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Computer-Aided Analysis of Free-Running
Microwave Oscillators
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Abstract —Traditionally, the design of microwave oscillators
has been based on small-signal analysis techniques, which gen-
erally produced good results. However, large-signal simulations
are often necessary to provide a more accurate characterization
of oscillator performance. In this paper, an algorithm for free-
runing oscillator analysis is presented. Kurokawa’s oscillation
condition is coupled with the modified nodal admittance form of
the circuit equations to avoid degenerate solutions. The algo-
rithm has been implemented using both harmonic balance and
frequency-domain spectral balance techniques. The oscillator
analysis was applied to the simulation of a monolithically inte-
grated varactor-tuned MESFET oscillator. Good agreement be-
tween simulated power and oscillation frequency results and the
measured data was obtained.

I. INTRODUCTION

MALL-SIGNAL analysis techniques form the basis of

a systematic oscillator design procedure [1]-[3]. How-
ever, they do not yield power or harmonic content infor-
mation. Large-signal simulation is necessary to provide
this more accurate characterization of oscillator perfor-
mance. This is particularly important in achieving a first-
pass successful design of monolithic microwave integrated
circuit (MMIC) VCO’s. A successful design and analysis
strategy is to determine a circuit topology early in the
design phase using small-signal techniques. Then a large-
signal analysis focuses on reliable performance predic-
tions and subsequent optimization of the oscillator design.
Rizzoli et al. [4], [5] proposed a method (implemented
in [6]) based on the harmonic balance technique for
oscillator synthesis. The oscillation frequency is fixed while
one circuit parameter is optimized to ensure that the
harmonic balance equations are satisfied at that fre-
quency. This method is numerically efficient and yields
well-defined and accurate results. However, it is not di-
rectly amenable to free-running oscillator analysis as the
frequency is fixed and a degree of freedom, such as a
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tuning element or the load impedance, is varied until
harmonic balance is achieved. By repeating this process
for a number of frequencies, a curve of frequency versus
the degree of freedom is obtained. In this manner oscilla-
tors can be analyzed without involving autonomous circuit
simulation.

The obvious approach to free-running oscillator analy-
sis is to use the harmonic balance equations developed for
the circuit and to include the oscillation frequency as an
additional optimization variable. This method has been
used by a number of workers [7], [8]. Generally, one of the
variables that would be used as an optimization variable
in examining a nonautonomous circuit' is eliminated, for
example, by setting the phase of a voltage or current to
zero. Usually, with this approach, the simulated results
tend to converge to a degenerate solution [9] (e.g. all
currents equal to zero is also a solution of Kirchhoff’s
current law, which is the basis of the harmonic balance
equations), or else the initial setting of the oscillating
frequency must be very close to the final result [8].

The degenerate solution can be avoided by incorporat-
ing additional criteria in the system objective function.
This was done by Sterzer [10], in the early 1960’s, in
calculating the output power of a GaAs tunnel diode
oscillator by incorporating the Kurokawa oscillation con-
dition [11]. Also, in the early 1980’s Solbach [12], working
with a Gunn diode oscillator, and Bates [13], examining
an IMPATT diode oscillator, predicted the frequency and
output power by solving multifrequency forms of
Kurokawa’s oscillation condition [14] using frequency-
domain power-series analysis techniques. However, the
work on single-diode oscillator circuits cannot be directly
extended to general nonlinear oscillator circuits. While
not amenable to autonomous circuit simulation, the
method of Rizzoli ef al. uses a finite output power at the
fundamental as an optimization criterion to avoid the
degenerate solution.

Many workers have implemented noniterative nonlin-
ear analyses of free-running oscillators using describing
function techniques [15], [16] (commonly used in nonlin-
ear control system analysis) and functional expansions

1A nonautonomous circuit is one in which the frequencies of signals
are determined by signal sources. For example, an amplifier is a nonau-
tonomous circuit.
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(generally based on Volterra series techniques [17]-[19],
but also using specialized functional expansions [20]). In
these techniques, the system equations and oscillation
criteria are combined to yield a set of algebraic equations
which can be solved recursively. However, these methods
are restricted to weakly nonlinear oscillators. Cheng and
Everard [21] used a spectral balance approach to analyze
a microwave FET oscillator. They used a Volterra series
technique to generate the harmonic components, but since
they used power series expansions of the nonlinear ele-
ment characteristics, their technique is not restricted to
weakly nonlinear oscillators. In their method they con-
verted an oscillator into a one-port network by making a
break somewhere in the circuit. This leads to the oscilla-
tion criterion whereby the impedance looking into this
port is zero at the fundamental and at all harmonics. A
relaxation algorithm is used to solve for this condition.
The relaxation algorithm, however, has poor convergence
properties and the use of Volterra-series-based nonlinear
analysis is restrictive (limiting the analysis to one-dimen-
sional nonlinearities and, unless power-series-like descrip-
tions are available, to weakly nonlinear oscillators). This
strategy of converting an oscillator into a one-port net-
work also appears to have been implemented in a com-
mercial nonlinear free-running oscillator simulator [22].

All of the above techniques assume that a periodic
steady-state solution of the system equations exists and
then proceed to derive it. In contrast, large-signal oscilla-
tor analysis in the time domain using programs such as
SPICE [23] allows the buildup of oscillations to be ob-
served [24]. In spite of the time required and the difficuity
of determining the time at which steady state is obtained,
time-domain simulation techniques have the ability to
predict the start-up of oscillation in addition to the fre-
quency of oscillation and non-steady-state behavior (e.g.
chaotic behavior). It is also easier to incorporate physical
device models (e.g. those described by coupled partial
differential equations or electron statistics) in time-
domain simulations [25]-[27].

The purpose of this paper is to present a newly devel-
oped free-running steady-state oscillator analysis algo-
rithm suited to large-signal oscillator analysis. Either
fourier-transform-based harmonic balance techniques or
frequency-domain spectral balance techniques can be used
for the nonlinear analyses, and strong nonlinearities are
allowed. In the algorithm, the oscillating frequency is
used as an independent variable and the system error
function is modified to partially incorporate the Kurokawa
oscillation criterion. The major contribution of the work
reported here is formulating the problem so that the
resulting set of equations can be solved using the Newton
method to speed convergence. The method also has good
convergence properties so that the initial setting of the
frequency variable need not be very close to the actual
oscillating frequency. In Section II, we first briefly de-
scribe the Kurokawa condition for steady-state oscillation
since it is the theoretical base of the analysis algorithm.
Then, in Sections II and III, the algorithm is developed
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Fig. 1. One-port equivalent circuit of an oscillator circuit.

and discussed. The algorithm developed here was imple-
mented in the general-purpose simulator FREDA2 and
was applied to the simulation of a varactor-tuned
MESFET oscillator from Texas Instruments (part TI
EG8132). In Sections IV and V, the design and character-
ization of the TI EG8132 are described and in Section VI,
the simulated results and a discussion are presented.

II. SystEM EQUATIONS

The steady-state response of nonlinear microwave cir-
cuits is generally obtained using a Newton iteration
scheme to solve a set of system equations expressed in the
frequency domain. In [28], a set of nonlinear system
equations for nonautonomous circuit analysis was devel-
oped, by applying Kirchhoff’s laws, as

M(x)x=y (1)

where the x-dependent circuit matrix M(x) is a modified
nodal admittance matrix; vector y represents the inde-
pendent source vector; and x is the independent variable
vector, which contains all the necessary node voltages and
edge currents at various frequencies. Equation (1) is con-
siderably reduced in size by partitioning the nonlinear
system into linear and nonmlinear subcircuits and using
matrix reduction techniques on the linear subcircuit so
that only the voltages and currents at the nodes common
to the nonlinear subcircuit need be considered. While
solution of (1) yields the steady-state response of nonau-
tonomous circuits, this is not sufficient to determine the
response of autonomous circuits, since generally the de-
generate solution (i.e., with all ac voltages and ac currents
zero) is preferred. Our approach is to expand the set of
equations to partially include the Kurokawa oscillation
condition [11], thereby ensuring that the degenerate solu-
tion is not obtained.

A free-running oscillator circuit can be treated as a
one-port network by looking into the terminals of a load
element Y,,4, as shown in Fig. 1. Then the steady-state
oscillation condition [11] (known as the Kurokawa condi-
tion) for a single frequency of oscillation can be expressed

as
Y(w) = Yosc(w) + Yload(w) =0 (2)

where Y(w) is the input admittance of the one-port net-
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work, and Y, () and Y, 4(w) are the equivalent admit-
tances of the “oscillator circuit” and the load element
respectively. Kurokawa derived (2) with a single frequency
only. However, in general, harmonics of the voltages and
currents will be present, and (2) also applies to each
frequency component. Therefore, if K different ac fre-
quency components are present, the condition for the

oscillation of the circuit in Fig. 1 is [14].
Y, = Yoee k + Yiowa,x = Re{¥} + jIm{Y,} =0,
k=1,2,---,K. (3)
In (3), the subscript k indicates that the admittance Y is
evaluated at the radian frequency w,. That is, if i and v
in fig. 1 are represented as summations of different fre-

quency components i, and v, respectively, in the fre-
quency domain:

K K
i(t)= X ix(r) = X IL]cos(wit + ;) 4
k=0 k=0
and
K K
v(t)= X v ()= X WVilcos(wit +6,) (%)
k=0 k=0

then the input admittance Y, evaluated at the radian
frequency w, is

(6)

For a one-port nonlinear system, such as a single-diode
circuit, the solution of the multifrequency Kurokawa con-
dition (3) is also a solution of the system equation (1), but
the degenerate solution of (1) is avoided. Solution of (3)
has been the approach generally used in the analysis of
single-diode oscillators [10]-[13]. This method could be
extended to arbitrary nonlinear circuits by applying (3) at
every node in the circuit and for every frequency compo-
nent. This prevents the voltage and current components
at every w, from being zero, which may not be justified.
Alternatively, (1) can be solved simultaneously with a
partial Kurokawa condition to avoid the degenerate solu-
tion at the fundamental oscillation frequency only. That
is, (1) can be solved in conjunction with

Y= Y1+ Yioaa s = Re{Yi} +jIm{Y;} =0.  (7)

By separating the real and imaginary parts of Y}, (7) can
be written as

Re{Y;} =Re{l,/V1} =0 (8)
and
Im{Y,} =Im{1, /V}} =0 (9
which imply that
Re{l}} =Im{[;}=0 (10)
and
Vil +0. (11)

As an additional variable, f;, needs to be added for
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oscillator analysis, and since Re{Y,} may be frequency
independent, simultaneous solution of (9) with (1) is re-
quired to obtain a matrix equation that is well condi-
tioned with respect to f,. If the augmented set of equa-
tions is limited to this, the degenerate solution will still be
preferred if Im{Y,} is not dependent on V,. Generally
Re{Y,} is then strongly dependent on ¥, so that the
degenerate solution is avoided by also incorporating (8)in
the augmented set of equations. Note that stable oscilla-
tions are obtained when the amplitude increases suffi-
ciently to vary the driving point admittance of the nonlin-
ear element so that Y, = 0. Solution of the augmented set
of equations is discussed in Section III.

III. SystEM ERROR MINIMIZATION ALGORITHM

The most efficient way to solve the augmented system
equations is to cast the problem into the minimization of
an objective function:

f(x)=M(x)x—y (12)
and use Newton’s method to iteratively obtain the zero of
this function. The iterative process of Newton’s method
applied to (12) is represented as

My =lx =71 ('x) f(x) (13)
where ‘x is the independent variable vector at the jth
iteration, J is the Jacobian matrix of f, and J~! is its
inverse. For nonautonomous circuit analysis, vector x is

composed of the node voltages and edge currents, and is
structured as

T
X=[xgx1T--'x,f“-x,T(]

(14)
where x, is a subvector of x at the particular radian
frequency w,. Similarly, vector f (“x) is composed of the
elements of the difference vector between the indepen-
dent source vector y and the induced source vector y(‘x)
= M(’x)’x, and has the same structure as x in (14):

. . . . . T
FOx)=[fE0x) FT0x) - fECUx) - fECD)]

(15)

If P+1 node voltages and Q +1 edge currents are se-

lected as independent variables and, for efficient calcula-

tion, complex elements in x and f(‘x) are separated into

real and imaginary parts, the structures of the subvector
x, and f,(/x) for k #0 are

xk:[VO.k,r Vori Vikr Vigi®:

T
L, Towi'Toxs lor: (16)

‘Vp,k,r VP,k,i

and
FOx)=[To 4 ,0x) TouiUx) Ty s, (%)
Jl,k,i(jx) te ‘,P,k,r(jx) JP,k,i(jx)

EO,k,r(jx) EO,k,i(jx) the EQ,k,r(jx)

EQ,k,i(jx)]T (17)
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respectively, where the variable voltage (or current)
phasor at node n and radian frequency o, is V, ;=
Vikr+WVii 8 Lg=1, 4, + jI, .»); the source cur-
rent (or voltage) phasor J, , (or E, ;) is similarly defined.

For oscillator circuit analysis, the structure of x; has to
be changed, as the fundamental frequency, f, is an
additional variable. Here the imaginary part of the funda-
mental voltage at node N (shown in Fig. 1) in (16) is
replaced by f, (and so the phases of node voltages are
referred to the phase of the edge voltage of the load
element). Placing the node voltage of the load element in
the first position of (16), the subvector x, in (14) for
oscillator analysis is constructed as

xl:[VO,l,r fi Viir Viim Vear Ve
IO,l,r 10,1,5"'IQ,1,r IQ,],[]T' (18)

Likewise, the subvector f,(“x) in (15) is reorganized by
replacing the element J,, (’x) in f,(’x) (corresponding
to the variable f, in x,) with Im{Y;} from (9), and by
replacing the element Jg; ,(x) in f,(’x) (corresponding
to the variable f, in x;) with Re{Y}} from (8):

fl(jx)=[Re[Yl(jx)} Im{Yl(ix)} ]l,l,r(jx)
]l,l,i(jx) c JP,l,r(jx) JP,l,i(jx)
EO,l,r(jx) EO,l,i(jx)

T EQ,I,r(jx) EQ,l,i(jx)]

T (19)
A. Formulation of the Jacobian Matrix

The Jacobian matrix J(‘x) is composed of (K +1)X
(K +1) different blocks:

Jo,o(jx) Jo,l(jx) JO,K(jx)

. Jl,O(ix) Jl,l(jx) JI.K(jx)
J('x)= . (20)

JK,o(jx) JK,lijx) JK,K.(jx)

Each block matrix J, ,(/x) represents the block Jacobian
matrix for input frequency w, and output frequency w,,
and its elements are all possible derivatives of the func-
tions in fq(jx) with respect to the variables in x,. Except
for g =1 or k =1, the structure of J, , is the same as that
for nonautonomous circuit analysis [28]. The only differ-
ence is that some elements of J, , for g=1or k=1 are
replaced by derivatives of voltages and currents with
respect to f,, by derivatives of Re{Y}}, or by derivatives of
Im{Y,}. In the following, equations for calculating the f,,
Re{Y;}, or Im{Y,} related derivatives are presented.

Let J, , (Ux) represent elements of fUx) at node n
and radian frequency w,, where s=r or i indicates the
real or the imaginary part respectively. With the circuit
separated into linear and nonlinear subcircuits, J, £ sU%)
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can be expressed as
Jn,k,s(lx) = JL(n,k,:)(jx) + JNL(n,k,s)(]x) (21)

where Jp, . (%) and Jy;(, i s(’%) are the induced cur-
rents flowing into linear and nonlinear subcircuits from
node n, respectively.

For the linear subcircuit, the derivatives dJ,, es(X)/
af, are calculated numerically using the secant method
[29]. The linear portion of the system equation (1) can be
extracted to calculate the linear current J;, rs(UX) at
W
k=1,2,-,K

MIjD(k,k)xk = yL(k)(jx)7 (22)

where M;p; s is the linear part of the diagonal block
matrix M, ,(’x) of the modified nodal admittance matrix
M(x) at w, and is a function of w,; frequency f; is not
included in’x,; and J;, 4 ,,(’x) are elements of YL x).
Indeed Mip iy k=1, -, K, is the entire linear portion
of M(’x), as linear components do not contribute to
frequency conversion represented by Mq,k(’:x), q # k. Af-
ter calculating the derivatives 8J;, i ('¥)/9f, (k=
1,---,K) by applying the secant method to (22), the
derivatives 3J, , ¢ ,(’x)/3f; (k=1,---, K) which are re-
quired in the Jacobian matrix can be obtained as

aJL(n,k,s)(jx)/afl = k[a]L(n,k,s)(ix)/afk] . (23)

The contributions Jy(, ¢.("*¥)/3f, from the nonlin-
ear subcircuit are calculated for each element. If the
nonlinear element is a resistor, voltage-to-current trans-
ducer, or any other frequency-independent element, any
derivatives with respect to f; for that element should be
zero. However, for a nonlinear capacitor,

a‘INL(n,k,x)(jx)/afl—__JNL(n,k,s)(jx)/fl (24)
and, for a nonlinear inductor,
aJNL(n,k,s)(jx)/afl == JNL(n,k,s)(jx)/fl' (25)

In addition to the derivatives aJ, , [(’x)/df,, some
Re{Y,} and Im({Y;} related derivatives, such as
aIm{Y,}/dV, , , or 3Im{Y,}/3f,, are also required. These
derivatives can be obtained from the previously calculated
derivatives:

aRe{Y,} /aV, R m
e{ 1}/ n,k,s c aV;z,k,s

~ o1/ V) oL
Re{n G ) )
(26)
aY,
5Im{Y1}/aV;1.k,s=Im{3V k }
a1/ V) o1,
=Im {Il—aVn’T +(1/V1) 31/;,,k,s}
(27)
Y. al
3Re{y1}/afl=Re{a—fi} =Re{(l/V1)'8711} (28)
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and

aIm{Y,} /of, =1 {0Y1} I {(1/1/)61’ } (29)

m =Im{—}=Im —
we ofy af,

where V,, . , is the node voltage defined in (16); I, and V,

are complex numbers defined in (4) and (5), respectively;

and

I('x) = JO.l,r(jx) + jJO‘l‘i(jx)'

(30)

Independent variables in the system equations include
not only the node voltages and the oscillating frequency
but also the edge currents. Derivatives with respect to the
current variables can be calculated using procedures simi-
lar to those presented in this subsection.

B. Convergence Considerations

In oscillator circuit analyses, the convergence problem
is even more troublesome than in nonautonomous circuit
simulation. One of the reasons is that, in most oscillator
circuits, the active device always operates in a large-signal
condition. In nonautonomous circuit analyses, improved
convergence under large-signal conditions can be achieved
by sweeping the source signal from a low level to the
desired level—the so-called continuation method. How-
ever, in oscillator circuit analysis the large-signal oscilla-
tion condition needs to be simulated directly. Further-
more, microwave circuits are generally designed with
high-Q resonant tank circuits so that near the oscillation
frequency the system error (e.g. the Kirchhoff’s current
law error) can be very large. In the following, two special
techniques, initial frequency setting and fundamental fre-
quency searching, that improve the convergence proper-
ties of oscillator circuit simulation are presented.

1) Initial Frequency Setting: The initial values chosen
for the independent variables x; in (18) strongly affect
convergence properties. Generally speaking, all the node
voltages and edge currents in x, can be randomly initial-
ized within a certain range which can reflect the practical
oscillator output power level (typically, 0-20 dBm), and
the oscillating frequency f; should not be initialized too
far from the actual value. Our experience has shown that,
for an oscillator circuit having the fundamental frequency
foser if f1 is initialized between 0.1 f,,. and 10 f,, there
is a good chance of converging to a solution.

It is recommended that several different initial f; val-
ues be tried until a solution is acquired, since there are so
many factors (e.g. both I, and V; in (9) converging to low
levels) which will cause convergence failure. In the mini-
mization algorithm used here, after an estimated funda-
mental oscillating frequency range is given (such as from
fiow 1O frign in Fig. 2), the estimated frequency range is
divided into 30 segments equally spaced logarithmically.
In the circuit analysis, the first initial value of f; is set to
be the center point, f,, in Fig. 2. If convergence fails, for
whatever reason, the simulation will automatically restart
by resetting the initial value of f, to f,. Then, the next
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f!ow fe fc fn fb fd fMgh

Fig. 2. The sequence of the initial fundamental frequency settings.

one is set to f,. This process continues until convergence
is obtained or the initial frequency has shifted to the ends
of the frequency range.

It should be noted that the estimated frequency range
(from fio, t0 fng, in Fig. 2) is for initializing f, only.
Once an initial value of f, is set and the Newton iterative
procedure is in process, the required updated value of f;
is not restricted to this range. Also, the initial value of f,
need not be very close to the actual oscillating frequency.
Starting with an initial guess of 5 GHz and converging to
an actual operating frequency of 10 GHz is a common
situation. However, choosing f, closer to the actual oscil-
lation frequency has little effect on simulation time.

2) Fundamental Frequency Searching: Since most oscil-
lator circuits operate under large-signal conditions and
the active device is generally strongly nonlinear, the error
surface for the oscillator analysis formulated in the vector
f is much more complicated than that for nonau-
tonomous circuit analyses. Therefore, another way of
improving the convergence ability is to first decrease the
number of harmonics so as to simplify the error surface
and then restore it to the desired value gradually. In our
implementation of oscillator analysis, we first consider the
fundamental frequency and, when convergence has been
obtained, repeat the analysis with the second-harmonic
signal present. After repeating this process and obtain-
ing the convergence with the third-harmonic signal pres-
ent, the number of harmonics is then increased to the
maximum number specified by the user. Note that if a
Fourier-transform-based harmonic balance method is
used, it is important to use oversampling to avoid aliasing
[30] when a small number of frequency components are
used.

IV. OsciLLATOR DESIGN

A Ku-band GaAs MMIC dual-varactor tuned FET os-
cillator was experimentally characterized and used to
provide experimental verification of the oscillator nonlin-
ear analysis technique. The design of the oscillator is
described in [31], and the layout and schematics are
shown in Figs. 3 and 4. The bias networks were designed
to present broad-band open circuits to the FET so that
the bias voltages were applied directly to the FET. The
drain matching network was designed to transform the 50
Q characteristic impedance of the output microstrip line
so that a constant 15 Q was presented to the drain of the
MESFET. Broad-band coverage was obtained by first
sweeping the reverse bias voltage on the varactor diode in
the source leg and then sweeping the reverse bias voltage
on the varactor diode in the gate leg. Thus, first decreas-
ing impedances were presented to the source of the FET
and then decreasing impedances were presented to the
gate. The linear circuitry was designed so that optimum
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MMIC

VARACTOR
VARA%T% R 2

GATE

Capacitors
BR Thin film resistor

Fig. 3. Device layout of the TI EG8132 GaAs varactor-tuned FET
oscillator.

@t | 6
o—| Blas MESFET H NERAIN
VGG NETWORK wires

S| Ry

DRAIN
BIAS
SOURCE | (trima;| | NETWORK
BIAS
NETWORK
T [
I |
| Rass | Voo
1 I
| |
v Lcy, 1 SOURCE
h |\VARACTOR

.

-—

ribbon,

L Crvar

Fig. 4. Schematic of the TI EG8132 GaAs varactor-tuned FET oscilla-
tor. The ribbon and wire elements were modeled by a resistor and
inductor in series. The trlms element is a microstrip transmission line.

source and gate impedances were presented at the low
end of the tuning range and also at the high end. A
unique varactor structure, detailed in [31], was realized to
maintain high Q of the varactor diodes at large reverse
biases. This avoided a frequency hole initially observed at
intermediate tuning voltages using a conventional varac-
tor structure. Assuming that the bias networks are ideal,
the oscillator is modeled by about 35 linear elements in
addition to the active devices. Including the bias net-
works, the oscillator is modeled by about 100 linear
elements.

t
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TABLE 1
PARAMETER VALUES OF THE GATE AND SOURCE VARACTOR MODELS
v THE TT EG8132 OscILLATOR

Gate Varactor Source Varactor

b -80V -60V
ay —-0.54x10712 —0.09%x 10712
a, 23x107° 4.783x 10710
a, ~8.7938%x 1078 —1.4703x10~8
a, 1.4x107° 1.8351x 1077
as —1.0458x107° —-1.0475%x107¢
ag 3.048x107° 2.3177x107°
1.5 — — T |
28
—1| —
\
A‘\
1.0 -4 -
. A
L \
Q — —_
~ o
o
0.50+ -
Aridops - —
Source
0.0 ] ] ] | | !
00 20 40 60 80 10. 12, 14

REVERSE BIAS (V)

Fig. 5. The caiculated equivalent capacitances (curves) from the mod-
els and the measured data (points) for both gate and source varactors of
the TI EG8132 oscillator.
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TABLE 11
PARAMETER VaLUEs oF THE MESFET MobEL 1N THE TI EG8132 OscILLATOR
Parameter Value
Agy 0.0698
Ay 0.0291
A, -0.00183
As —0.00132
y 1.632
B 0.0684
vy 30V
b 6.0x10712
I, 1.0x107°A
n 7.0
Ve 20V

100.

80.

__60.

<

E

3 40

20.

0.0 *

0.0 100 200 300 400 500
Vas (V)

Fig. 7. The calculated i, (curves) from the MESFET model as a
function of v, at v,y = -3, —25, =2, -15, -1, -0.5, 0, and 0.5 V.
Points are the measured data.

V. ActiviE DEVICE CHARACTERIZATION

Each varactor diode was modeled as series-connected
resistor and nonlinear capacitor. The capacitances, the
major frequency tuning factors, were modeled to fit the
measured data using a negative-ordered power series:

C=ay+ay(V-b)"?

+a;(V=b) "+ +a,(V-b)"" (31)

Here V is the applied reverse bias voltage, and a and b
are constants. This equation was fitted to measurements
using a least-squares. technique yielding the parameter
values listed in Table I. The capacitances calculated using
the model are compared with the measured data in Fig. 5.

The MESFET was modeled using the equivalent circuit
shown in Fig. 6, which is similar to the one used in the
Curtice model [32]. The only difference is that the ele-
ment R, which is an individual element in the Curtice
model, is merged with the drain—source current genera-
tor, i ,,. The nonlinear elements of the model are defined

as ,
igs = To(e's/ D —1) (32)
ige = Io(ees™ "R/ VT 4 1) (33)
and
igy=(Ag+ A, + A+ Ai)tanh (yv,), (34)
where

ul=vgs(t—ﬁr)[l+ﬁ(Vd2—vds)]. (35)

Table II lists all the parameter values of (32)-(35). The
calculated i, curves using model (34) and (35) are com-
pared with the measured data in Fig. 7. A simplified
circuit diagram is shown in Fig. 4.

V1. SimuLATION RESULTS AND DiscussioN

The oscillator analysis algorithm was implemented in
the microwave analog circuit simulator FREDA2 [28],
[30], [33]. Linear elements are analyzed using the modi-
fied nodal admittance matrix, and the nonlinear elements
are analyzed using the arithmetic operator method
(AOM)—a frequency-domain spectral balance method
[33] or the discrete-Fourier-transform-based harmonic
balance method similar to that described in [34]. This
program was used to investigate the TI EG8132 VCO
from Texas Instruments. This VCO was previously ana-
lyzed using the method of Rizzoli et al. [35], [36].

In the first simulation to be presented, the gate, source,
and drain bias networks were treated as ideal—present-
ing open circuits to the MESFET at all frequencies but
dc, when the external bias voltages were applied directly
to the MESFET. The dashed curve in Fig. 8 shows the
simulated fundamental oscillation frequency with respect
to the total tuning voltage, V; (the sum of the gate and
source tuning voltages), applied to the gate and source
varactor diodes. The points are measured data and the
solid line is the result using the complete circuit (includ-
ing the actual bias networks). During the simulation, the
tuning voltage is applied to the source varactor first. After
the reverse bias of the source varactor has changed from
1 V to 13 V, the reverse bias of the gate varactor in-
creases from 0 V to 15 V. The predicted frequency curve
without the bias networks is closer to the measured data.
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Fig. 8. The simulated fundamental oscillation frequency versus the

total tuning voltage, V7. Solid line is for the complete oscillator circuit;
dashed line is for the core circuit; and points are measured data.
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Fig. 9. The simulated output power at the fundamental frequency
(a) and at the second (b), third (c), and fourth (d) harmonics. Solid
lines are for the complete oscillator circuit, dashed lines are for the
circuit with ideal bias networks, and points are measured data.

However, both results deviate less than 500 MHz ( < 3%)
from the measured data.

Fig. 9 shows the simulated output power delivered to
the 50 ) microstrip output line at the fundamental and at
the second, third, and fourth harmonic frequencies. As
before, solid lines and dashed lines are for the complete
circuit and the circuit with ideal bias networks, respec-
tively. The points are measured output power at the
fundamental frequency. The results obtained using the
Fourier-transform-based harmonic balance method in the
nonlinear analysis were virtually identical to those ob-
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tained using the frequency-domain spectral balance
method. From Fig. 9, the oscillation tuning range can be
accurately predicted. Although, because of the modeling
inaccuracy, some differences have been shown in both
Figs. 8 and 9 between the predicted values and the
measured data, in general good agreement is seen. Most
of the discrepancy is due to modeling inaccuracy, particu-
larly the modeling of the MESFET at the waveform
extremities—(low [, high V,) and (high I, low
V,,)—and the modeling of bond wires and ribbons.
Simulated results in Figs. 8 and 9 were performed by
sweeping the reverse biases of the source and gate varac-
tors, in turn, in 0.5 V steps beginning with a 13 V tuning
voltage—the middle of the range of oscillation. While
sweeping the parameter values during the simulation, the
previous results were used as the initial guesses for the
next simulation. Convergence, in this case, was easily
obtained. However, for the first simulation, the initial
frequency guessed was arbitrary. Several different initial
frequency settings were needed to obtain convergence.
On average, with seven ac frequencies considered and
using the AOM for the nonlinear analysis, the computer
CPU time required to simulate the VCO with ideal bias
networks was about 105 s per point in Figs. 8 and 9, and
the CPU time required for the simulation of the complete
circuit was about 17 min per point. The times were
measured on a DEC DS3100 RISC workstation (rated at
12-13 VAX 11/780 MIPS) and the convergence criteria
were 100 nA total Kirchhoff’'s current law error and
Re{Y,},Im{Y,} <100 nS. Seven harmonics were included
in the simulation, with the seventh harmonic approxi-
mately 40 dB below the fundamental. For the complete
circuit simulation, most of the CPU time is consumed in
the computations for the linear elements, since the nodal
admittance matrix for the linear elements has to be recal-
culated after each iteration as the frequency is updated.
The oscillation tuning range is accurately predicted as
shown in Fig. 9. The rapid drop-off in power at the
extremes of V7 is principally due to drops in the Q’s of
the varactor diodes. The power peaking at low and high
V; is primarily due to the variations of the source and
gate varactor impedances since at low V. the source
varactor impedance is optimum for maximum power
transfer to the load. Similarly the gate varactor impedance
is optimum at large V7. The power peaking was investi-
gated by plotting the drain—source i—v characteristics at
various tuning voltages. Three characteristics are shown
in Figs. 10-12 at V;’s of 3V, 10 V, and 21 V, correspond-
ing to the power peak at low V7, the low-power flat
region at intermediate V., and the power peak at large
Vr, respectively. At V=3 V the reverse bias voltages
across the source and gate varactors are 3 V and 0 V,
respectively, and the fundamentals of the drain-source
current and voltage are approximately in phase, as indi-
cated by the closed i—v locus in Fig. 10. Thus there is
close to maximum power transfer to the load. Also the
origins of the strong harmonics at low ¥ can be seen in
the low 7, and high V, regions. At V; =10 V the source
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Fig. 10. The simulated i, versus v, locus at V=3 V, where the
reverse voltages across the gate and source varactors are 0 V and 3V,
respectively.
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Fig. 11. The simulated i, versus v, locus at ¥ =10 V, where the
reverse voltages across the gate and source varactors are 0 V and 10 V,
respectively.

and gate varactors have 10 V and 0 V reverse bias
voltages. The source impedance has changed significantly
while the gate impedance is virtually unchanged. The
fundamental drain-source current and voltage are no
longer in phase, as indicated by the opening of the i-v
locus in Fig. 11. In this case power is not efficiently
transferred to the load. With 13 V and 8 V reverse biases
across the source and gate varactors, respectively, (i.e., at
Vr =21 V), nearly optimum impedances are again pre-
sented to the gate and source terminals of the MESFET.
Now the fundamental I, and V,;, are almost in phase, as
can be seen in Fig. 12. The discrepancy in the simulated
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Fig. 12. The simulated i, versus vy, locus at ¥y =21V, where the
reverse voltages across the gate and source varactors are 8 V and 13 V,
respectively.

and measured peak oscillation powers is thought to be
due to inadequacies in modeling the MESFET in the low
I, /high V,, and the low V¢ /high I, regions, and in
modeling the Q’s of the varactor diodes.

VII. CONCLUSION

This paper has presented a simulation technique for
steady-state free-running oscillator analysis. The theoreti-
cal basis of the algorithm was described, and it was
implemented using the Fourier-transform-based harmonic
balance method and the frequency-domain spectral bal-
ance arithmetic operator method for nonlinear analysis.
The oscillator analysis technique was used to simulate the
output power and oscillation frequency of a GaAs MMIC
varactor-tuned FET oscillator. Good agreement between
simulated and measured oscillator characteristics was ob-
tained.
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