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ABSTRACT

Frequency-domain nonlinear analysis techniques for the simulation of active microwave
circuits solve the linear and nonlinear network equations entirely in the frequency-domain.
By so doing, they avoid the aliasing problems inherent in piecewise harmonic balance

. approaches. Consequently, frequency-domain techniques have extremely wide dynamic

range and easily accommodate high order multitone excitation. However, this is at the
expense of requiring more restrictive nonlinear device models. There are a large number
of frequency-domain nonlinear analysis techniques but all are based on functional expansions
which enable the frequency components of the output spectrum to be calculated directly
from the input spectrum. These techniques have been used to analyze many nonlinear circuits
and are the only candidates for the hierarchical simulation of nonlinear microwave circuits.
This paper first uses frequency-domain concepts to discuss nonlinear distortion phenomena,
then, a review of the frequency-domain nonlinear analysis literature is made with the aim
of presenting the major advances in these techniques.

I. INTRODUCTION

The purpose of this and a companion paper [1] is
to present the state-of-the-art of techniques for
nonlinear microwave circuit analysis when circuit
excitation is sinusoidal or a sum of sinewaves.
Most state-of-the-art techniques share in common
the partitioning of a nodal matrix description of
the circuit into its linear and nonlinear parts and
use efficient linear frequency-domain analysis to
handle the linear elements. This is the feature that
distinguishes practical RF and microwave circuit
analyses from transient circuit analysis techniques.
This paper reviews methods which solve for the

*Formerly affiliated with North Carolina State University.

steady-state response of a nonlinear circuit by op-
erating entirely in the frequency-domain. We call
these methods frequency-domain nonlinear anal-
ysis techniques. The companion paper briefly con-
siders time-domain techniques and concentrates
on reviewing traditional harmonic balance meth-
ods which combine a frequency-domain solution
of the linear subcircuit with calculations of the
instantaneous voltage and currents in the nonlin-
ear subcircuit. These methods are generally re-
ferred to as hybrid nonlinear analysis techniques
or harmonic balance techniques. While somewhat
arbitrary, this distinction has been made by a num-
ber of authors and is followed here.
Frequency-domain nonlinear circuit analysis
methods represent logical developments from fre-
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quency-domain linear circuit analysis. Initially,
frequency-domain methods were restricted to
weakly nonlinear systems but today can be used
for strongly nonlinear systems with large signal
excitations. They can be used to simulate situa-
tions in which a small signal is more than 400 dB
below a large signal {1}, and can be used with
multi-tone excitations (e.g., 28 incommensurable
tones {2]). By comparison, traditional harmonic
balance techniques [1] have dynamic ranges of 200
dB or less which degrade as tones become close
in frequency. Because of computation and mem-
ory requirements, they are practically limited to
3 tones. However, active device modeling is more
cumbersome with frequency-domain nonlinear
analysis techniques than with hybrid techniques.

Frequency-domain nonlinear circuit analysis
techniques have been in development for more
than half a century, and have applied to circuit
analysis and to behavioral modeling of nonlinear
analog circuits. The common underlying princi-
ple of frequency-domain nonlinear analysis tech-
niques is that the spectrum of the output of a broad
class of nonlinear elements, circuits, and systems
can be calculated directly given the spectrum input
to the nonlinear system. Some techniques deter-
mine an output frequency component by summing
calculations of individual intermodulation prod-
ucts. For example, the product of two tones is, in
the time-domain, the product of two sinusoids.
The trigonometric expansion of this yields two

intermodulation products which have frequencies

which are the sum and difference, respectively, of
the frequencies of the tones. Power series tech-
niques use trigonometric identities to expand the
power series and calculate each intermodulation
product individually. Algorithms sum these by fre-
quency to yield the output spectrum. At the coarse
end of the scale are Volterra series-based tech-
niques that evaluate groups of intermodulation
products at a single frequency. Some frequency-
domain nonlinear analysis techniques are non-
iterative, although these are restricted to unilat-
eral systems. Others, known as frequency-domain
spectral balance techniques, are iterative being
the frequency-domain equivalent of the harmonic
balance techniques. Intermediate between these
extremes are techniques which operate by con-
verting a nonlinear element into a linear element
shunted by a number of controlled current
sources. This process is iterative and, at each it-
eration, a residual nonlinear element is left which
reduces from one iteration to another.

In this paper we first review a power series

expansion analysis technique, the generalized
power series analysis (GPSA), which has been
previously reported [3-5]. Using terms defined in
GPSA some common nonlinear distortion phe-
nomena are discussed. Following these, both
noniterative and iterative nonlinear circuit anal-
ysis techniques (Volterra series analysis and fre-
quency-domain spectral balance, respectively)
and some special techniques are reviewed. The
review that follows does not pretend to cover all
possible frequency-domain nonlinear analysis
techniques. The aim, however, is to survey the
‘permutations’ referred to above. One of the spec-
tral balance techniques reviewed is the arithmetic
operator method. This is compared to two of the
traditional harmonic balance methods in the com-
panion paper [1]. '

il. POWER SERIES
EXPANSION ANALYSIS

The roots of frequency-domain nonlinear analysis
techniques are contained in Volterra’s book: The-
ory of Functionals and of Integral and lntegro-
Differential Equations [6] published in 1930. Fol-
lowing the chronological order by jumping into
Volterra series analysis is too great a step to make.
We begin our discussion with power series analysis
of nonlinear systems. This is used to introduce the
concept of intermodulation products and to clas-
sify nonlinear phenomena in the frequency-do-
main.

Power series expansion analysis of a nonlinear
subsystem is straightforward and a convenient way
to introduce and classify nonlinear phenomena in
sinusoidally excited nonlinear analog circuits.
Nonlinear phenomena in the time-domain mani-
fests as saturation or as a nonlinear relation be-
tween an input quantity and an output quantity.
When a single frequency sinusoidal signal excites
a nonlinear circuit the response “‘usually” includes
the original signal and harmonics of the input sine-
wave. We say usually because if the circuit con-
tains nonlinear reactive elements, subharmonics
and autonomous oscillations could also be pres-
ent. The output may not even be almost periodic!
if there is chaos. The process is even more com-
plicated when the excitation includes more than
one sinusoid, as the circuit response may include

‘By a signal being almost periodic we mean that a signal
can be represented by a finite number of incommensurable
tones and their sum and difference components.



all sum and différence frequencies of the original
signals.

In the following,-we present the fundamental
concept behind all frequency-domain nonlinear
analysis techniques: the calculation of intermod-
ulation products. The term ‘intermodulation’ is
used to describe the process by which power at
one frequency, or group of frequencies, is trans-
ferred to power at other frequencies. The term is
also used to describe the production of sum and
difference frequency components, or intermodu-
lation frequencies, in the output of a system with
multiple input sinewaves. This is a macroscopic
view of intermodulation as the generation of each
intermodulation frequency component derives
from many separate intermodulation processes.
Here, we develop a treatment of intermodulation
at the discrete intermodulation process level.

Consider a unilateral nonlinear system de-
scribed by a power series

y = 122] ax! (1)

where y is the system output, and x is the input
and is the sum of three sinusoids

x = ¢ cos{wyt + &) + ¢, cos(wyt + b,)

2
+ cycos(wyt + ¢s). @
To simplify things, let a; = ot + ¢y, oy =
wyf + (bz, and a; = wyt + (b] so that
x" = [c, cos(a}) + ¢, cos(a)
3
+ ¢; cos(ay)]! )
{p
. /
-2.5(0)
p=0 k=0 p @

X cke8*ciP(cos ay)*
"X (cos a,)?*(cos a;)!P.
Eq. (4) includes a large number of components,

the radian frequencies of which are the sum and
differences of w,, w,, and w;.

Frequency-Domain Expansions

The expansion in eq. (4) is in the time-domain,
but the frequency-domain forms have been pur-
sued by a number of authors. This approach is
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quite old and has been investigated as the basis
for hand calculations as well as for computer-
based simulations. One of the early contributors
was Wass [7] who, in 1948, developed a procedure
for calculating the individual intermodulation
products, but these results were not amenable to
efficient computer implementation. An approach
more suitable for computer calculation was in-
dependently developed by Engel et al. in 1967 [§],
by Sea in 1968 [9], and by Mednikov in 1969 [10].
An improved calculation strategy was subse-
quently developed by Sea and Vacroux in 1969
[11]. In 1973, Heiter proposed using a modified
power series having order dependent time delays
to represent the nonlinearities {12]. This series is
of the form

y(t) = ay + ax(t — 7)) + ax*(t — 1)
(5)

+ a3t — 1) + -

and is useful for modeling phase nonlinearities and
distortion due to reactive elements [12-15]. Steer
and Khan continued these developments in 1983
with the addition of complex coefficients to the
power series resulting in the form [3]

yr) = A Z I:al {2‘ bixi(t — Tk,l}] (6)

=0

(called a generalized power series), where y(¢) is
the output of the system; [ is the order of the power
series terms; g, is a complex coefficient; 7, is a
time delay that depends on both power series or-
der / and the index of the input frequency com-
ponent k; and b, is a real coefficient. This is
certainly more complicated than the conventional
power series form but allows a large class of non-
linear systems to be modeled. For simulation at
the circuit level the conventional form of the
power series is adequate to describe individual
nonlinear elements, i.e.,

W =3 [a, {Z xk(r)}']. ™)

=0 k=1

The result of the power series expansion work is
an algebraic formula for the output components
when the input is a sum of sinusoids. With an N
component multifrequency input

N

x(1) = X u() = ; | Xilcos(wxt + &) (8)

k=1
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where X, is the phasor? of x, and using the mul-
tinomial expansion, the power series of eq. (7)
can be expanded and terms collected according to
frequency. As a result, the phasor component of
the output, Y,, with radian frequency w,, can be
expressed as a sum of intermodulation products
(1Ps) [3]

B
Y, = 2
n=0 ny

S U, ooy 9

Il oo +lnyl=n

where w, = Z{_| n,wy, a set of n,’s defines an
intermodulation product (called an IPD for inter-
modulation product description), and n is the or-
der of intermodulation. The second summation is
over all possible combinations of ny, . . ., ny such
that |n| + - - - + |nnl = n. The summations are,
therefore, over the infinite number of IPs (the
U,’s) yielding the gth output component (Y,).
When a nonlinear circuit is excited by a finite num-
ber of sinusoids, a possibly infinite number of fre-
quency components may be present. In order to
analyze such a problem numerically, the number
of frequency components considered in the anal-
ysis must be truncated. Here we consider N fre-
quency components. Then each IP in eq. 9) is
given by [3]

Uq("ly RN nN)

e Re (XD Tl )
where
xi- {mzo (1
«={inzo (12)
T(n, » )
B io S,ESN X {(%)an CD} (13)

Capitalized variables indicate phasor quantities having
both magnitude and phase.

and

N (XI)WI lelZ-‘k
@ = ] 12 14
1Sl + s (14)

" and Re{ },, is defined such that, for o, # 0, it is

ignored and, for w, = 0, the real part of the
expression in braces is taken. Sy is a summation
index for the kth frequency component and the
summation in the S;’s is over all non-negative S
meeting the condition §; + « - - + Sy = a. The
sole purpose of the Re{ },, operator is to reduce
the amount of calculation for the DC component
of the output by half. The formula expressed by
eqs. (9)—(14) essentially turns a time-domain de-
scription (the power series) into a frequency-do-
main description. Power series expansion has the
advantage of retaining the time-domain descrip-
tion-of the nonlinearities but requiring no explicit
time-domain calculations in order to find the fre-
quency-domain representation for the output. The
power series expansion leads to considerable in-
tuitive understanding of the intermodulation pro-
cess and eqs. (10)-(14) can be rewritten to
highlight the contributions to an intermodulation
product. Thus,

Ufni, ..« ny) = Ky, - , ) 1)
X [L+ T(n,....nl
where
n!
K(nlv ’ nN) €,4, E,',
(16)
y (x;)w}
X Re {
L5,
is an intermodulation term, and
T(ny, ..., 0w
- (n + 2a0)!\ Gniza 5, _
= L¢3 17
gx s..z..:.s,v {( ni2% a, ()
Sy+-+Sy=a
where ,
N 25, 1
¢! — H IX’(I |nk" (18)

T Sl + S

T’ is a saturation term and is zero for small signals
and, depending on the power series coefficients,



can either become increasingly positive or increas-
ingly' negative as the signal levels become larger.
This corresponds to enhancement and compres-
sion, respectively, of an intermodulation product.

Nonlinear System Response to Muiti-
Frequency Sinewave Excitation

If the excitation of an analog circuit is sinusoidal,
then the specifications of circuit performance are
generally in terms of frequency-domain phenom-
ena, €.g., intermod levels, gain, and the 1 dB gain
compression point. In the time-domain, the non-
linear behavior is evident as saturation or clipping
of a waveform so that a sinusoidal waveform is
distorted to a perturbed periodic waveform. How-
ever, with multi-frequency excitation by signals
that are not harmonically related, the waveforms
in the circuit are not periodic. Here we first look
at the nonlinear response of a circuit to multi-
frequency excitation and then classify the nonlin-
ear phenomena. ‘
Consider the response y of a nonlinear system
to the two-tone excitation x shown in Figure 1(a).
The frequencies f, and f, are, in general, non-
harmonically related and components at all sum
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Figure 1. Spectra in a nonlinear system.
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and difference frequencies (mf, + nf,, m, n =
~», ..., —1,0,1,..., ) of f and f; will
appear at the output of the system. If the nonlin-
earity is second order, so that the maximum value
of [ in egs. (1) and (7) is 2, the spectrum of the
output of the system is that of Figure 1(b). With
a general nonlinearity, so that k can be large, the
spectrum of the output will contain a very large
number of components. An approximate output
spectrum is given in Figure 1(c). The relationship
of the various components to the incommensur-
able components is given in Table I. Also shown
is a truncated spectrum which will be used in the
following discussion. Most of the frequency com-
ponents in the truncated spectrum of Figure 1(c)
have been named: dc results from rectification; f3,
fur 5o fu» for fr0» and fy, are called intermodulation
frequency components; f,, fs are commonly called
image frequencies as well; f,, f, are the input
frequencies; and fs, f; are harmonics.

All of the frequencies in the output of the non-
linear system result from intermodulation. In
other words, each frequency component is the
summation of intermodulation products. Inter-
modulation is the process of frequency mixing.
However, it is usual to refer those frequencies
additional to the input and output frequencies,
and their harmonics, as intermodulation frequen-
cies. It is unfortunate that the term intermodu-
lation is used in two related but slightly different
contexts. The terms ‘intermodulation frequency’

TABLE I. Frequency Component Descriptions

f, incommensurable tone
f, incommensurable tone

fs =.f2—fl
fs =2fl"f2
fs =2fz—fx
fe = 2f,

fr =2f

fs =3fi - f2
fo =3f2"f|
fll)zfl + f
fu =2fz“2fl
fll=3fl
fu = 3f;
fu=2f+f
fis =2fr + fu
f16=4f|
fn=4fz
f18=2f1+2fz
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or ‘intermodulation component’ refer to the un-
desired frequencies generated in mixing process
as described here. The term ‘intermodulation
product’ (IP) refers to the entire nonlinear process
of sinusoids (or even a single frequency compo-
nent) mixing to produce components at any fre-
quency. '

Gain Compression/Enhancement

Gain compression can be conveniently described
in the time-domain or in the frequency-domain.
Time-domain descriptions refer to limited power
availability or to limitations on voltage or current
swings. At low signal levels moderately nonlinear
devices such as class A amplifiers behave linearly
so that there is one dominant IP with a zero sat-
uration term. As signal levels increase other IPs
become important as harmonic levels increase.
Depending on the harmonic loading condition,
these IPs could be in phase with the original IP
contributing to gain enhancement or out of phase
contributing to gain compression. As well, the
magnitude of the saturation term can be larger.
Which effect—saturation or additional IPs—dom-
inates depends on the particular design although
the two effects can be used to balance each other
and so extend the power at which departures from
linearity are significant. In the truncated spec-
trum, only the fundamental and the second har-
monic are present so there are few IPs present in
a list of IPs contributing to gain saturation/en-
hancement (see Table II). The first order IP cor-
responds to the linearized output. The second
order IP is due to the mixing of theé fundamental
with the second harmonic to produce a component
at the fundamental. In class A MESFET ampli-
fiers, gain compression is principally due to growth
in the saturation term [e.g., (17)] resulting in the
classic saturation characteristic shown as curve (a)
in Figure 2.

' TABLE II. Intermodulation Products Contributing
to Compression/ Enhancement

Frequency considered: fi
Incommensurable frequencies: fi

Involved in phenomenon
Intermodulation products:

order output input

First fi = f,

Second fl : = _fl + fﬁ
Third none

Fourth fi =3fi — fs
Fifth fi = —=3f + 2f,

20.

OUTPUT POWER (dBm)

-60. 1 1 |
-10. . -5.0 0.0 5.0 10.

INPUT POWER (dBm) |

Figure 2. Output power levels of a class A MESFET
amplifier versus input power for (a) the fundamental,
(b) the second harmonic, and (c) the.third harmonic.

Desensitization

- Desensitization is the variation of the amplitude

of one of the desired components due to the pres-
ence of another incommensurable signal. This
phenomenon is depicted in Figure 3 where the
amplitude of the signal at f, is affected by the
amplitude of the signal at f,. Desensitization is
the result of growth in the saturation term 7" [e.g.,
(17)} and the generation of IPs is not involved.
When signals are small, T" is zero but becomes
larger as the signal levels increase. Thus, if there
are two incommensurable signals, one small and
the other large, at the input of an amplifier, the
gain of the small signal can be affected by just the
presence of the large signal. It has been pointed
out that internal amplifier noise can also affect the
gain of a signal [16]. This is also the result of
desensitization.

Harmonic Generation

Harmonic generation is the most obvious result .
of nonlinear distortion. Simply squaring a sinu-
soidal signal will give rise to a second harmonic

AMPLITUDE {.ovinn
ATy |

AMPLITUDE AT f,

Figure 3. Effect of desensensitization.



component. In the truncated spectrum, only the
second harmonic is present so that few IPs are
recorded in an IP listing (Table I1I). The first order
IP corresponds to the generation of, for example,
current at the second harmonic due to voltage at
the second harmonic. This IP, of course, does not
give rise to the second harmonic. Second and
higher order mixing leads to a large number of
IPs. At small signals only the second order IPs
are significant leading to the classic slope of 2
characteristic of the second harmonic power as a
function of the input fundamental power, curve
(b) of Figure 2. As the input power increases
higher order IPs become significant. If these are
out of phase with the dominant second order IP,
then destructive cancellation can occur at higher
input powers as can be seen in curve (b) of Figure
2 at an input of approximately 8 dBm.

Intermodulation

Intermodulation is the generation of spurious fre-
quency components at the sum and difference fre-
quencies of the input frequencies. In the truncated
spectrum f3, fs, fs, fs» for fr0, and fy, are inter-
modulation frequencies. Focusing on just one of
these, f;, we see from Table IV that there are a
large number of low order IPs contributing to this
effect. For the reasons given above, the first order
response is usually large, but does not describe
the origins of this phenomenon. The lowest order
mixing that gives rise to intermodulation is a sec-
ond order process and we see that, for the trun-
cated spectrum, there are four second order IPs.
These can destructively and constructively inter-
fere so that the power of an intermodulation fre-
quency component can vary erratically at high
input powers.

Cross-Modulation

Cross-modulation is the modulation of one com-

ponent by another incommensurable component..

TABLE I1I. Intermodulation Products Contributing
to Harmonic Generation

Frequency considered: fi
Incommensurable frequencies: fi

Involved in phenomenon
Intermodulation products:

order output input

First fe = fs

Second fe = 2f,

Third fs = —fi+ fs
Fourth fe = =2f, + 2fs
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Here, it would be modulation of f; by f, or mod-
ulation of f, by f,. The intermodulation products
contributing to this phenomenon are listed in
Table V up to third order. For discrete tone
excitation, cross-modulation can not be easily dis- -
tinguished from desensitization. However, with
cross-modulation, information contained -in the
sidebands of one incommensurable tone can be
transferred to the other incommensurable tone.
This transfer of information does not occur with
desensitization.

Detuning

Detuning is the generation of dc charge or dc cur-
rent resulting in change of an active device’s op-
erating point. The generation of DC current with
a large signal is commonly referred to as rectifi-
cation and its effect can often be reduced by bias-
ing using voltage and current sources. However, '
DC charge generation in nonlinear reactances is
more troublesome as it can neither be detected
nor effectively reduced. A list of the detuning IPs
is given in Table VI. The zero order IP corre-

TABLE IV. Intermodulation Products Contributing
to Intermodulation

Frequency considered: fi

Incommensurable frequencies: fi fa
Involved in phenomenon

Intermodulation products:

order output input

First fs = f,

Second fa =fi—- 1
Second fs = —f, + fs
Second fs =—f,+ fs
Second fs = ~fs + fu
Third fs =2fi - f»
Third £ = fi +fz"f5
Third fs = —fi - fi+ fe
Third fs =fi - fo + fs
Third £ =fi+ fo = fo
Third fs =fi+ fi—f
Third fs =fi— fi+ fu
Third fa = f, - 2fs
Third fs = —f, + fit fs
Third fs = "'fz—fs"’fm
Third fs =fo+ fo— fi
Third ) =fo+ fs = fuo
Third fs =f,— fo ¥ fu
Third fs =—fi—fi+ fs
Third fs =fy—fs+ fo
Third fs =—fi—fs+ f
Third fa =fs+fo—fo
Third fa = fs = fa+ fs
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TABLE V. Intermodulation Products Contributing
to Cross-Modulation

Frequency considered: fi

Incommensurable frequencies: fi b
Involved in phenomenon

Intermodulation products:

order output input

Second fi =f,—fs
Second fi = —f, + fu
Second fi = fi+ f,
Second fi = —f,+ fu
Second £ = —fs+ f
Third fi = ~fi+ fi+ fi
Third fi =—fi+ fit+fy
Third fi =-fi-f+fo
Third fi =2f, = fs

Third fi =-fi+ fi + f
Third fi =—fi-fi+f
Third fi =—-fi+ fit+fs
Third fi =fi—fot [
Third fi =fi+ fo — fu
Third fi =fi+fi—f
Third f| = fz - f7 + fm
Third fi = =2fy + f;
Third fi = —f; - fa+ fe
Third fi = —fi—fs+f
Third f, = f3 - fs + fm
Thnrd f| = f.s + f(, - fg
Third fi =fo—fo* fu
Third f| = f4 - f7 + ft)
Third f| = f, + fr= fu
Third fi =fi+ fo— fi
Third fi =fs+ fs— fo
Third f| = fs - fq + fw

sponds to the conventional view of rectification
and, from eqs. (10)-(14), this IP is

U, ...,00)=a + > >
a=1  §...5

Syt Syma (19)

{511 (55}

For very small signals, U, (0, . . ., 0) is just the
DC offset a,. As the input signal components, the
Xi’s become larger and U, (0, . . ., 0) will grow
as a result of rectification.

AM~-PM Conversion

The conversion of amplitude modulation to phase
modulation (AM-PM conversion) is a trouble-

some nonlinear phenomenon in microwave cir-
cuits and results from the amplitude of a signal
affecting the delay through the system. The most
convenient way of modeling this effect at the sub-
system level is to introduce order dependent time
delays in the power series description of the trans-
fer function as proposed by Heiter [12]. With
these, the formula for an intermodulation com-
ponent of the output contains a phase shifting fac-
tor. As a result, the various IPs at a particular
frequency can be out of phase. Since the magni-
tude of each IP is signal level dependent, the fre-
quency component, which is the sum of the IPs,
will also have a level-dependent phase shift. No
specific IPs can be assigned to this affect but fre-
quency-domain power series expansion analysis
leads to expressions describing the AM-PM con-
version [12].

Sub-Harmonic Generation and Chaos

In systems with memory effects, i.e., with reactive
elements, sub-harmonic generation is possible.
The intermodulation products for sub-harmonics
can not be expressed in terms of the input incom-
mensurable components. Sub-harmonics are ini-

TABLE VI.
to Detuning

Intermodulation Products Contributing

Frequency considered: dc
Incommensurable frequencies: fis f2
Involved in phenomenon
Intermodulation products:
order output input
Zero dc = 0f, + 0f, + Of; + Of,
+ 0fs + Ofs + Of; +
Ofs + 0fy + Of o

First none

Second none

Third dc = =2f, + fe
Third dc =fi—fi+ 5
Third dc =—fi-fi+ fu
Third dc = —fi+ f;+ fi
Third dc = —fi— fo+ fa
Third dc =-fi-f+f
Third dc = =-2f,+ f;
Third dc =—f,=fi+ s
Third dc = —f, — fi+ fs
Third dc = —f,—fs+ fs
Third dc =fi—fo+ fs
Third dc = —f3 — fo + fro
Third dc = — fi+ fs
Third dc = f f7 + fu
Third dc = ~fo—fs + fo




tiated by noise, possibly a turn-on transient, and
s0 in . simulation it must be explicitly incor-
porated into the assumed set of steady-state
frequency components. The lowest common de-
nominators of the sub-harmonic frequencies then
become the basis incommensurable component.
Chaotic behavior can only be simulated in the
time-domain. The nonlinear frequency-domain
methods as well as the conventional harmonic bal-
ance methods simplify a nonlinear problem by im-
posing an assumed steady-state solution on the
nonlinear circuit problem. Chaotic behavior is not
periodic and so the simplification is not valid. To-
gether with the ability to simulate transient be-
havior, the capability to simulate chaotic behavior
is the unrivaled realm of time-domain methods.

. VOLTERRA SERIES ANALYSIS

The oldest and most analytically developed fre-
quency-domain methods are the methods based
on Volterra series developed around 1910 by Vol-
terra [6]. Volterra has shown that every continu-
ous functional G(x) can be represented by the
expansion

G(x) = 3 Filx) (20)

where F,[x(1), b =t < a} is a regular homogeneous
functional such that

R = [

a

c. fb gt &,y - - ., EDx(E)x(E)

o x(8)dEidE, - - - dE,
(1)

and the function g, is the nth order characteristic
or kernel of the functional.

In 1942, Wiener applied this type of functional
series to the analysis of nonlinear systems [17].
He suggested that a weak nonlinearity could be
represented with just the first few terms of such
a series. His ideas have subsequently been devel-
oped by many researchers including significant
contributions by Bedrosian and Rice [18} and
Bussgang, Ehrman, and Graham [19}]. This review
is based largely on those works as well as the more
recent book by Weiner and Spina [20].

Given a time-domain input-output relation
y(t) = f(x(¢)), the output y(t) can be expressed
as a Volterra functional series of the input x(¢).
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Thus,

y(t) = Z Ya(t) (22)

where

y"(t). =J’:‘ . J'j” h,,(’rl, ey 'T,,)X(f - Tl) (23)

< x(t — 7,)dr, - - - dr,

and the function h,(t,, . . ., 7,) is known as the
nth order Volterra kernel. It can be used as a time-
domain description of many nonlinear systems in-
cluding nonlinear microwave circuits that do not
exhibit hysteresis. In this case, the nth order ker-
nel, h,, is called the nonlinear impulse response
of the circuit of order n. The first order response
is just the linearized response of the system and
the zero order response is a dc offset. The zero
and first order responses describe the system en-
tirely when the input to the nonlinear system is
negligibly small. This is a very general procedure
that is applicable to an arbitrary input.

Rarely do we need to deal directly with the
Volterra series which is in the time-domain.
Mostly we are concerned with the frequency-do-
main derivative form which is expressed in terms
of Volterra nonlinear transfer functions. These are
obtained by taking the n-fold Fourier transform

of h,
Hn(fly fz, o on f") = J “ e . j
hll(Tl’ Toy o o o s Tn)

X CXP[ ”IQﬂ(flTl + -+ fnTn)]dTldTZ cte dTn
(29

where H, is called the nonlinear transfer function
of order n. For the nth order frequency-domain
output Y,, we have

Yn(fl’ AR fu) = Hn(flv R fu) (25)
X X(fi) - - X(fa)-

Thus, in the frequency domain, the Volterra series
expansion has the form

Y(fi, far - - 2) = HAf)X(f) (26)
+ Hy(fy, £)X(f)X(f2)
+ Hy(f, f2 ) X(f) @7
X X(f)X(f3) + -
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Volterra series methods were first applied to
transistor circuit simulation in 1967 [21] and since
then have been successfully applied to the char-
acterization and analysis of many nonlinear cir-
cuits [18-20,22-40] were the Volterra nonlinear
transfer functions can be derived algebraically [18,
24.26], experimentally [32,41,42], or numerically
[40]. The algebraic determination of the nonlinear
transfer functions from the element constitutive
relations can be cumbersome, and generally de-
termination of H, for n > 3 is impractical. Thus,
only weak nonlinearities are usually considered.
Experimental characterization is noise limited so
that system characterization is again generally re-
stricted to third order.

Nonlinear subsystems can be described by Vol-
terra nonlinear transfer functions, provided that
they are mildly nonlinear, resulting in a behavioral
model that is noniterative and efficient to compute
[28]. Volterra nonlinear transfer functions can be
used with frequency conversion circuits where the
large signal local oscillator establishes a time-vary-
ing mildly nonlinear system converting energy
from the input signal to energy in the output signal
[43]. They have also been used as describing func-
tions of nonlinear elements in the simulation of
many microwave circuits including oscillators
[30,37-39]. _

Most of the other Volterra techniques applied
to microwave circuits apply to subsystem model-
ing and use feedback to describe nonunilateral
subcircuits. The approach seems to be particularly
amenable to the simulation of microwave oscil-
lators [37-39], as feedback is explicitly introduced
in the circuit to facilitate oscillation. These are
fairly specific circuits so that the effort required
to partition the circuit into subcircuits and to de-
velop the Volterra nonlinear transfer functions is
worthwhile. However, this approach is not ame-
nable to general-purpose circuit simulation.

The application of the method of nonlinear cur-
rents reported by Crosmun and Maas [40] is a
promising technique for the simulation of nonlin-
ear microwave circuits with applicability to large
signal circuits. This technique is based on Volterra
theory and enables the direct calculation of the
response of a circuit with nonlinear elements that
are described by a power series. In the method of
nonlinear currents, a circuit is first solved for its
linearized response described by zero and first or-
der Volterra nonlinear transfer functions. Consid-
ering only the linearized response allows standard
linear circuit nodal admittance matrix techniques
to be used. The second order response, described

by the second order Volterra nonlinear transfer
functions can then be represented by controlled
current sources. Thus, the second order sources
are used as excitations again enabling linear nodal
admittance techniques to be used. The process is
repeated for the third- and higher-order node volt-
ages and is easily automated in a general purpose
microwave simulator. The process is terminated
at some specific order of the Volterra nonlinear
transfer functions. This is a noniterative technique
but relies on rapid convergence of the Volterra
series, restricting its use to moderatly strong non-
linear circuits. In particular, diodes are strong
nonlinearities and require up to a 40th order
power series [44] for an adequate description with
a large voltage waveform across the diode. Con-
sequently, because of the equivalence between the
order of the power series description and the max-
imum order of the Volterra nonlinear transfer
functions [45], 40th order Volterra nonlinear
transfer functions are required. In a similar ap-
proach a Volterra series technique has been ap-
plied to circuit simulation by Dmitriev and Silyutin
[46]. The example they present uses fifth order
Volterra nonlinear transfer functions but their re-
port requires manual algebraic derivations.

In many microwave situations, such as mixers,
a small signal interacts with a large signal. Deri-
vation of the large signal waveform permits a
weakly nonlinear time-varying Volterra series de-
scription of the circuit {24,34]. This is an extension
of the linear conversion matrix concept [47] to
include nonlinear dependencies on the level of the
small signal but special conditions on the LO
waveform, such as being sinusoidal current, are
typically required.

The major advantage of Volterra-series based
analysis is that nonlinear phenomena in large
weakly nonlinear systems can be accurately de-
scribed using a well-defined and methodical pro-
cess. Development of this capability was the major
focus of the work done in the late 1960s and early
1970s. For smaller circuits, closed form expres-
sions for the nonlinear effects can be developed
and used to optimize designs. To date, Volterra
nonlinear transfer function analysis represents the
only mechanism for predicting the nonlinear ef-
fects of high level noise in a weakly nonlinear sys-
tem [17,48,49].

The most advanced Volterra approach, as far
as microwave circuit analysis is concerned, is that
of Van den Eijnde and Schoukens {50] who couple
the Volterra treatment introduced by Chua and
Ng [51] with the spectral balance technique. In



this work, strongly nonlinear systems can be con- -

sidered as there is no limitation on the order of
the Volterra nonlinear transfer functions and they
claim that it is possible to consider orders of 100
or more.

Very similar to the Volterra nonlinear transfer
function techniques are the describing function
methods [52]. By restricting the generality of the
Volterra nonlinear transfer functions many cir-
cuits are more amenable to analysis. Gustafson et
al. use describing function methods in the study
of many microwave circuits including free-running
oscillators, phased locked loops, and amplifiers.

Volterra series analysis of nonlinear microwave

circuits is invariably restricted to elements with
univariate dependencies. However, there are
many instances where this is not a good approx-
imation. For example, the transconductance of
‘a GaAs MESFET can not be adequately rep-
resented by univariate elements which would
require that the transconductance be solely a func-
tion of the gate-source voltage. Before Volterra-
based techniques can be used in a general purpose
microwave circuit simulator, the restriction to uni-
variate nonlinear elements must be overcome.
This situation requires bivariate nonlinear transfer
functions [24 (pp. 131-137),53], but the algebraic
and experimental complexity of determining the
high order bivariate transfer functions has prac-
tically eliminated their use.

IV. ALGEBRAIC FUNCTIONAL
EXPANSION

In contrast to the approach used in Volterra series
analysis, the algebraic functional expansion meth-
ods use an algebraic approach to nonlinear func-
tional expansion based on the noncommutative
power series developed by Lamnabhi et al. [54-
57]. This method is related to Volterra series, but
the analysis procedure is quite different and relies
on symbolic computation.

To analyze nonlinear circuits using this ap-
proach, the nonlinear differential equations de-
scribing the circuit are written using a specialized
symbolic notation. The solution can then be found
using a digital computer and a symbolic mathe-
matics package. .

The advantage of this technique is that it can
be applied to the same sort of problems Volterra
series techniques can analyze, but a higher order
approximation can be used since all the algebraic
manipulations are performed on the computer. It
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has the disadvantage of requiring software to ma-
nipulate symbolic equations. This results in an ap-
proach that is difficult to integrate with existing
computer-aided design tools. However, being
noniterative, these techniques are attractive for
the behavioral modeling of nonlinear microwave
subsystems.

V. FREQUENCY-DOMAIN
SPECTRAL BALANCE

Frequency-domain spectral balance techniques
are similar to the harmonic balance methods dis-
cussed in the companion paper [1]. The term spec-
tral balance is used to distinguish the frequency-
domain techniques from the harmonic balance
techniques as the latter term has come to be solely
applied to mixed time- and frequency-domain
methods. The circuit to be analyzed is arranged
as shown in Figure 4 and is divided into linear and
nonlinear subcircuits. This explicit separation,
however, is not required [58] but considerably’
simplifies the present discussion. The linear sub-
circuit has Q nodes; P of which are common to
the nonlinear subcircuit, and M of which are con-
nected to independent voltage sources. The non-
linear subcircuit has P nodes and is composed of
nonlinear elements. Here we consider N fre-
quency components, so that at the pth node, the
instantaneous current into the linear subcircuit is

i) = > Re[l(w)e] (28)

where I(w,) is a phasor current at radian frequency
w,. Similarly, the current into the nonlinear sub-
circuit at the pth node is

i(t) = 2 Re[/,(w,)e""] (29)

— ey

NONLINEAR
SUBCIRCUIT

SUBCIRCUIT 2

{Q NODES) (P NODES)

( ) BRI T
! LINEAR
.[ : : M

—

Figure 4. Circuit partitioned into linear and nonlinear
subcircuits.
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and the voltage at the pth node is

N

u(t) = Re[V, (w,)e/] (30)

q

To satisfy Kirchoff’s current law,
() + 0,(6) =0 (31)

for all p from 1 to P, i.e., at all nodes of the
nonlinear subcircuit. We can rewrite this in the
frequency-domain as

FV)=1+i=0 (32)

where 1 and I are real valued vectors of length
2NP consisting of the real and imaginary com-
ponents of the phasor currents into the linear and
nonlinear subcircuits, respectively, at all frequen-
cies. Similarly, V is the vector of node voltage
phasors. The steady-state solution is found by
solving the system of nonlinear equations repre-
sented by eq. (32), called the ‘determining equa-
tion’ [59]. The preferred solution approach is to
use Newton's method to construct the iterative
procedure

Vitl = Vi~ J-(VO)F(V) (33)

where the superscripts are iteration numbers. The
matrix J is the Jacobian of F and requires partial
derivatives of the real and imaginary components
of the phasor currents with respect to the real and
imaginary components of the node voltage pha-
sors for all nodes (1 to P) and all frequency com-
~ ponents (1 to N). For the linear subcircuit, this
information is contained in the nodal admittance
matrix and is readily available for the nonlinear
subcircuit if the elements are described by power
series [5]. With power series descriptions, obtain-
ing the derivatives of the nonlinear current pha-
sors with respect to each voltage phasor amounts
to taking derivatives of (10) with respect to the
X,’s. Power series expansion methods are appli-
cable to strongly nonlinear elements but the anal-
ysis is practically limited to univariate elements as
the analogous bivariate generalized power series
expansions require excessive computation [60].

VI. FREQUENCY-DOMAIN SPECTRAL
BALANCE USING THE ARITHMETIC
OPERATOR METHOD

Recently, an alternative technique called the arith-
metic operator method (AOM) has been intro-

duced; first for efficient power series expansion
analysis [58,61], and then for any analytical func-
tion [62]. This technique utilizes the frequency
convolution concept rather than the multinomial
expansion technique behind the development of
the generalized power series output formula, eq.
(10). AOM calculates the total contribution at an
output frequency rather than summing up indi-
vidual intermodulation products. '

The most advanced method is that presented
by Chang and Steer [62] and will be considered
here. The arithmetic operator method manipu-
lates spectra in the frequency-domain evaluation
of basic arithmetic operations. Chang and Steer
[58,62] introduced the frequency-domain spec-
trum transform matrix and derived the frequency-
domain forms of basic operators—multiplication
and division—and their derivatives (as required
in Newton’s method).

The frequency-domain description of a signal
is a set of complex numbers which, for compu-
tational necessity, must be truncated. Retaining
K frequencies, the time-domain signal x is rep-
resented in the frequency-domain by a spectral
vector x defined as

X = [an X, X KXo X Xg Xm]"
(34)

where X, represents the real part of the frequency
component of x at the radian frequency o, and
X is the imaginary part of this component so that
the phasor of the kth spectrum component X; =
X, + jXi. The spectral vectors y and z of the
time-domain signals y and z are similarly defincd.
The basic operations y = x * z are simply im-
plemented in the frequency-domain as the cor-

- responding elements of x and z are added or

subtracted. That is
y=x=*z (35)

The derivative forms of these operators arc
equally straightforward. If y, x, and z are all signal
u dependent, then the derivative of x with respect
to the kth component of u [defined as is x in eq.
(34)] is

Xk‘q = [GX(),/aUk,q BXI,/BU,W 6X1,~/6Uk.q

(36)
et aXx,/aUk'q aXKi/BUk,q]T,

where g = r or i indicates the real or imaginary
part. With the spectral vectors ¥, and % , simi-



larly defined, the derivative forms of the addition
and subtraction arithmetic operators are

yk.q = Xk,q * ik,q' (37)

The spectral addition and subtraction, and their
derivatives, are straightforward as they involve
addition or subtraction of the corresponding ele-
ments of the spectra operated on. However, more
complicated operators, such as multiplication and
division, do not only involve corresponding ele-
ments and so the spectrum mapping function and
spectrum transform matrix were introduced. In
general, a spectrum will contain DC, fundamen-
tal, harmonics, and intermodulation components
and so there is a simple arithmetric relationship
of the frequencies of the commensurable spectrum
components.

Multiplication and Division

In the frequency-domain the multiplication op-
erationy = xz is

y = Taz = Tx (38)

where T, is called the spectrum transform matrix
of x and is a matrix formulation of the spectrum
mapping function—a frequency convolution op-
eration [62]. The spectrum mapping function re-
lates the components of the output spectrum to
the spectra of two inputs where the output is the
product of the two inputs. Table VII is an example
of the spectrum mapping function where y = xz
is the system output and x and z are inputs. Three
frequency components fo (=DQC), f, and f;

TABLE VII.' Example of Spectrum Mapping
Function

y X z

k.V kr Sx kz Sz

' 0 +1 0 +1

0 1 +1 1 -1
2 +1 2 -1
0 +1 1 +1

1 1 +1 0 +1
1 -1 2 +1
2 +1 1 -1
0 +1 2 +1

2 1 +1 1 +1
2 +1 0 +1
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(=2f,) are considered here, k,, s and k. are
frequency indices for the y, x, and z components,
and s, and s, indicate signs so that f,, = I5cfre +
S:sz"

In the frequency-domain, the multiplication
operation has the derivative form

yk.q = Txik,q + szk.q' (39)

After interchanging y and z in (38) and (39), the
frequency-domain form of the division operation
y = z/x is seen to be

y =Tz (40)
and its derivative form is
yk.q =vTx_l(ik.q - Tyﬁk.q) (41)

Equations (35), (38), and (40) represent four
basic frequency-domain operators: spectral addi-
tion, subtraction, multiplication, and division.
Theoretically, any analytic function can be eval-
uated using these. Arithmetic operator methods
in conjunction with the spectral balance technique
can be used with strongly nonlinear circuits and
active device models are not restricted to power
series expressions. However, the element expres-
sions must be analytic and algebraic. As spectral
operations are considerably more complicated
than the corresponding algebraic operations,
modeling is restricted to using reasonably straight-
forward expressions. For example, the Curtice
[63] and Materka-Kacprzak [64] models can be
used, as the modeling expressions are reasonably
simple. However, the physically based model of
Khatibzadeh and Trew [65] is not amenable to
AOM because of the extensive arithmetic and ta-
ble look-up involved as well as its not being an-
alytic.

In the companion paper [1], the arithmetic op-
erator method is compared with two conventional
harmonic balance techniques. For single-tone ex-
citation, it is comparable to the harmonic balance
techniques in terms of memory usage and com-
putation time. However, for two-tone excitation,
it is quicker and has much greater dynamic range.
The extension of dynamic range is principally be-
cause there are no Fourier conversions between
the time- and frequency-domains.

Example

For an example of the application of AOM in the
spectral balance analysis of microwave circuits,
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the GaAs MESFET amplifier, which was previ-
ously reported by Chang et al. is considered [58].
In the equivalent circuit used to model the MES-
FET, shown in Figure 5. C,, Cpy, and Cy; were
taken to be one-dimensional nonlinear elements,
and were modeled by power-series descriptions as
given in ref. [58]. Values used for linear elements
were also given in ref. [58]. However, unlike ref.
[58], the drain-source current I, which is a func-
tion of both intrinsic voltages v, and vy is modeled
by a modified Curtice model from eq. [63] using
a hyperbolic function and seme v,-dependent
terms:

I = V,, tanh(yvy) + AgUss (42)
where

Ve = A + u,t — 1)
' (43)
X (A() + A;V, + sz% + A;V%)

and
Vi= vt = DL + B(VE — ve)) (44)

All parameter values in egs. (42), (43), and (44)
except 7, which is assumed to be a constant, were
determined by fitting the calculated g, and gy
curves to measured RF data. These determined
parameter values are listed in Table VIII.

A. Hyperbolic Function. Eqs.. (35), (38), and
(40) were used to calculate Iy, gn, and gu- For
efficient calculations, the hyperbolic tangent func-
tion tanh(x) was expressed as

tanh(x) = (1 = y)/(1 + y) 45)

Figure 5. MESFET equivalent circuit.

TABLE VIII. MESFET Parameter Values

Parameter Value
Ay 0.08494
A, 0.0558
A, —0.01124
A, ' —0.01488
Y 2.4836
B 0.1722
VY 30V
Ag 0.0032
A 0.062

where y = e~%, and the Jacobian matrix of the
function tanh(x) as '

Ja = Tz = 4y/(L+y)  (46)
where z is the frequency-domain spectral vector

form of z. The exponential e~2* was approximated
as

e = [1 + =+ 1 (5)2
| 20 2\ (47)

+---+—1— 2"2" n=9
n! \2" T

u= -2x. (48)

where

B. Results. A two-tone input excitation using
two equal-amplitude signals at 2.35 GHz and 2.4
GHz were used to verify the arithmetic operator
method of frequency-domain spectral balance.
Figure 6 shows the simulated (curves) and mea-
sured (points) values for the power output at 2.35
GHz and the third order intermodulation product
at 2.3 GHz as a function of the input power. Good
agreement is obtained. With —3 dBm input power
and the third order intermodulation (12 ac, 1 dc)
considered, the total simulation time using AOM

‘was 2.2 s on a DEC DS3100 (RISC) workstation.

Vil. SPECIALIZED TECHNIQUES

The techniques described in the previous sections
can be used to analyze arbitrary circuits. In the
1960s, before most of the general techniques were
available, specialized techniques were developed
for the simulation of diode circuits. Most of these
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Figure 6. Output power versus input power for two-
tone excitation of an amplifier. The tones are of equal
power and the input power is the power of one of the
tones. The frequencies of the tones are 2.35 GHz and
2.4 GHz, the top curve is the power output at 2.35 GHz
and the bottom curve is the power output at 2.3 GHz.

handled a nonlinear resistor only and relied on
special expansions of the Shockley diode equation
or the reverse bias capacitance equation of a
diode. Several workers have developed closed
form (noniterative) frequency-domain analyses
for simple mixer circuits such as the frequency
independent mixer circuit of Figure 7. If the non-
linear capacitance of the diode junction is ignored,
and the diode has the ideal current-voltage char-
acteristic given by the Shockley diode equation

i = Ifexp(av) — 1} (49)

where i is the current through the diode and v is
the voltage across the junction, the mixer circuit
is described by

i = L{exp a[vs — i(R + Ry)] — 1} (50)

Rutz-Phillip {66] and Beane [67] used the special
recursive polynomials of Mills [68] to expand this
in a power series. Subsequently, a Fourier series
was obtained. These analyses yielded the current-

i R | R |
e [:]: ‘
"’@ i sete
i '

DIODE

Figure 7. Frequency independent mixer circuit.

Frequency Domain Nonlinear Analysis 195

voltage solution at the junction terminal without
requiring iterations. '

Orloff [69] and Gretsch [70] have shown that
the intermodulation products can be expressed in
terms of products of Bessel functions. This has
been based on the Sonine expansion of an expo-
nential {71] and is the conventional method used
for the large-input-signal analysis of resistive mix-
ers. Nevertheless it is restricted to diodes with
current-voltage characteristics described by the
Shockley diode equation. Here, we review the
approach of Gretsch which is representative of this
type of analysis. If the voltage across the nonlinear
resistance is a sum of voltage sinusoids then the
Shockley diode equation can be expanded in terms
of Bessel functions, to obtain expressions for in-
dividual intermodulation products. The method is
based on the Sonine expansion [71]:

exp(z cos 0) = Iy(z) + i 1,,(z)cos(m8) (51)'

m=1

where I,(z) is the modified Bessel function of the
first kind of order m. Thus, the exponential of a
sum of N sinusoids can be equated to the product
of N infinite summations of Bessel functions.

Using eq. (51), Gretsch derived an expression
for an intermodulation component of the Shock-
ley diode equation [eq. (49)] in terms of products
of Bessel functions of the voltage phasors at the
junction. Thus, an intermodulation component of
i, corresponding to U, in eq. (9), is given by

Uq(nl, e ey nN)

N 52)
= 215 CXP(QVDc) H I,,k((l Vk)
k=1

where, as before, the n,’s define the intermodu-
lation product. The total current at a particular
frequency is just the sum of the intermodulation
products at this frequency.

Grayzel [72], in investigating varactor fre-
quency converters, used the normalized voltage-
charge relationship of the reverse biased capaci-
tance of a pn junction diode

b= (@0 (53)

where ¥ and § are the voltage and charge nor-
malized to the breakdown voltage V; and charge
Qp such that & = (v + ¢)/(Vp + ¢) and g =
(g + Qu)/(Qs + Qs), Where Q, is the charge on
the junction at the contact potential ¢. Grayzel
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used time-domain techniques to solve the now
simplified problem. His work was continued by
Conning [73] for large voltages across the diode
so that he could neglect the contact potential
which enabled him to expand eq. (53) using the
Jacobi—Anger formula to derive an expression for
the intermodulation components in terms of Bes-
sel functions.

Nakamura et al. [74] considered an up-con-
verter and assumed that conversion was due solely
to the reverse-bias capacitance of a pn junction
diode. They used the Sonine expansion to obtain
the junction charge in terms of Bessel functions
of the voltage components. The individual inter-
modulation products are then products of Bessel
functions and are summed to yield the total re-
sponse of the mixer. In developing the formula,
Nakamura et al. made many implicit assumptions
including retaining only the first term of the Bessel
function expansion of the charge-voltage relation-
ship and then only using the first term of the power
series expansions of the Bessel functions. The as-
sumptions restrict their method to low level pump-
ing and relatively small input signals.

For an abrupt junction diode y = § and the
voltage-charge relationship, eq. (53), reduces to
a quadratic equation. For such a low order de-
scription of the nonlinearity it is a simple matter
to derive expressions for the individual intermod-
ulation products. This approach was used by
Goldstein and Frank [75] and Abdullah and Clay-
ton {76} in analyzing parametric amplifiers.

Many other nonlinear characteristics can be di-
rectly expanded to yield simple formulas for the
output frequency components. Recently, deriva-
tions for the output frequency components of
transistor circuits have been completed by
Abuelma’atti and Gardiner [77-79] and lend val-
uable insight into the performance of these sys-
tems. In 1989, Withington and Kollberg [80]
investigated superconducting quasiparticle mixers
using a specialized expansion of the quasiparticle
junction tunneling characteristic and a relaxation-
based spectral balance analysis. The quasiparticle
tunnel junction response function is particularly
sharp and, under local oscillator excitation, pro-
duces a rich set of harmonics. With conventional
harmonic balance simulation, a much larger num-
ber of harmonics must be included in a simulation
in order to avoid aliasing. Withington and Koll-
berg expanded the response function using the
Jacobi-Anger equality to obtain a formula for
each frequency component of the response in
terms of summations of Bessel functions. Using

these formulas as the describing function of the
nonlinear device, they developed a computation-
ally efficient relaxation-based spectral balance
simulator.

Specialized derivations involve considerable
manual algebraic manipulations and apply to very
particular forms of nonlinear element character-
istics. They can not be considered as viable can-
didates for a general purpose microwave circuit
simulation. But in the specialized situations, sim-
ulation speed and accuracy are unrivaled.

Viii. OTHER TECHNIQUES

‘Recently Ushida and Chua [81] reported a robust

frequency-domain relaxation method for the an-
alysis of nonlinear circuits with multifrequency
excitation. Relaxation techniques avoid the neces-
sity of formulating or inverting a Jacobian as re-
quired when Newton’s method is used to solve the
harmonic balance equations. Instead, they use a
simple update algorithm to modify the estimates
of the node voltages so that the voltage phasor at
a particular node and at a particular frequency are
updated in proportion to the harmonic balance
error at that node and frequency. While being fast,
relaxation techniques may not converge when the
circuit is stiff, i.e., when the nonlinearities are too
strong. Ushida and Chua's technique introduces
a compensation element to weaken the nonline-
arity so that the convergence properties of the
relaxation technique are considerably improved.
For each nonlinear element they introduce relax-
ation models composed of associated linear time-
invariant elements and/or linear controlled
sources and independent sources. At each itera-
tion of the relaxation method each nonlinear ele-
ment is converted to an associated relaxation
model so that the resulting circuit can be solved
using conventional nodal analysis. Nevertheless,
relaxation-based simulation is not as robust as
Newton-based harmonic balance analysis and so
the range of circuits that can simulated will always
be less. :

IX. CONCLUSION

Frequency-domain nonlinear analysis has its roots
in Volterra series analysis where the phasor of a
frequency component of the output of a nonlinear
system is the summation of intermodulation prod-
ucts. These intermodulation products are given as



the product of a level-independent transfer func-
tion (known as a Volterra nonlinear transfer func-
tion) and an intermodulation term which is the
product of integer powers of the phasors of the
input to the system. The Volterra nonlinear trans-
fer functions permit block diagram representa-
tions of weakly nonlinear systems [18]. This
modeling approach and related power series ex-
pansions have permitted simple descriptions of
distortion phenomena in nonlinear systems—as
classified in the second section of this paper. Con-
sidering the effect of nonlinear distortion in the
frequency-domain has enabled simple closed form
descriptions of nonlinear phenomena to be de-
veloped and consequent minimization of unde-
sired effects [82-85]. '

Many different approaches have been taken to
extend the Volterra nonlinear transfer function
technique to more strongly nonlinear systems and
to more general microwave circuits. At the circuit
level the method of nonlinear currents using
power series descriptions of the nonlinearities has
been used to model elements in the nonlinear cir-
cuit by introducing controlled and independent
current sources. This is achieved noniteratively
but relies on rapid convergence of the power series
[28]. In one variation of this technique only the
first order reduction is used so that linearized ad-
mittances replace voltage proportional current
sources [81]. In many cases a strongly nonlinear
circuit becomes moderately nonlinear and relax-
ation techniques can be used to solve the spectral
balance equations. ‘

General purpose frequency-domain nonlinear
analysis techniques iteratively solve the spectral
balance equations equating the-phasors of the cur-
rents flowing into the nonlinear subcircuit to the
corresponding current phasors flowing out of the
limrear subcircuit. The nonlinear current phasors
are summations of intermodulation products cal-

culated using power series expansions [4,58], an-

alytic function expansions [62], or specialized
expansions of the nonlinear device characteristics
[70,80]. These are robust techniques and can be
used with strongly nonlinear systems and multi-
tone excitation. In the companion paper [1] one
of the frequency-domain spectral balance tech-
niques is quantitatively compared to two of the
promising conventional harmonic balance tech-
niques. Frequency-domain spectral balance tech-
niques can be used to simulate situations in which
a small signal is more than 400 dB below a large
signal and can be used with multi-tone excitation.
By comparison, traditional harmonic balance
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techniques have dynamic ranges of less than 200
dB which degrades as tones become close in fre-
quency. Because of computation and memory re-
quirements, they are practically limited to three -
tones. However, active device modeling is more
cumbersome with frequency-domain nonlinear
analysis techniques than with hybrid techniques.
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