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fiers, both using coplanar waveguide transmission lines. Mea-
sured gain and return loss data for both amplifiers are shown in
Fig. 5.

VII.

A distributed amplifier is generally least stable in the vicinity
of its cutoff frequency f. The addition of positive feedback
further destabilizes the amplifier. Therefore the maximum level
of positive feedback usable in a given amplifier is limited by the
requirement of unconditional stability of the amplifier near its
cutoff frequency. It is possible to check for this requirement at
the design stage. Another side effect of positive feedback is that it
tends to make the amplifier design more sensitive to parameter
variations. Distributed amplifiers are known for their general
lack of sensitivity to processing parameter variations, resulting in
their high processing yield. With positive feedback the high yield
can be traded off with amplifier gain.

STABILITY AND SENSITIVITY OF THE AMPLIFIER

VIII. CONCLUSION

Simple expressions were derived giving first-order changes in
maximum available gain for an FET with various parallel and
series feedback elements. Transition frequencies were established
showing that the effect of feedback elements on the stability of
an active device can change sign over frequency. It was also
shown that the parallel RC combination used as series feedback
in an FET has a wide-band effect on the available gain of the
device. This effect was used in the design of a 2 to 18 GHz
distributed amplifier to demonstrate the increased gain that can
be achieved over the entire frequency band of the amplifier.
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Enhanced Through-Reflect-Line Characterization of
Two-Port Measuring Systems Using Free-Space
Capacitance Calculation
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Abstract —A  through-reflect-line calibration procedure is presented
wherein the free-space capacitance and propagation factor of the line
standard are used to determine the line characteristic impedance. The
method is applied to measurement of a microstrip via.
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I. INTRODUCTION

At RF and microwave frequencies the calibration of both
vector automatic network analyzers (ANA’s) and test fixturing is
required to accurately determine the scattering parameters of a
device under test (DUT). The most frequently used calibration
procedure for noncoaxial measurements is the TRL (through-
reflect-line) method [1], which uses as standards a through con-
nection, an arbitrary reflection, and a transmission line of known
length and known characteristic impedance Z,. An approximate
determination of Z, can be made using time-domain reflectome-
try (TDR); however, TDR cannot determine frequency variations
of Z, . For example, microstrip Z, can vary by 5 percent from dc¢
to 10 GHz for a typical line {2]. In this paper we present a
method of microstrip TRL calibration that uses the calculated
free-space capacitance and an experimentally determined propa-
gation constant to determine the frequency-dependent complex
characteristic impedance. This impedance is used in the conven-
tional TRL algorithm so that our method is designated enhanced
TRL (ETRL).

II. DEVELOPMENT OF THE METHOD

For uniform TEM transmission lines the characteristic
impedance is related to the free-space capacitance and the effec-
tive dielectric constant by [3]
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where Z, is the dielectric-loaded characteristic impedance of the
line, Z, is its free-space characteristic impedance, C, is the
free-space capacitance per unit length of the line, c is the velocity
of light, and ¢, is the effective dielectric constant. Z, is also
related to the propagation constant y by [4]
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where y =a+ j8 is available from measurement as a by-product
of the TRL algorithm [5]:
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Here A=T11,-T22,+T11,-T22, - T21,-T12, - T12,-T21,. Tj,
and Tij, are the chain scattering parameters [5] of the line and
through calibration standards respectively, and / is the length of
the line standard.

Combining (1)-(3) and taking the negative root,

In

Y=

z--1 (5)
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which is used in the standard TRL algorithm as follows. At each
frequency, all measurements are transformed from the measure-
ment reference impedance to Z, so that the inserted line becomes
reflectionless. Application of TRL then determines the S param-
eters of the error network references to Z_. To complete calibra-
tion the S parameters of the error network are returned to the
measurement reference impedance system (usually 50 ).
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components. Also shown is the characteristic impedance determined using
TDR.

III. RESULTS AND DISCUSSION

ETRL has been applied to the characterization of discontinu-
ities on printed circuit boards (PCB’s). Microstrip lines on PCB’s
are irregular structures and characteristic impedance models are
not available.

Connection to the PCB was made using through-board SMA
to microstrip adapters (Fig. 1), and conventional open-short-load
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50 Q

calibration was performed to establish the coaxial reference
planes. Substitution of the through (/=0) and line (/=2 in)
measurements in (4) yielded y as a function of frequency (Fig. 2).
Here B has been normalized with respect to a free-space S,
where B, = w/c, to reveal dispersion. Fig. 3 is Z_ calculated using
(6), v, and the free-space capacitance per unit length of the line
(the calculation of which is described in [3]).

ETRL was used to characterize the PCB via shown in Fig. 4(a),
which has the assumed # equivalent circuit [6] shown in Fig. 4(b).
The fit of the de-embedded via measurements to this circuit is
shown in Fig. 5. The equivalent circuit is verified at low frequen-
cies as the series element behaves as an inductor and the shunt
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elements as a capacitor, but resonances indicate that the PCB via
model needs to be modified at frequencies above 2 GHz.

IV. CONCLUSION

The determination of the characteristic impedance of the TRL
standards is important since it directly affects the accuracy of the
de-embedded results. The enhancement of TRL presented here
incorporates the frequency dependence of the characteristic
impedance and includes transmission line loss.
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Microwave Hyperthermia Induced by a Phased
Interstitial Antenna Array

YANG ZHANG, WILLIAM T. JOINES, MEMBER, 1EEE, AND
JAMES R. OLESON

Abstract — An interstitial microwave antenna array for hyperthermia
cancer treatment is investigated. The purpose is to generate both uniform
and controlled nonuniform temperature distributions in biological tissue by
modulating the ph of the signals applied to each antenna. The array
has four antennas positioned on the corners of a 2 cm square. The
distributions of absorbed power within the arrays are computed and then
converted into temperature distributions through a heat conduction simula-
tion. The temperature patterns over phantom muscle are presented in both
the lateral plane (perpendicular to the antennas) and the axial plane
(parallel to the antennas). It has been found that, by proper phase
modulation of RF signals applied to each antenna, a uniform heating can
be produced in the entire array volume. Also, a peripheral heating pattern
may be generated around the array, again by using the proper phase
modulation.

I. INTRODUCTION

Microwave-induced hyperthermia has received increased atten-
tion in recent years in the treatment of cancer. The primary
objective for any hyperthermia treatment is to raise the tumor
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Fig. 1. Square array of four interstitial antennas. The radiating gaps of the
antennas are in the lateral plane z = 0, and the definition of the coordinates
is shown. Details of each antenna are discussed in the text.

temperature above 42-43°C for an extended period while keep-
ing the temperature in the surrounding normal tissue well below
43°C. These temperatures can be directly cytotoxic and can
potentiate the effect of radiation therapy (1], [2].

A commonly used heating method is interstitial or invasive
hyperthermia, where thin coaxial dipole antennas, operating at
microwave frequencies (300-2450 MHz), are inserted into the
tissue [3]. The antennas are made from coaxial cables that are
about 1 mm in diameter and have a radiation gap or gaps in the
outer conductor. The antennas are inserted into the tumor through
brachytherapy catheters that are nylon tubes about 2 mm in
outer diameter used for implantation of iridium for radiation
therapy. Through the application of interstitial antennas, various
interesting heating patterns may be obtained by using the con-
structive and/or destructive interference features of the EM
fields radiated from the antennas [4], [5]. By changing the driving
phase of the signal applied to each antenna, the phase-coherent
spot (where constructive interference occurs) may be shifted well
away from the center of a 2 cm square array. By varying the
relative phase between each antenna, sequentially in time, a more
uniform heating pattern may be generated, as well as certain
nonuniform heating patterns that may be required for specific
applications [6], [7]. In this paper, we investigate the techniques
for generating uniform and nonuniform (such as the type in [6]
and [7]) heating patterns for a four-antenna array, as shown is
Fig. 1. Four interstitial antennas are positioned on the corners of
a 2 cm square. The antennas operate at 915 MHz. Theoretical
calculations of S4R and thermal conduction are performed using
properties of phantom muscle tissue. Therefore, the predicted
temperature distributions do not represent what they would be in
perfused tissue; rather they show what can be accomplished with
the phased interstitial antenna arrays when blood flow is ne-
glected.
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