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constants, we have
9%, _ oty _ a5,

5, a5, Ta fr=r (14
where I is the identity matrix. Similarly
a%" = (15)
28

If we define 8, =[8,,,], = 8,1, the operation I, in (13) is
nothing more than the Fourier transform of f, and the NFFT
can be used to efficiently accomplish the transform. We note that
a single column, ﬁ,,,’,,, of the two-dimensional matrix ﬁ,, is of the
same size as the data vector §,. So the premultiplication of ﬁ"’"
by I' in (13) corresponds exactly to the operation in (3), and the
same transform and data structure used for the circuit variables
can be used in determining the frequency-domain derivatives.
Thus (13) is accomplished for the mth frequency of X, by use of
the transform operator

ay, [ 3y,
i ax]" # (), (16)

where 3Y, /X, , is an N-dimensional matrix from which the
elements of the Jacobian can be extracted. Again, the matrix B, n
(and thus dY, /3 X,, ,) is the same size as the data matrices x,,
X,, y,,and Y,.

When Newton’s method is accomplished using strictly real
quantities, the following four quantities must be computed:

dRe(Y,
W= i) (1)
' aRe(Xm.n)
dRe(¥)
RI, "
- 1
lm.” aIm(XM.") ( 8)
dIm(Y,)
IR, n
. L L 19
I = IRe(X, ) (19
n. dIm(Y, »
‘Im‘”— aIm( Xm.n) ( )
but the procedure (16) produces the quantity
'g(pm.n) =Rij.n +".im.n + j(RIjm,n +1ij‘n) (21)

gnd the individual coIInponents cannot be recovered. We form
Bu..=Re(B, ) and B, ,=Im(B, ) as

*B....=g.Re(L,") (22)
and
Iﬁm.ll=gﬂIm(Tﬂ:])' (23)
Then following (16) we get
F(“Buo) =i+ (24)
F(Bus) ="+ 1 (29)

from which the needed derivatives are available.

V. DiscussioN AND CONCLUSION

Equations (24) and (25) can be efficiently implemented in a
circuit simulator since no matrix multiplications are required.
The operations in (22) and (23) are scalar multiplications. This
results from the fact that the nonlinear constitutive relations are

algebraic (g, = 39, /%, is a diagonal two-dimensional matrix).
The v, are constants and need be computed only once per
simulation. However, the values of g, are dependent on the
nonlinear constitutive relations and so they change from iteration
to iteration. For each iteration they are computed once and are
then used in determining all the 8, , in 8,. The major operation
is the multidimensional Fourier transform, which is performed
once at each frequency of X,,.

The method presented for evaluating the Jacobian permits the
use of the efficient NFFT algorithm in conjunction with Newton’s
method for the harmonic balance analysis of nonlinear analog
circuits. This procedure has been implemented in FREDA, a
general -nonlinear circuit simulator. The MESFET amplifier cir-
cuit of Chang e al. [4] was driven by two incommensurate input
signals, one at 0 dBm and the other at 5 dBm, and simulated
using 14 analysis frequencies. The time-domain element response
was oversampled [5] so that the transform contained 26 frequen-
cies. The solution was obtained in 1.1 s after 11 iterations using a
modified Simanskii method on a DEC DS 3100 workstation. The
equivalent simulation using a matrix multiplication based trans-
form (APDFT) required 3.8 s.
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Harmonic Balance and Frequency-Domain Simulation
of Nonlinear Microwave Circuits Using
the Block Newton Method
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Abstract —An efficient algorithm using block Newton and chord meth-
ods is presented for the iterative minimization of the spectral balance error
in the analysis of nonlinear microwave circuits. This algorithm is used in
the harmonic balance and frequency-domain spectral balance simulation of
a MESFET amplifier with single-tone and two-tone excitation.

I. INTRODUCTION

Methods of nonlinear microwave analog circuit analysis can be
classified by the nature of the linear and nonlinear subcircuit
calculations: time-domain methods, where all elements are ana-
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Fig. 1. A nctwork partitioned into a linear subcircuit and a nonlinear

element.

lyzed in the time domain; frequency-domain methods, where all
elements are analyzed in the frequency domain; and hybrid
methods, including the harmonic balance methods, which com-
bine time-domain and frequency-domain analyses.

Most time-domain nonlinear circuit simulation methods are
not suited to microwave applications [1]. Consequently the har-
monic balance (HB) technique, which interfaces the frequency-
domain analysis of the linear part of a circuit with the conven-
tional time-domain analysis of the nonlinear part of a circuit, is
increasingly being used. A significant amount of research in this
field has been published {2]-[10], and the HB method is becom-
ing a preferred nonlinear microwave circuit CAD technique.
However, one of the disadvantages of HB methods is the aliasing
problem [11]. Because of the errors introduced by aliasing, over-
sampling in the Fourier transform and inverse Fourier transform
operations is often used in HB methods at the cost of increased
run time.

Alternative techniques using a frequency-domain spectral bal-
ance method (FDSB) are based on power-series descriptions of
nonlinear elements {12]-[17]. Without explicit time-domain calcu-
lations, FDSB methods avoid the aliasing problem and can often
obtain higher accuracies than HB methods for the same set of
analysis frequencies. However, the necessity of having a power-
series description of the nonlinear elements instead of an arbi-
trary current-voltage relationship is the major disadvantage of
most FDSB methods. .

The purpose of the work reported here is to introduce a
minimization algorithm which combines a block Newton itera-
tion scheme with the Shamanskii method [12], [18] and then to
present numerical results for HB and FDSB analyses using this
technique. Comparisons of memory use and computer time are
presented in detail. In particular, we consider the almost periodic
discrete Fourier transform (APDFT) HB method [4], [9] with the
dual frequency set (oversampling) algorithm [11] and the general-
ized power-series analysis using the arithmetic operator method
(GPSA-AOM) [12]—an FDSB technique. A MESFET model
[12] in which the nonlinear elements have power-series descrip-
tions is used, since it can be simulated with both HB and
GPSA-AOM.

II. ANALYSIS OF THE NONLINEAR SYSTEM

The basic approach used to solve a system of nonlinear circuit
equations is first to formulate an error function and then to use
function-minimization algorithms such as the Newton iteration
scheme. The classical approach to formulating the error function
is to partition the circuit into linear and nonlinear subcircuits
and, following separate analyses of the subcircuits, determine the
steady state “balance” point of the system. For example, in Fig.
1, i, v and i’, v’ are the current and voltage of the linear
subcircuit and the nonlinear element, respectively. With I,, ¥,
and I}, V/ representing the phasor forms of i, v and i’, v’ at a
particular radian frequency w,, and with K +1 different fre-
quency components, the current at w, in a nonlinear admittance
is a function of all voltage components V! (k=-K,---,
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0,---, K) across the element:
I,:=f(ViK""sV0’3""VK’)’ V=V (1)
The voltage of w; in a nonlinear impedance is a function of all
current components I/ (k= — K,---,0,---, K) in the element:
V=8I, 15, Ik, L=-1. (2
The difference between the hybrid methods and the frequency-
domain methods is that the functions f(x) and g(x) are deter-
mined in the time domain or in the frequency domain, respec-
tively.
To handle both impedance and admittance nonlinearities, both
of Kirchhoff’s laws must be satisfied. That is, the zero of the

objective function
K K

E= YL +EP+ X V-WP
k=0 k=0
must be found. In general, if we have L different nodes between
the two subcircuits and M different nonlinear impedance type
elements in the nonlinear subcircuit, the system objective will be

K L M

E= Y | D+ Ll + X V-Vl
k=0\p=1 g=1

Although it can be time consuming, the Newton method is

frequently used in nonlinear circuit analysis to minimize E.

Let x represent the variable vector which is composed of all
the required real and imaginary parts of the phasors of the node
voltages and branch currents at K +1 different frequencies;
variable x, represents the component of x at frequency wy;
vector f(x) represents the error function and is composed of all
the corresponding 1; , , + 1/, . and V, ., — ¥V}, ;; and fi(x)
represents the component of f(x) having frequency w,. In the
Newton method, the objective function E is minimized with
respect to x using the iterative procedure

M=ty —J('x) f('x) 3)
where the leading superscripts are iteration numbers and the
matrix J is the Jacobian matrix. For increased program effi-
ciency, a modified Newton method [19] (block Newton method)
can also be used. That is, K +1 separate iterative procedures

Tlay=h =10 (x) £f(x), k=01, K (4)
can be solved simuitaneously. In this case, the matrix inverse
calculation time is approximately (K +1)* times faster than the
time needed in the full Jacobian form of the Newton method,
where the typical value of a is generally between 0.5 and 2 and is
determined by the matrix inversion algorithm [20]. Further in-
creases in efficiency can be obtained by using the chord method
which uses the previously computed J™! (or J'!) for the present
iteration regardless of the method used in the previous iteration.

III. COMPARISONS AND DISCUSSION

The device used for the comparisons is the medium-power
GaAs MESFET (Avantek AT8250) which was previously used in
[12], where the equivalent circuit and parameter values are given.

One property we compare here is the accuracy of each simula-
tion method as a function of the number of frequency compo-
nents considered. The first example is the class-A MESFET
amplifier with a 10 dBm single-tone input (this corresponds to
3.6 dB gain compression) at 3 GHz. Fig. 2 shows the simulated
output power at the second-harmonic frequency, in which curve
a is for the GPSA-AOM and curve b is for the APDFT HB
method. Curves a and b in Fig. 2 show a significant difference
between these two techniques. The simulated result of curve b,
for the APDFT HB method, is not stable until the number of
analysis frequencies is 15.
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Fig. 2. Comparison of the simulated output power versus the number of
analysis frequencies at the second harmonic frequency for the MESFET

amplifier with single-tone input excitation. a: GPSA~AOM; b: APDFT HB
method: ¢: dual-frequency-set APDFT HB method.

The APDFT HB method involves the forward and backward
Fourier transforms to convert the signals between time- and
frequency-domain representations. Insufficient sampling of the
signals in either the time or the frequency domain introduces
aliasing. Because the sampling rate is directly related to the
number of frequencies considered in the analysis, a larger num-
ber of analysis frequencies yields greater accuracy for the APDFT
technique. This is not only because of reduced aliasing effects,
but also because the broader spectrum better represents the
signal. With GPSA-AOM, a larger frequency spectrum also
better represents circuit voltages and currents. With both tech-
niques, simulation with fewer frequencies generally results in
higher errors but the growth in error for the APDFT HB method
is greater than that for GPSA-AOM.

In order to incorporate a sufficient number of frequencies to
avoid aliasing during the Fourier transforms and also to decrease
the number of frequencies in the frequency-domain calculations,
the dual frequency set algorithm (oversampling in the nonlinear
analysis) for harmonic balance methods [11] was used. Curve ¢ in
Fig. 2 shows the simulated result using the APDFT, where the
number of frequencies in the Fourier transforms is kept at 15. If
we assume that the acceptable maximum error limit is 0.1 dB,
then from curves a and c¢ in Fig. 2 the GPSA-AOM requires
eight analysis frequencies to converge the output power level of
the second harmonic to the acceptable limit whereas the im-
proved APDFT method requires seven frequencies.

A more detailed comparison of the computer run times and
memory requirements for this example is made in Fig. 3 under
the following conditions: eight analysis frequencies are used in
the GPSA-AOM and seven analysis frequencies with 15 trans-
form frequencies in the dual frequency set APDFT HB method.
In Fig. 3, the solid line is for the GPSA-AOM and the dashed
line is for the dual frequency set APDFT HB method. The
simulations were performed on a DEC DS3100 workstation
(rated at 13 VAX 11,/780 MIPS). The process executed in each
time segment in Fig. 3 is listed in Table I. In this example, both
techniques have similar computer run time and memory require-
ment to achieve the same accuracy. Both techniques consume
most of their CPU time in the nonlinear analyses; only a small
part (less than 0.1 s) is required to formulate and to reduce the
modified nodal admittance matrices of the linear subcircuit. Both
methods took one block Newton iteration and 31 chord iterations
to converge the system error to the specified limit. The full-
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Fig. 3. Comparison of simulation run time and the maximum memory re-
quirement for the MESFET amplifier with single-tone input excitation. The
solid line is for the GPSA-AOM and the dashed line is for the dual-
frequency-set APDFT HB method. The regions designated are listed in
Table 1. Computer run time is for a DEC DS3100 workstation.

TABLE 1
THE PROCESSES EXECUTED IN EACH TIME SEGMENT OF FIGS. 3 AND 5§

Region Processes
GPSA-AOM | APDFT
— a Set up the transform matrix
| 1 b Initialize the DC variables
Linear subcircuit calculations
2 c including matrix formulations
and reductions
block Newton method
3 d including system error
and gradient calculations
4 e Jacobian inversions
Iterations with chord method
including system error evaluations
5 f (31 cycles for single-tone test,
6 cycles for two-tone test)

Jacobian Newton method is not required in this case and the
time required for the inversion of the block Jacobian matrix is
insignificant.

The second example is an analysis of the same amplifier having
two-tone excitation [12]. One ac source is the local oscillator (LO)
at 2.4 GHz and 0 dBm input power. The other source is the RF
signal at 2.35 GHz and —10 dBm input power. The 50 MHz IF
signal is detected. Fig. 4 shows the simulated IF output power as
a function of the intermodulation order. As before, there is
aliasing error and the conventional APDFT HB method con-
verges to the correct result at the fifth intermodulation order (see
curve b). Again the dual-frequency-set algorithm improves this
situation. With fifth-order intermodulation in the Fourier trans-
forms and various intermodulation orders in the frequency-
domain analysis, the simulated results of the dual-frequency-set
APDFT HB methods are shown as curve ¢. Fig. 5 presents
detailed comparisons between these two techniques using analy-
sis frequencies corresponding to second-order intermodulation
(six ac and one dc). Frequencies corresponding to fifth-order
intermodulation (30 ac and one dc) were used for the Fourier
transforms in the APDFT. The process executed in each time
segment is listed in Table I. In this case the GPSA~AOM is more
efficient than the dual-frequency-set APDFT HB method. Since
the intermodulation order for the transform frequencies is set at
5, the dual-frequency-set APDFT HB method spends much of its
time in the transform matrix formulation, system-error evalua-
tions, and the gradient calculation. The nonlinear analysis in the
GPSA-AOM is about ten times faster than the dual-frequency-set
APDFT HB method in this example. These resuits are typical of
those we have obtained with other two-tone excitation problems.
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Fig. 5. Comparison of simulation run time and the maximum memory re-

quirement for the MESFET amplifier with two-tone input excitation. The
solid line is for the GPSA-AOM and the dashed line is for the dual-
frequency-set APDFT HB method. The regions designated are listed in
Table I. Computer run time is for a DEC DS3100 workstation.

IV. CoNcLuUsION

This paper presented a common error minimization algorithm
for performing both the harmonic balance and the frequency-
domain spectral balance analysis of nonlinear analog circuits.
Simulations of a MESFET amplifier having one- and two-tone
excitations were used to compare the performances of the
GPSA-AOM and APDFT harmonic balance techniques. In gen-
eral, based on the same accuracy consideration, the performance
of the APDFT harmonic balance method is comparable to the
GPSA-AOM with single-tone input excitation. The GPSA-AOM
tends to dominate in circuits with two or more incommensurable
signals. However, from the device-modeling viewpoint, most
FDSB methods are limited to power-series-based models and
thus have less utility than harmonic balance methods which use
nonlinear models described by arbitrary functional relations.
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Abstract —A two-gap electrically floating resonant strip is used for
surface resi e ts of the high-temperature superconductor
YBa,Cu30,_;. The method used is simple, has no electrical contact,
operates at various resonant frequencies, and requires only a small sample.
An analysis was used that allows for the accurate design of the strip
dimensions to produce a desired resonant frequency. Experimental mea-
sur on t freq ies in X- and Ku-bands (8-18 GHz) agree
well with the calculations. The method allows one to extract the normalized
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