The Relationship between Bivariate Volterra
Analysis and Power Series Analysis with
Application to the Behavioral Modeling of

Microwave Circuits

Philip J. Lunsford II' and Michael B. Steer?

11BM, P.O. Box 12195, Research Triangle Park, North Carolina 27709

2High Frequency Electronics Laboratory and the Cen

ter for Communications and Signal Processing,

Department of Electrical and Computer Engineering, North Carolina State University, Raleigh,

North Carolina 27695-7911
Received May 23, 1990; revised September 1 1, 1990.

ABSTRACT

Volterra nonlinear transfer functions can be used in the behavioral modeling of many non-

linear microwave circnits. They can be develop

ed experimentally, numerically, and, to a

limited extent, analytically. This article presents an enhanced analytic method for developing
bivariate Volterra nonlinear transfer functions based on their relationship to power series.
The technique is applied to the Volterra-series-based behavioral modeling of a MESFET
amplifier using experimental characterization of the MESFET.

I. INTRODUCTION

The computer-aided simulation and synthesis of
large active microwave systems require nonlinear
frequency-domain behavioral modeling of com-
ponent circuits and subsystems. As system designs
become larger and more complex, the designer
" has an increasing need to simulate the entire sys-
tem, or a very large section of the system, that is
too large for a circuit simulator. If smaller sub-
sections of the system can be characterized by
behavioral models, then a system level analysis
can be done using these models. Volterra theory
provides a general purpose way to characterize an
arbitrary nonautonomous analog subsystem. All

of the information needed to predict the behavior |

of a nonlinear system is contained in either the
time-domain Volterra kernels, or the frequency-
domain Volterra nonlinear transfer functions. Mi-
crowave behavioral modeling is in its infancy, and

currently most subsystems are described linearly
using circuit parameter (e.g., scattering parame-
ter) descriptions, linear transfer functions (pos-
sibly with gain), and small-signal conversion
matrices. Mildly nonlinear subsystems can be de-
scribed by low-order Volterra nonlinear transfer
functions resulting in a behavioral model that is
noniterative and efficient to compute [1]. Vol-
terra nonlinear transfer functions can also be used
with frequency conversion circuits where a large
signal establishes a time-varying mildly nonlinear
system converting energy from the input signal to
energy in the output signal [2]. They have also
been used as describing functions of nonlinear ele-
ments in the harmonic balance simulation of mi-
crowave circuits [3-6], but this work is not directly
applicable to behavioral modeling.

This article addresses the problem of devel-
oping the Volterra nonlinear transfer functions of
strongly nonlinear microwave circuits using power
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series-based experimental characterization of
nonlinear elements. Previously, we have shown
how the univariate (single input) Volterra nonlin-
ear transfer functions can be obtained for a system
having a univariate power series description [7].
Here, we establish this relationship for the more
complicated case of a system with two inputs. The
power series—Volterra nonlinear transfer function
relationship enables the convenient development
of the behavioral model of experimentally char-
acterized nonlinearities. Furthermore, it enables
the development of large signal Volterra nonlinear
transfer functions. These large signal transfer
functions are valid for strong nonlinear departures
from an RF operating point. These contributions
are presented using a MESFET amplifier exam-
ple. In this example, we develop the Volterra non-
linear transfer functions of a MESFET amplifier
using an experimentally derived bivariate power
series description of its nonlinearity. The work
reported here is also applicable to extending Vol-
terra-based harmonic balance simulation of mi-
crowave circuits [4] to include bivariate non-
linearities such as the current characteristics of a
transistor.

Il. BACKGROUND

In circuit and system modeling using Volterra se-
ries techniques, rarely does one need to deal di-
rectly with Volterra series themselves. Volterra
series are a generalized form of power series, and
are used as time-domain descriptions of nonlinear
systems. Mostly, one is concerned with the fre-
quency-domain derivative form which is expressed
in terms of Volterra nonlinear transfer functions
[8,9]. If a circuit has a univariate (i.e., a single
input-to-single output) Volterra series represen-
tation, the frequency-domain output Y(f) of the
system can be written as the summation of differ-
ent order responses

Y(f) = 20 Y.(f) (1)

as illustrated in Figure 1. Here Y,(f) is the nth
order response, and corresponds to the response
of the nth order term in the power series descrip-
tion of the nonlinearity [7]. If the system is mildly
nonlinear only the few terms in the summation
are required. The first-order response is just the
linearized response of the system and the zeroeth
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Figure 1. Illustration of nonlinear analysis using Vol-
terra series.

order response is a DC offset. The zero- and first-
order responses describe the system entirely when
the system is linear or when the input to the non-
linear system is sufficiently small. As the input to
a nonlinear system increases, second and higher
order responses must be included to adequately
describe the system. With multifrequency exci-
tation

x() = 2, 2|E,|cos(2nf,t + 0,)

q
q

)

Q
=1
Q
>, E, exp(j2nf,t)
=-Q

the nth order response can be written

Q Q
Y(f)= 2 - 2
7=-Q 4,=-Q
X Hy(fe, - - .',fqn)E‘,l - E, (3)

X exp[jZ'n'(fl + fz v fn)]

Where the term H,(f,, - . . , fo)E, - E, isan
nth-order intermodulation product of frequency
(f,, + -+ + f,). Each intermodulation product
is the product of a Volterra nonlinear transfer
function H,, and an intermodulation term £, . . .
E, which describes the interaction of the input
signals. The power of the Volterra series method
is that a nonlinear system is characterized by a
number of functions, the H,’s, which do not de-



pend on the form or level of the input. Deter-
mination of the H,’s is reasonably straightforward
for weakly nonlinear systems since only the H,’s
for n < 3 are usually required.

The Volterra nonlinear transfer functions can
be derived algebraically [1,10,11], experimentally
[12-15], or numerically [4]. The algebraic deter-
mination of the H,’s from the element constitutive
relations can be cumbersome, and generally de-

termination of H, for n > 3 is impractical. Ex-'

perimental characterization is noise limited so that
system characterization is again generally re-
stricted to third order or less. The problem of
determining the nonlinear transfer functions is
even more difficult when considering systems or
subsystems with two input ports. This situation
‘requires bivariate nonlinear transfer functions {10,
pp. 131-137; 16], but the algebraic and experi-
- mental complexity of determining the bivariate
transfer functions has practically eliminated their
use.

lil. DEVELOPMENT

The aim of this section is to express the Volterra
nonlinear transfer functions in terms of power se-
ries coefficients. Our strategy is to compare the
expression of an intermodulation product devel-
oped using a bivariate power series description
and the expression developed using bivariate Vol-
terra nonlinear transfer functions.

A. Generalized Power Series

The bivariate Generalized Power Series [17] can
be expressed in the form

1 % ™
y(t) =A §=:| Ai 2 z am,n.i

m=0 n=0

K n
X [ Z biixi(t — Tk,n,i)] 4)

k=-K

X [ i d/JZ[(t - }\l.m.i)]m

I=-L

where x(¢) is given by

K

x(t) = D, el Xilcos(wit + bi)
k=0 (%)
1.4
= 2 Xke/“'k'

k=-K
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where ¢, is the Neumann factor (¢ = 1, n = 0;
€ = 2, n # 0). For the right side of eq. (5) to
remain real, we require X, = Xt and w_, =
— wy, where * denotes the complex conjugate. The
output, z(t) is, likewise, described. The coeffi-
cients (A, A;, @i by di;) may be complex, in
which case the frequency components of y(¢) are
interpreted as being phase shifted. We can also
express the output as

yo) = 2 2 Yrunl) ©)

where

I K n
.Ym;n(t) = 4 dm’n,i [ 2 Ek,i,nxk(t)]

i=1 =k
M
L m
X [2 d/,i,nll(l)]
I=-L

Amni = AAiam,n,i : (8)
Bk,i‘n = bk,,-e_j"’k"k.n.i (9)
A [il,i.n = dl,,‘e_i“’l)‘l,n,,’ (10)

The exponentation in eq. (7) can be factored to
yield the following equation for the m; nth order
intermodulation product

1
ym;n(t) = 2 dm,n.i
i=1

x Lz > 3 - Ekv,-,,,xkc(t)]

—-K k=K k= -K [=1
(11)
L L L m
X [ D > Il dl,,i,nzlv(t)]
==L b=-L L=—-L v=1
or
ym;"(t)

RS

-L h=-L L=-L
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K
D
—-K
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B. Volterra Series

An intermodulation product of the output of a
two input system can also be expressed using Vol-
terra series representation. The total output of a
system described by a bivariate Volterra series is
given by o ‘

Y(t) = 2 2 ymm(t) ' (13)

n=0 m=0

where

+ = +» +o
ym;n(t) = PP
. Tpy==® Ty 1=—% fl=—ao
J‘*—m J'+m J’+m
‘"=—ao -?"_|=—:n §|=-—:n

hm.‘n(Tl’ T2y - -

x [ﬁ 2(¢ - e,,)] [H Xt - i»)]

« Ty ?ly ?27 e ;Fn)

h=1 i=1
d%, dv, . . . d%, d% di, . . . d3,

(14)
in the sense

Yoo(t) = hog (15)

where * and ~ refer to the first and second input
sets, respectively. The yq, term is often omitted
by other authors but is kept here for generality
and is necessary to describe DC offsets. Here #,,,.,
is called the Volterra kernel. For the frequency-
domain description of the Volterra kernels, we
need to use the m;nth Fourier transform of A,
so that the m;nth-order bivariate Volterra nonlin-
ear transfer function is given by!

Hm;n(.fh .va e fm; Th ?2’ e 7'1)

S B
—20 —> —x (16)
hm;n(%l’ '?2’ L] %mv ?l’ ?2s L ?n)
e~ Rn(fi+ i+ et FiE T Fafe)
diyd%, .. . di, d7, d%, .. . d7,

Ho;o = hO;O (17)

"We use the standard notation of capital letters for the
frequency-domain description of a variable.

and, using inverse Fourier transformation,

PRty B2y o o o s T1y T2y + « - Tn)

f—w f—w X - f—w o _ (18)
Hm;n(fla f2’ L] fma flv fZ’ R fn)
e+lzﬂ(f1f1 +htt oSt R+ Fo 4 T

df, df, . .. df, df, df, . . . df,

The Fourier transformation of the m;nth order
time-domain response y,,.,(¢) yields the frequency-
domain response of the nonlinear system [10, p.
132]

Yuf) = [T [T [T

v Hm.‘n(fl’fb .. 'fm; Th.??.) . Tn)
a(f"fl ‘fz -

Fa-F-F— ... T
][]

df, df, ... df,df, df,. .. d7,
(19)

Assuming x(t) and z(t) are of the form given by
eq. (5), the frequency-domain representations of
the inputs are given by

X(f)= 3 X3 (f - 2%’;) (20)

Z(f) = I=2—L Zd (f - %) -1

Thus the phasor of the m;nth order intermodu-
lation product is

Hm;n(fh.fb' . 'fm;flvfl’- :-f-n)
Mf-Fi-f- i fu-Fi-fa - F)

[ 5,70 (0= 32)]
<[5, %0 - 3]

df\ df, ... dfn df dfs . . . dF,
V (22)



Expanding the multiplication by introducing the
summation variables [\, L, . . . l,and k;, k, . . .

k, yields
) = [ [
Hm;n(fh fz, s fm; ?l’ ?z, . f)

f-Ffi—fom - F—-F— . F)

270 (0-3)]
<[z 7o ln -3

(23]
df df, ... dfndfidf,. .. df. (23)

and changing the order of summation and inte-
gration

in-5 5558
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Carrying out the integration is relatively easy since
the integrand is nonzero only when fi = 0y /27
and f; = w,/2m, thus

Ym;u(f) =
K K K L L L
k.=2-K k2=E—K ,k";_K I,=E-L IZZL Im;-L
g (o o L e oy oy o,
™\ 2w 2w 2w’ 2m’ 2w’ 27
o(p_ @ e o o
2w 2w 2 2w 2w
(.Ok”
- * ‘2_1; Z’l Z’z . Z[m Xl‘l sz Xk

(25)

Taking the inverse Fourier transform yields the
m;nth order time-domain response.

Ymin(t) =

2 i—x k=§-Kl=i—Ll=zL—L.'.I=i—L

O Oy O Ok GOy D
27’ 2w 2n’ 2w’ 2w’ 2n/

e~(-j(m,l Fop oo Fag e o+ )3

Z2,Zy,. .. 2, X, Xy - - - X, (26)
and using egs. (20) and (21) yields the time-
domain form of the m;nth intermodulation prod-
uct.

Ymm(‘) =
K K X L L L
k= -K kp=~K k,,;—ml;—uﬁz-t‘ 1,,,=2—L
heg e
{=1 v=1
A
21’ 2%’ 2’ 2w’ 2w’ 2w

27

C. Comparison

Equations (27) and (12) both represent m;nth-
order intermodulation products. By comparing
egs. (27) and (12) we can observe that a system
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represented by a bivariate power series is equiv-
alent to a system represented by a Volterra ser-
ies if

H (.l)_ 0.) (x)lm (x)kl (!)kz W,
e > ~Z .. -2 ...

7’ 20’ 2% 2%’ 211) (28)

1 n . m -
= 2 dm,n,i I:H bkg.i,n:l[H dlu,i,n]
i=1 =1 =1

That is, if
PP A
27 2 2 2w’ 2%’ 2w
1
= Az Aiam,n.i
i=1 (29)
X [H Bks'i'ne"j‘”ke‘fks.i.n]
a=1
X [H d~/,. i,ne""‘”u"’w'?’"]
w=1
1
Hyy = A z Ay, (30)

i=1

Thus given the coefficients of a bivariate power
series description of a circuit or system, the Vol-
terra nonlinear transfer functions are immediately
available.

IV. DISCUSSION

Further insight to the system representation of

these two kinds of analyses can be seen using
graphical representations of the system model.
For simplification, let us begin by looking at the
univariate form of the generalized power series
[18].

.Y(t) = A le Ai go Q¢ (31)

K n
[k_z_x brixi(t — Tk.n,i)]

For simplification we will restrict A = A, = [ =
1 in eqgs. (31) and (4). The discussion can be ex-
tended to arbitrary A, A;, and [, but the compar-

isons between Volterra and power series are more
easily seen for the simpler case.

First, consider the effects of the parameters by
and 7y, in eq. (31). The parameter b, is the am-
plification of the signal at the input frequency Wy,
and must be symmetric with respect to k, i.e.,
by = b_. The parameter T,, is the time delay,
equivalent to a phase shift at the input frequency
w;. Therefore, for a given n, the effect of b, and
Tv.. IS equivalent to passing the input through a
linear system characterized by amplitude b(w) and
delay 7,(w). We will define G, ., to be the linear
system characterized by b, and 7, .

Earlier work with generalized power series [18)
allowed the coefficients a, to be complex. This can
be somewhat confusing at first glance because it
appears that the right side of eq. (31) could be
complex. However, when calculating the results
of steady-state simulation of a .system, only the
positive frequency components of the output need
to be calculated. Thus a complex a, is implicitly
a function of the output frequency. To be math-
ematically complete, we must state that a;f is used
to calculate the negative frequency components
of the output, but since the negative output fre-
quency components are not directly calculated,
the complex coefficients are, in practice, con-
stants. We will define G, to be the linear system
characterized by a,. We could, if we liked, allow
a, to be explicitly a function of the output fre-
quency, thus G, could be any arbitrary linear sys-
tem, not just a linear system that has a constant
transfer function for positive frequencies. This
generalization, however, would be even more
confusing with the present notation.

On the other hand, to simplify the calculation,
we can restrict T to be independent of n, or con-
versely, we could let b be dependent on n, thus
generalizing G, ., to be any arbitrary linear sys-
tem. From examination of eq. (31), we can see
that the system representation for univariate gen-
eralized power series can be given as shown in
Figure 2. Note that g, is just the DC output of the
system when no inputs are applied. Figure 1 gives
the standard system representation for Volterra
series analysis. By comparing Figures 1 and 2, we
can easily see that power series analysis is equiv-
alent to Volterra analysis if we restrict the Volterra
nonlinear transfer functions, H, to be represent-
able as shown in Figure 3. The same relationship
can be applied to the bivariate case. Figure 4
shows the equivalent bivariate Volterra nonlinear
transfer function that is represented by bxvarlate
generalized power series.



ao

1 Gi,r.‘l Gal

z(t) G2 () P Ga, y(t)

'-'.“Gb,r.a — ()3 = Ga;

et Ghrn ] ()" ] Gl

Figure 2. Univariate power series system represen-
tation.

V. VOLTERRA NONLINEAR TRANSFER
FUNCTION MODEL OF A MESFET

One form of Volterra series analysis of nonlinear
circuits casts the nonlinear circuit into block dia-
gram form, each block being described by linear
transfer functions for linear subcircuits and by
Volterra nonlinear transfer functions for nonlinear
subcircuits [19]. Here we apply this technique to
the Volterra series-based analysis of a MESFET
amplifier and compare the simulated results to
experimental results.

The MESFET amplifier used here was previ-
ously analyzed by Chang et al. [20]. The model
schematic is shown in Figure 5, and the measured

Volterra

Figure 3. Equivalency of univariate Volterra analysis
and generalized power series analysis (GPSA).
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Bivariate Volterra
Fo--- ]
L 1

L] ]
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1 ]

Lecacacas P
:t(t) —E"' Gb.fn = ( )" s
: Gamvn +ym;"(t)
2(t) : Gaamlb— () E

Bivariate GPSA

Figure 4. Equivalency of bivariate Volterra analysis
and generalized power series analysis (GPSA).

parameter values are given in Table I. Using the
substitution theorem [21, section 2.2.1], the equiv-
alent signal flow graph of the circuit is shown in
Figure 6. The input is the value of the source
voltage V. This signal passes through the linear
systems Gin.gs and Ginps. Each of these systems
is characterized by all of the linear components of
the circuit. Vgs and Vg are the inputs to the two-
input nonlinear block B characterized by 7 and
Table I1. Using (28), we can directly calculate the
bivariate Volterra nonlinear transfer function and
thus can calculate the value Ips. The value of the
output voltage V, is the output of the linear system

TL
+
Ry | [509Q v
La -
Ry
= Cu

L,

Figure 5. Full circuit for measurement of MESFET
amplifier characteristics.
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TABLE 1. Element Values for MESFET Circnit

Element Value
C, 0.1386 pF
L, 0.69414 nH
Ca 0.30707 pF
R, 290

R, 240

L, 0.00323 nH
R, 53Q

L, 0.41143 nH
Cp 0.09012 pF
Cy 0.00341 pF
R, 100

T 6.56 ps

Cy 0.25050 pF
C, 0.50150 pF
C. 0.08637 pF

Gour which has as its input Ips. The two linear
systems Grp.ps and Ggp.gs provide the feedback to
the two inputs of the bivariate block.

Our aim now is to solve for the steady-state
output of the system given a steady-state input
signal Viy. The two feedback paths do not allow
a straightforward closed-form solution. However,
the steady-state output of the system can be solved
relatively easily by iteration for low-input powers.

For the first iteration, we assume that the feedback:

contributions are negligible and calculate the sys-
tem response. Then, using the new calculated
value of Ipg, we calculate a new Vg and Vs and
use the new values for the next iteration. This
process is continued until there is no appreciable
change of any of the values from one iteration to
the next.

" Figure 7 gives the results of a two-tone test for
the circuit using two equal-amplitude signals at
input frequencies of 2.35 GHz and 2.4 GHz. The

1 GrB.ps
Gin-ps [
Vps ,
Vin Vos B DS Gour =V,
Gin_gs ——»@
t Gre_gs

Figure 6. Nonlinear signal flow graph for MESFET
amplifier. Ginvgs, Ginoss Ges.s, Gro.s, and Gour are
- linear systems. B is a bivariate nonlinear system.

TABLE I1. Coefficients for Bivariate Power Series of I, About DC Operating Point

Order of V,, Term

Order of

0
0.0211092

V,, Term

0.0000154853
0.000105969
0.000336661

-0.000008659

-0.000138752-
—0.000942032
—0.00326047
—0.00362775

0.00006759
—0.000132799
—0.00214949
—0.00146277

0.00026358
0.00244648
0.00931433
0.0127004
—0.0136877
—0.0366089
-0.00190339

0.00004985
—0.000616581

0.00467136

0.00307239
~0.0158083
—-0.0132546

0
1
2
3
4
5

0.0000306236
0.000315678

0.0689287

0.00336844

0.00541917
—0.00941775
—0.0131895

0.0552606
—0.0241834
~0.0328935

0.000290322
—0.000575213
~0.000954538

0.000207059
—0.000791546
—0.000849452

0.00528516
0.0110368
-0.000264063
—0.00775008

—0.00305257

0.00546728

0.00563955
-0.00231212
—0.00426292
-0.001237

0.0236952

0.0340615
—0.00467676

—0.0241809
—0.00895554

0.00865757

0.00689521
~0.00616748
—0.0029458

0.00010378

0.000324688

0.0034243

6
7

0.000683864

0.000655445
0.00019882

0.0253214

0.00856464
0.00252446

0.000254013

0.0105268

8
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Figure 7. The results of a two-tone test for the circuit
using two equal-amplitude signals at input frequencies
of 2.35 GHz and 2.4 GHz. The horizontal axis is the
input power for one of the tones, and the vertical axis
is the output power at the fundamental frequency of
2.35 GHz and the image frequency of 2.3 GHz. The
solid lines are the simulated values and the points are
experimentally measured values. '

horizontal axis is the input power for one of the
tones, and the vertical axis is the output power at
the fundamental frequency of 2.35 GHz and the
image frequency of 2.3 GHz. The points are ex-
perimentally measured values and the solid lines
are the simulated values and show good agree-
ment. These simulated values also agree closely
with those given by Chang et al. [20]. Note that
a linear simulation would predict no power at 2.3
GHz. _ )

Another technique for solving nonlinear cir-
cuits, that is based on the work of Volterra, is the
method of nonlinear currents [19,21]. This tech-
nique has the advantage of a closed form solution
to a nonlinear system which consists of (a) linear
subsystems and (b) simple nonlinear systems de-
scribed by univariate power series. This method
has been used to analyze MESFET amplifiers [4],
but since the nonlinear blocks are characterized
by univariate power series, the Vps-Vgs Cross-
product terms of the bivariate power series are
ignored. Thus, the coefficients in Table II that are
neither in the first row nor the first column are
assumed to be negligible. The work presented
here can be used to extend the method of nonlin-
ear currents to include more general nonlineari-
ties.
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VI. CONCLUSION

The relationship between Volterra series analysis
and generalized power series analysis has been
established for both the single-input (univariate)
and two-input (bivariate) system representations.
A general power series is equivalent to a Volterra
system if the form of the Volterra nonlinear trans-
fer function is restricted to a linear system fol-
lowed by an ideal integer exponentiation (-)"
followed by a second linear system. A similar re-
striction applies to the bivariate case.

The experimentally derived bivariate power se-
ries characteristics of the drain current of a MES-
FET amplifier can be used to calculate the bi-
variate Volterra nonlinear transfer function, and
thus the output of a MESFET circuit can be rep-
resented by a nonlinear signal flow graph. If
feedback is present in the flow graph, iterative
techniques can be used to solve for the steady-
state response entirely in the frequency domain.
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