float(-75962847509810592238,496)*exp(-19.460836706744324355*vLO-19.

460836706744324355*vRF)*exp(19.460836706744324355*vLO+19.460836706744324355*vRF

)**2+Float(27851522300903732533,503)*exp(-19.460836706744324355*vLO-19.

460836706744324355*vRF)**2*exp(19.460836706744324355*vRF-19.460836706744324355*

vLO)+Float(25786687196442173826,503)*exp(19.460836706744324355*vLO+19.

460836706744324355*vRF)*exp(19.460836706744324355*vRF-19.460836706744324355*vLO

)**2+Float(24306425861478154234,503)*exp(19.460836706744324355*vLO-19.

460836706744324355*vRF)**2*exp(19.460836706744324355*vLO+19.460836706744324355*

vRF)+Float(14349285712474765510,507)*exp(19.460836706744324355*vRF-19.

460836706744324355*vLO)**2+Float(23417006074072360633,496)*exp(19.

460836706744324355*vLO-19.460836706744324355*vRF)**3+Float(10749459553273794842

,499)*exp(19.460836706744324355*vLO-19.460836706744324355*vRF)**2*exp(19.

460836706744324355*vLO+19.460836706744324355*vRF)**2+Float(25588394796303774045

,496)*exp(19.460836706744324355*vRF-19.460836706744324355*vLO)**3+Float(

27040312913498769450,503)*exp(-19.460836706744324355*vLO-19.460836706744324355*

vRF)**2*exp(19.460836706744324355*vLO-19.460836706744324355*vRF)+Float(-

27890028906325338380,496)*exp(-19.460836706744324355*vLO-19.460836706744324355*

vRF)**3+Float(-24126564775127920530,496)*exp(19.460836706744324355*vLO+19.

460836706744324355*vRF)**3+Float(21963372200162512090,497)*exp(19.

460836706744324355*vRF-19.460836706744324355*vLO)**4+Float(78837253782719434090

,497)*exp(19.460836706744324355*vLO-19.460836706744324355*vRF)**3*exp(19.

460836706744324355*vLO+19.460836706744324355*vRF)+Float(25285989586286843678,

503)*exp(19.460836706744324355*vLO+19.460836706744324355*vRF)**2*exp(19.

460836706744324355*vRF-19.460836706744324355*vLO)+Float(82740088128398613999,
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497)*exp(-19.460836706744324355*vLO-19.460836706744324355*vRF)*exp(19.

460836706744324355*vLO-19.460836706744324355*vRF)**3+Float(19514171728395899533

,497)*exp(19.460836706744324355*vLO-19.460836706744324355*vRF)**4+Float(

20306525352397403919,497)*exp(19.460836706744324355*vLO+19.460836706744324355*

vRF)**4+Float(24636192200583200914,497)*exp(-19.460836706744324355*vLO-19.

460836706744324355*vRF)**4+Float(11840106611173841668,499)*exp(-19.

460836706744324355*vLO-19.460836706744324355*vRF)**2*exp(19.460836706744324355*

vLO-19.460836706744324355*vRF)**2+Float(93896430651279369523,497)*exp(-19.

460836706744324355*vLO-19.460836706744324355*vRF)**3*exp(19.460836706744324355*

vLO+19.460836706744324355*vRF)+Float(92966763021068682671,497)*exp(-19.

460836706744324355*vLO-19.460836706744324355*vRF)**3*exp(19.460836706744324355*

vLO-19.460836706744324355*vRF))**(1/2)/(Float(85898953831112912821,26)*exp(19.

460836706744324355*vRF-19.460836706744324355*vLO)+Float(88400865107747269507,26

)*exp(-19.460836706744324355*vLO-19.460836706744324355*vRF)+Float(

83397042554478556142,26)*exp(19.460836706744324355*vLO-19.460836706744324355*

vRF)+Float(84231012980023341699,26)*exp(19.460836706744324355*vLO+19.

460836706744324355*vRF))**2)**(1/3)-.33333333333333333333*(Float(

75744833065313455978,-26)*exp(19.460836706744324355*vLO-19.460836706744324355*

vRF)+Float(78017178057272859655,-26)*exp(19.460836706744324355*vRF-19.

460836706744324355*vLO)+Float(-80289523049232263339,-26)*exp(-19.

460836706744324355*vLO-19.460836706744324355*vRF)+Float(-76502281395966590536,-

26)*exp(19.460836706744324355*vLO+19.460836706744324355*vRF))/(Float(-

10121863749957223487,-24)*exp(19.460836706744324355*vRF-19.460836706744324355*

vLO)+Float(-10416675315489958152,-24)*exp(-19.460836706744324355*vLO-19.

460836706744324355*vRF)+Float(-98270521844244888230,-25)*exp(19.

460836706744324355*vLO-19.460836706744324355*vRF)+Float(-99253227062687337108,-

25)*exp(19.460836706744324355*vLO+19.460836706744324355*vRF));

-------------- end file VIFclosed ----------------------------------------
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Appendix D

Instructions for Running Extraction Code

D.1 Overview

The source code for the \measure" program is in ecemw6:/u0/users/MBS/pjl/c/measure.
The macro de�nitions that a�ect how the program is compiled are documented in
the comments of the make�le. I would recommend to always de�ne \SAFE", (e.g.
-DSAFE). If this is de�ned, then the program checks for valid ranges of index vari-
ables and other \assertions". This can aid in �nding bugs in the code. There are
several stages for running the code

� Edit the source code to use your particular simulator. The code currently
uses the IBM internal simulator AS/X (follow on of ASTAP) and expects the
output of the simulator to be in rawspice format.

� Create *.status �le that contains all of the information that the program
needs.

� Run initialization to create directories and calculate the required simulation
input.

� Create the input �les for the simulations

� Run the simulations

� Extract the H values based on the simulation

D.2 Customizing for a Simulator

In order to customize the extraction code to use a particular simulator, there are
�les that might have to be modi�ed.

� mk.c

This code creates the input �les for the simulations.

� run.c

This code initiates the simulations.

� get spect.c

This code extracts a spectrum of a single simulation.

� extr.c

This code does the actual extraction and calls the top function in get spect.c.
The �le extr.c also calls get vect.c if the \�extr" option is used (see section
D.7). The �le get vect.c is currently used by get spect.c and is useful only for
rawspice format output �les.
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D.3 Creating *.status �le

All of the simulation steps are related to a single root name. For our examples, we
will use the name \tmp". So for our example, we need to create the �le \tmp.status"
in the correct format. the easiest way to do this is to �rst use the d
t option to
create a sample �le, e.g.

measure dflt tmp

which will will return the prompt

This will over write file tmp.status if it exists

Do you want to continue ?

YOU MAY LOOSE DATA IF YOU ANSWER y

(y or n): y

The macro NO ASK can be used when compiling to supress this prompt. The
resulting tmp.status �le should look like:

This is a dummy sample description

max_input: 1.1

max_order: 3

xtra_runs: 0

fn: the_name_of_this_file(without the .status)

test_model_lib: dummy_test_model_lib

runcontrol: dummy_runcontrol

acruncontrol: dummy_acruncontrol

loadlib: dummy_loadlib

num_extract_runs: 0

tot_runs: 0

run_num: -1

calc_dc: yes

out_dc_offset: 0

num_freq: 3

freq[0]: 0

freq[1]: 1

freq[2]: 3

The �rst line is just a comment line and contain anything. The fourth line (fn:)
must be changed to

fn: tmp

The �rst line sets the maximum absolute value of the input signal that is to be
used in the extraction. The resulting extracted Volterra nonlinear transfer functions
should be used to predict output only when the peak input is less than or equal to
this value. The next line is the assumed maximum order of nonlinearity, and the
third line is the number of extra simulations per run. This must be greater than
or equal to zero. A value greater than zero will allow a least square �t where the
number of points is greater than the order of the �tting polynomial. For instance,
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with max order set to 3 and xtra runs set to 1, 4 points will be used to �t a third
order polynomial. For these curve �ts the 0th order coe�cient (a0) is known to be
zero.

The next lines test model lib, runcontrol, acruncontrol, and loadlib are speci�c
to the AS/X simulator. The line num extract runs should be left at 0. This line is
updated by the program during during the extraction process to allow for multi-step
extraction. The line tot runs is updated during the init option and should not be
manually changed in most circumstances. The run num line is updated during the
run option (simulations), and can be used to re-start this process at a particular
run if this option was interupted for some reason (e.g. network outage, disk space
problems, etc). The starting value of -1 corresponds to the AC simulation used with
the �extr option.

The next two lines, calc dc and out dc o�set are use to set the value of H0. The
calc dc line should be set to either \yes" or \no". If it is set to \yes", then the
value of out dc o�set will be calculated with a simulation. If is set to \no", the the
desired value of H0 should be entered by the user. The remaining lines give the
input frequencies to be used. If you have more than three input frequencies, just
add more lines.

D.4 Initializing

The init option is used for initialization, e.g.

measure init tmp

The output to the screen from this step and all other steps is highly dependent
on if the following macros are de�ned at compiliation time, VVERBOSE, VER-
BOSE, QUIET, VQUIET. For more information on these see the comments in
the make�le. In our example, the following directories are created, tmp.xfrdir,
tmp.inpdir, and tmp.rundir. Additionally, the following �les are created, tmp.runs,
tmp.xfrdir/tmp.H0, tmp.xfrdir/tmp.H1, tmp.xfrdir/tmp.H2, and tmp.xfrdir/tmp.H3.
The �le tmp.runs contains the input conditions for the simulations, and the tmp.xfrdir/tmp.H*
�les are the initial �les where the extracted values will be stored.

D.5 Creating Simulation Files

The creation of simulation �les is performed with the mk (stands for make) option,
e.g.

measure mk tmp

Files are added to the tmp.inpdir and tmp.rundir directories. To create a �le speci�c
to a single run, the smk option can be used. For example, to create the �les associated
with run 2, the following command can be issued

measure smk tmp 3
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D.6 Running Simulations

The actual simulation requires the most computer resource. To run all of the simu-
lations, the following command is issued

measure run tmp

To perform the simulations for a single run, use the srun option. For instance, to
perform the simulations created with the above smk command:

measure srun tmp 3

The run command can be used to start at a particular run number and continue to
the end by editing the *.status �le and changing the run num line.

D.7 Extracting Values

To read the simulation results and calculate the Volterra nonlinear transfer functions,
enter

measure extr tmp

The extr command can also be used to restart the extraction at a particular run
number and continue to the end by editing the *.status �le and changing the
num extract runs line. Care must be taken when doing this because multiple runs
with the same input frequency should not be broken up with this technique. The
format of the *.xfrdir/*.H* �les can be changed from ascii to binary by editing
these �les before the extraction procedure is run. To make this change, just change
the word \ascii" to \binary".

The �extr option can be used in place of the extr option if the linear response
(H1) is to be taken from a linear AC simulation.

D.8 Calculating from Tables

The extracted model output can be calculated with the calc option. The format for
our example is

measure calc tmp

The �le tmp.calcin must be created to give the input for the model calculation.
Below is an example:

num_freq: 2

period: 5e-7

freq[0]: 1 real[0]: -0.27 imag[0]: 0.123

freq[1]: 3 real[1]: 0.19 imag[1]: 0.456

The output will be written to the two �les tmp.calcout and tmp.rawout. The �le
*.calcout lists the output phasors in the form similar to the *.calcin �le, and the
*.rawout is the time domain representation in rawspice format. The spice waveform
display program \nutmeg" can be used to display the waveforms.
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