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TABLE 1
CoMPARISON OF THEORETICAL RESULTS FOR THE MICROSTRIP
ATTENUATION CONSTANT, EXCLUDING GROUND LOSSES,
wITH EXPERIMENTAL REsuLTs REPORTED
BY HyLTIN [16}

Thickness,t Atten., a(dB/cm) Atten., a(dB/cm)

(um) (Experiment [16]) (Present Method)

(No ground losses)
0.254 1.00 0.881
0.508 0.58 0.566
1.524 0.39 0.354
1.778 0.35 0.340
2.286 0.34 0.324
10.160 0.27 0.283

TABLE 11

CoMPARISON OF THEORETICAL RESULTS FOR THE MICROSTRIP
ATTENUATION CONSTANT, INCLUDING GROUND LOSSES,
wITH EXPERIMENTAL RESuLTS REPORTED BY HYLTIN [16]

Thickness,t Atten., a(dB/cm) Atten., a(dB/cm)
(um) (Experiment [16]) (Present Method)
- {With ground losses)
0.254 1.00 0.893
0.508 0.58 0.577
1.524 0.39 0.364
1.778 0.35 0.350
2.286 0.34 0.335
10.160 0.27 0.293

glected. In the second case, Table II the ground losses were
included. Our results in these tables are in good agreement with
Hyltin’s measurements.

IV. ConcLusioN

The effect of the strip conductor thickness on the attenuation
constant of microstrip transmission lines has been investigated.
Our numerical results are in good agreement with experimental
ones obtained from the literature. In agreement with previous
studies, it is found that the attenuation is indeed minimized
when the thickness to skin depth ratio is about 2, but this is true
only for microstrip lines with very large W /H ratios, which are
very rarely of any practical interest. We conclude that, for most
practical microstrip structures, one cannot rely on a thickness of
two skin depths to minimize the attenuation due to conductor
losses.
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Frequency-Domain Nonlinear Microwave
Circuit Simulation Using the
Arithmetic Operator Method

CHAO-REN CHANG anp MICHAEL B. STEER, MEMBER, IEEE

Abstract —A frequency-domain spectral balance technique for the
analysis of microwave circuits with analytically modeled nonlinear de-
vices is developed. The technique uses linear matrix transformation of
spectra to perform basic arithmetic operations—multiplication and
division—in the frequency domain, and is termed the arithmetic opera-
tor method. A single MESFET amplifier described by the Curtice model
is simulated with one- and two-tone excitations using this novel tech-
nique. Excellent agreement is obtained when compared to the results
simulated using the conventional harmonic balance method.

1. INTRODUCTION

The analysis of nonlinear microwave circuits using frequency-
domain spectral balance (FDSB) has been investigated in sev-
eral different ways, which have included Volterra series expan-
sions [1], [2], algebraic functional expansions [3], [4], and power-
series expansions [5], [6]. In general, compared with the conven-
tional harmonic balance (HB) hybrid methods, the FDSB tech-
niques have a larger dynamic range and can be practically used
with multitone excitations. However, most FDSB methods are
restricted to series representations of nonlinear elements. This
has been the major restriction to the widespread use of FDSB
techniques. In this paper, we demonstrate a newly developed
frequency-domain nonlinear circuit analysis technique, the arith-
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metic operator method, which is an extension of a generalized
power series analysis previously published [7]. Two basic spectral
operators—multiplication and division—are introduced. Com-
bined with spectral addition and subtraction, these operators
perform their respective arithmetic operations entirely in the
frequency domain. Consequently, nonlinear elements described
by arbitrary analytic functions in addition to the series represen-
tations can be simulated. In Section I, a frequency-domain
form of the Curtice MESFET model is presented. Using this
model, an FDSB analysis of a MESFET amplifier is compared
with a conventional harmonic balance analysis.

II.  AriTHMETIC OPERATOR METHOD

The arithmetic operator method (AOM) uses basic arithmetic
operations on signal spectra in the frequency domain. Here a
time-domain signal x is represented in the frequency domain by
a spectral vector x, defined as

x:[XoerrXu'"Xerkf"'XKrXK1]T (D

where the frequency-domain components of x are truncated at
the radian frequency wy and need not be harmonically related.
X, represents the real part of the frequency component of x at
wy, and X, is the imaginary part of this component. The phasor
of the kth spectrum component is X, = X, + jX,,. The spectral
vectors y and z of the time-domain signals y and z are similarly
defined. The basic operations y = x + z are implemented in the
frequency domain as

y=xztz.

(2)

The derivative forms of these operators are equally straight-
forward. If y, x, and z are all signal u dependent, then the
derivative of x with respective to the kth component of u
(defined as x in (1)) is

ik,q = [‘;XOr/aUk‘q aX]r/aUk,q aX]i/aUk,q

T
w0Xy, /U, aXKi/aUk,q] (3)

where g =r or i indicates the real or the imaginary part. With
the spectral vectors y, , and 2, , similarly defined, the deriva-
tive forms of spectral addition and subtraction are

4

Spectral addition and subtraction, and their derivatives, are
straightforward as they involve addition or subtraction of the
corresponding elements of the spectra operated on. However,
more complicated operators, such as multiplication and division,
do not only involve corresponding elements, and so the spectrum
mapping function and the spectrum transform matrix must be
introduced.

Yia = Xi,gt 2k -

A. Spectrum Mapping Function

In general, a spectrum contains dc, fundamental, harmonic,
and intermodulation components, and there is a simple arith-
metic relationship of the frequencies of the commensurable
spectral components. Here we use a spectrum mapping function
to relate the components of the output spectrum to the spectra
of two inputs where the output is the product of the two inputs.

Table I is an example of the spectrum mapping function,
where y = xz is the system output and x and z are inputs.
Three frequency components fy(=dc), f), and f,(=2f,) are
considered here; k,, k., and k, are frequency indices for the y,
x, and z components; and s, and s, indicate signs so that
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TABLE 1
AN EXAMPLE OF THE SPECTRUM MAPPING
FUNCTION FOR THE Basic OPERATION

y=uxz

¥ z z
ky k. 8z k, 3,
0 +1 0 +1
0 1 +1 1 -1
2 +1 2 -1
0 +1 1 +1
1 1 +1 0 +1
1 -1 2 +1
2 +1 1 -1
0 +1 2 +1
2 1 +1 1 +1
2 +1 0 +1

fe,=Is:fi +5.fi | The k,th component of the output is then

Yo~ LeX(Z (%)
where
1
e={3 ifk,#0and k,#0 (6)
1 otherwise
and the k th component of x is
X, s =+1
X"’x={X;§ if 5, =~ 1. ™

The term X;* is the complex conjugate of X ; Z; is similarly
defined; and ‘the summation in (5) is over all rows of the table
with the same k. The spectrum mapping function is determined
using a simple computer program.

Consequently, for a time-domain operation y = xz, the spec-
tral vector y can be calculated using (5) and the spectrum
mapping function as the linear transformation:

y=T,z.
Here the transform matrix 7, is determined using both the
spectral vector x and the spectrum mapping function.
B. Spectrum Transform Matrix

The spectrum transform matrix of x,7,, is a matrix formula-
tion of the spectrum mapping function for the operation y = xz
so that
(¥
T, is formulated using the spectral vector x and its spectrum
mapping function only. Element values of T, are determined by
X, €, and s, and the location of each element in the matrix is
determined by k, and k,. T, is determined using the following
algorithm:

y=T.z.

N :=the total number of rows of the spectrum mapping
function;
Tli,j]1=0,(0<i<2K+1,0<j<2K+1)
for n:=0 step 1 until N -1 do
begin
if k., #0 and k_ # 0 then € = 0.5 else € :=1.0;
T[2k,,2k,]:==T[2k,,2k 1+ €X, ,;
Tl2k,,2k, +1]=Tl2k,, 2k, +1]- 5,8 €X; i
T2k, +1,2k,]:= T2k, +1,2k ]+ sc€Xy i
T2k, +1,2k, +1]="T[2k, +1,2k_+ 1]+ s, €Xy 1
end n loop;
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Since the imaginary part of the dc signal is always zero, the
second row and the second column of the matrix formulated
using the above algorithm are deleted, and the size of 7, is then
(2K +1)X (2K +1). So for the example in Table I,

2X0r Xlr Xlz X2r X2i

1 2X,, 2X, + X, X5i Xir Xy

Tx=5 2Xy; Xy 2X0r—X2r - Xy Xy,
2X,, X, - Xy 2Xo, 0

2X5 Xy Xy, 0 2X,

©

Thus, in the frequency domain, the multiplication operation
y=2xz is

y=T.z2=T,x

(10)
and its derivative form is

Yigq=Tedp g+ T % 4

an)

The spectral division operation is obtained by interchanging y
and z. If x is not equal to zero and T, is a nonsingular matrix,
the frequency-domain form of the division operation y =z /x is
then

(12)

and its derivative form is

(13)

Efficient circuit simulation uses Newton’s method to itera-
tively achieve spectral balance. The Jacobian matrix required in
this procedure can be calculated using (4), (11), and (13). How-
ever, for weak to moderately strong signals, the Jacobian matrix
of the spectral vector y with respect to the spectral vector
variable x can be evaluated more efficiently and approximated
as

."’k,q = T;‘(z',(yq - Ty“ek.q)'

Jy(x)=Ty’ (14)

where y’ is the spectral vector of the derivative of the time-
domain analytic function y, dy / dx. This approximated Jacobian
matrix is suited to the block Newton convergence scheme [7],
where the exact full Jacobian matrix is not always required.

Equations (2), (10), and (12) represent four basic frequency-
domain operators: spectral addition, subtraction, multiplication,
and division. Theoretically any analytic function can be evalu-
ated in terms of spectral vectors using these basic arithmetic
operators. However, they have widely varying calculation effi-
ciencies. Spectral addition and subtraction involve only the
straightforward addition or subtraction of the corresponding
elements of two vectors. Spectral multiplication requires the
formulation of a matrix and then the multiplication of a matrix
and a vector. Spectral division, however, is an expensive opera-
tion and its use should be minimized as it also requires matrix
inversion.

III. Tue Curtice MESFET MobEL

The equivalent circuit of the Curtice MESFET model [8],
shown in Fig. 1, is commonly used in the harmonic balance
analysis of MESFET amoplifiers. In this form of the model, C,,,
Cys, and C,, are linear and the diodes and transconductance
are nonlinear. I is modeled as [8]

@15)

Ids =lgs + Lds
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Fig. 1. Equivalent circuit of the Curtice MESFET model.
TABLE II
THE ELEMENT AND PARAMETER VALUES OF THE
MESFET AMPLIFIER
Element Value Parameter Value
Cgs 0.52785 pF Ay 0.016542
Cys 0.25137 pF Ay 0.0500214
qu 0.087 pF Ay 0.02012
Rq 390 43 —0.00806592
Rip 10 Q ¥ 2.16505
Rs 240 As 1.0 x 1072
R, 530 ] ~0.0394707
|73 1.0V
Ry, 218.5 1
Iy 1.0x10°° A
Va 15V
where
. 3
zds=(A0+A,vl+A2v12+A3v1)tanh(yvds) (16)
dc
Vas — Vs
ig=—— 1n
rds Rds
and
—jor 0 =
vy =v,e [1+B(Vds_vds)]’ T=Asw,. (18)

In (15)-(18), the time-domain variables i, i,45 U1, Ugs> and Uy
are represented by their spectral vector forms, and (15)-(18) are
evaluated using the spectral operators.

In [8], the forward-biased gate currg,nt igs and the drain-gate
avalanche current i,, are described by piecewise-linear equa-
tions. For analytic modeling, we describe these by the Shockley
diode equation:

i85=10(e"ﬂ"/"771) (19)
and the exponential function:
igy=Io(e®=™ "R/ VT +1) (20)

where Vi, is the drain-gate reverse breakdown voltage. The
values of the linear components and the coefficients in (16)—(20)
are listed in Table II.

In the following, the frequency-domain modeling of the
Shockley diode equation, the hyperbolic function, and the time
delay calculation is presented.
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A. Shockley Diode Equation

The exponential function e* in (19) and (20) is approximated
as

) x 1/ x\2 1/ xy\"]" )1
Fellt |+ — (=
¢ 2" 2(2") n!(2") oo (2D)

where the approximation error for # > 6 is less than 0.01% over
the range —30 < x < 30.

The Jacobian matrix of i,, with respect to the variable vector
is

Vo

J =T, , (22)

&s I

Vi = diy /dv,,

where y; is the spectral vector of the time-domain variables
Yir The Jacobian matrix of i 4¢ 18 similarly calculated.

B. Hyperbolic Function

The hyperbolic tangent function tanh(x) can be expressed as
tanh(x) = (1-y)/(1+y) (23)

where y = e 2% and the Jacobian matrix of the function tanh(x)
is

Jan=T,,  z=4y/(1+y)" (24)

C. Time Delay Calculation

In (18), v e™" represents the time-delayed gate—source
voltage v, (f — ) in the frequency domain, in which r, in the
Curtice model, is a function of the drain-source voltage Ugse
This time-delayed signal can be calculated in the frequency
domain as follows. If the time-domain signal z represents the
time-delayed signal x(t — y), where y is a variable, then z is the
real part of the summation of the frequency-domain compo-
nents of x with their individual phase delays:

K
z=Re{ Y Xke""k‘e’f‘"*y}. (25)
k=0
The spectral vector z of z is
K
z=) X,elorteiony, (26)
k=0

Since the spectral vector e/ in (26) contains a complex dc
component, it cannot be evaluated using (21) and be multiplied
by X,e’“*' using the operator (10). Instead, it is calculated as

e = cos (g y) — jsin (o, y) 27
and (26) is expressed as
K
2= ¥ (Xpelfe o}, + Xpelon(e %)
k=0
K
= XL (A +By) (28)
k=0

where {e7/“«’};  represents the dc component of the spectral
vector e /¥ and is normally a complex number; {e /<)
represents the ac part and is in a spectral vector form as defined
in (1) with a zero dc component. The trigonometric functions in
(27) are evaluated using their power-series expansions. With the
small value of time delay, a two- or three-term power series is a
good approximation. Thus the spectral vector of the time-delayed
signal x(f — y) can be performed by calculating A, and B, in
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Fig. 2. Comparison of the simulated output power of the single-tone test
for the MESFET amplifier using AOM (solid line) and harmonic balance
method (dashed line). Shown are the power output at the fundamental (1),
the second harmonic (2), and the third harmonic (3) as a function of the
input power.

(28); A, is a single-tone signal having amplitude X,{e /+’},,
and radian frequency w,; B, is a spectral vector evaluated from
the term X, e/“s{e /«¥} _using the spectral operator (10).

IV. REesuLts anp Discussion

Single-tone and two-tone input excitations were used in turn
to verify the arithmetic operator method of frequency-domain
spectral. balance using the MESFET amplifier of [5]. These are
compared with the results of an HB simulation using the almost
periodic discrete Fourier transform method (APDFT) [9], [10).
With the APDFT-HB method, the time- and frequency-domain
nonlinear signals were oversampled to match the accuracy level
of that obtained using AOM [11].

Fig. 2 shows the simulated fundamental, second, and third
harmonics obtained using AOM (solid line) and APDFT-HB
(dashed line) for single-tone excitation. The AOM and APDFT-
HB results are almost indistinguishable. With 0 dBm input
power and six harmonics considered, the total simulation time
for AOM was 0.6 s on a DEC DS3100 RISC workstation (rated
at 12-13 VAX 11 /780 MIPS).

The two-tone test was set for f, o =2.4 GHz and fpp=2.35
GHz. Fig. 3 shows the simulated IF (50 MHz) output power as
a function of RF input power. The local oscillator signal was
set at —3 dBm, and the RF power varied from —150 dBm to
—5 dBm. With a —5 dBm RF signal and second intermodula-
tion order (6 ac, 1 dc) considered, the total simulation time
using AOM was 0.7 s. As shown in Fig. 3, the simulated results
using the AOM (solid line) and the APDFT-HB method (dashed
line) agree for large RF signals. However, at low RF levels, the
simulated IF power using the APDFT-HB method deviated
from the theoretical straight line and asymptotically approached
a constant. The limited dynamic range is inherent in APDFT-HB
simulation schemes and is not simply due to frequency trunca-
tion [12]. The ultimate dynamic range of an APDFT-HB scheme
is determined by numerical accuracy as, in the time domain, a
very small signal superimposed on the waveform of a large
signal must be representable and then captured by the Fourier
transform. In other words, very low level intermodulation distor--
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Fig. 3. Comparison of the simulated IF output power of the two-tone test

for the MESFET amplifier using AOM (solid line) and harmonic balance
method (dashed line). LO power is fixed at —3 dBm.

tion cannot be handled in the presence of a large signal. In
contrast, the dynamic range of AOM is determined by the
effective accuracy of the Jacobian matrix in the Newton itera-
tion scheme, and here it exceeds 470 dB on the DEC DS3100.

V. CONCLUSION

In nonlinear analog circuit simulation using the arithmetic
operator method, the nonlinear device models are not limited to
the series type. This removes the major restriction of frequency-
domain spectral balance techniques. Any analytic model can be
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represented in the frequency domain so that multitone, high-
dynamic-range simulation of nonlinear microwave circuits is
practical.
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