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functions (like parity) have an optimal two-level implementation
that is exponential in size, but a multi-level implementation that is
linear in size; however, we found no such functions in the state
machine benchmark set. In all of our experiments we found no state
assignment that produced an extremely bad two-level implemen-
tation but a very good multi-level implementation.

1V. CoNCLUSIONS

First, optimization techniques that take advantage of don’t care
conditions give better implementations of state-assigned logic and
expose greater variation in the quality of different state assign-
ments.

Second, our experiments showed several important properties of
state assignments implemented in multi-level logic. Deterministic
experiments (like those of Devadas et al.) show that a two-level
assignment algorithm can do surprisingly well compared to the best
available multi-level assignment algorithm. Our random experi-
ments show that, for machines like those in our benchmark set,
state assignments that give good multi-level implementations also
give good two-level implementations. Understanding the relation-
ship between two-level and multi-level implementations of en-
coded logic should help in the development of better multi-level
state assignment programs.
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In the above paper,' the authors present an excellent review of
the harmonic balance method for nonlinear circuit analysis and de-
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tail three techniques for solving the associated system of nonlinear
equations: optimization, relaxation, and Newton’s method. In their
discussion of optimization, however, they claim that optimization
is inefficient, that information is lost in calculating the cost func-
tion to be minimized, and that it is difficult to exploit the structure
of the node equations when using optimization methods. The au-
thors conclude that relaxation and Newton's method are the pre-
ferred techniques. In this paper we address these issues and com-
ment on the relationship between the optimization approach and
Newton’s method.

As discussed in the above paper,' the simulation of nonlinear
circuits using nodal analysis and the harmonic balance method re-
quires solving the nonlinear system of equations resulting from the
frequency-domain statement of Kirchoff’s current law. This system
is written as

F(V)=0 (1)

where F is a complex vector whose elements are the sum of phasor
currents at each node and frequency and V is the complex vector
of node voltage phasors. This system can be solved directly (e.g.,
using Newton’s method) or the solution can be found through mm-
imization of an appropriate cost function. In the above paper,' the
cost function

e(V) = Fx(V) F(V) (2)

(where the asterisk represents the conjugate transpose) is consid-
ered and the relative merits of optimization dlscussed based on this
choice. Using the notation of the above paper, ' where X = [Re
{X} Im {X}] refers to the equivalent real vector corresponding
to the complex number X and using a similar convention for ma-
trices and vectors, we form the corresponding cost function

2HN

=1FV) F(V) =4 Z FY(V) (3)

Ti=1

e(V)

where there are H harmonics and N nodes, and the factor of 1/2
has been added for convenience. In this case, optimization is a
nonlinear least squares problem. Nonlinear least squares problems
having zero or small residuals, e.g., where there is a solution P
such that F(V) = 0, can be solved using the Gauss-Newton
method. This method uses the iteration

Ve = V- GV I T FV) (@)

where J is the Jacobian of F [1]. In the situation we are consider-
ing, the number of nodes at which Kirchoff’s current law is applied
equals the number of unknown node voltages. Thus the Jacobian
is square and, assuming it to be nonsingular, the above iteration
simplifies to

Vior = Vi - IV F(V). (5)

This is the same iteration obtained by applying Newton’s method
directly to (1). Clearly, with this particular cost function and in
this application, Newton’s method and optimization are directly
related and computationally equivalent and we cannot conclude that
either method is preferred.

The authors' also state that optimization is unwieldy due to the
large number of variables. While this is a true statement, it is mis-
leading as the number of unknowns is independent of the solution
method. Solution via Newton’s method, for example, also suffers
from the fact that there is a large number of variables.

Finally, the authors comment that it is difficult to exploit the
structure of the harmonic balance-node admittance equations when
using optimization. This depends, however, on the optimization
strategy that is employed. If the optimization is formulated as dis-
cussed above, the structure of the equations can be exploited in the
same manner as in their Newton’s method approach with the same
efficiency.

In conclusion, we point out that optimization has the added ad-
vantage that design objectives may be included in the formulation
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of the cost function [2]. In this way, the circuit performance can
be optimized simultaneously with the steady state analysis. This,
however, may result in the residual ( F(V)) being so large that
the Gauss-Newton method cannot be used. In this case, the itera-
tion scheme will not reduce to (5).

Reply* by K. S. Kundert and A. Sangiovanni—Vincentelli3

Rhyne and Steer bring up several interesting points that were
only briefly discussed in our paper. Their points, as we understand
them, are that using optimization techniques to solve the harmonic
balance equations can be made as efficient as using root finding
methods (in particular Newton-Raphson), and that by using opti-
mization it is possible to combine the two tasks of solving the har-
monic balance equations and choosing circuit parameters to maxi-
mize circuit performance into one operation. We feel that while
they have started from a minimization problem and derived an it-
eration formula that is identical to Newton-Raphson, in doing so
they have added enough constraints so that their method is no longer
capable of finding arbitrary minima (and so, in our opinion, can no
longer be considered an optimization method), but only those min-
ima associated with roots of the underlying problem. Thus they
have simply rederived the classic Newton-Raphson algorithm in a
circuitous manner. As for combining performance optimization with
equation solution, Rhyne and Steer themselves admit that the ap-
proach they propose is often inappropriate. However, there are
other dangers in combining the two operations that do not appear
to be well appreciated.

The cost function

e(V) = IF*(V) F(V) (1)

has two important characteristics. First, each root of F corresponds
to a global minimum of ¢, and at these points, (V) = 0. Second,
at each V that is a local minima of e, but is not a root of F, the
Jacobian of F {that is J- (V) = dF(V)/dV} is singular. We seek
V, a global minimizer of e. If Fis continuously differentiable, then
a necessary condition for V to be a minimizer of e is that the gra-
dient of ¢ at V be zero, i.c.,

Ve(V) = 0. (2)

This problem can be solved by using a wealth of techniques such
as steepest descent, conjugate gradient, and Newton’s method.
However, solving (2) with Newton-Raphson is more difficult than
solving F(V) = 0 because the equation involves the first derivative
of the original function F, so applying Newton-Raphson requires
knowing the second derivatives of F. In fact, the Newton-Raphson
iteration used to solve (2) is

Vze(V(“)) [V(k‘l) - V(k)] - _VE(V(k)) (3)

where V¢ is the Hessian of e.
From (1), it is easy to show that

Ve(V) = JE(V) F(V) 4)
and
Vie(V) = dj—z(j—)F(V) + JE(V) (V). (5)

Clearly, the Hessian is denser than is the Jacobian and is, there-
fore, considerably more expensive to LU factor. This is the reason
for our claim that applying optimization to solve the harmonic bal-
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ance equations was expensive because of the large number of un-
knowns. We did not intend to imply that the number of unknowns
is larger with optimization than with root finding techniques such
as Newton-Raphson or nonlinear relaxation, but rather that the
computational complexity was higher with optimization because
there is less sparsity to exploit.

Using (4) and (5), we can rewrite (3) as

av
= —JE(V)E(V). (6)

Rhyne and Steer propose to avoid computing the second derivative
terms in the Hessian by exploiting the fact that we are solving for
a root of F. When V is near the solution V, then F(V) should be
small, and so the second derivative term [dJr( V)/dV F(V)] in
(6) can be dropped. Thus (6) becomes

JEWVY (V) VD —v®] = —JE(V)F(V)  (7)

which is referred to as the Gauss—Newton algorithm. By eliminat-
ing the second derivative term, the utility of this method as an op-
timization algorithm is greatly decreased because F(V') must be
small. Note that (7) is now in the form of the normal equation for
a linear least squares problem. This equation is notoriously ill-con-
ditioned because the condition number of JE (V) Jp(V) is the
square of J-(V). Thus finding the roots of F(V) using (7) is not
only computationally more expensive (because JE(V) Je(V) is
denser than J;(V)), but it may also be numerically unstable.

By assuming that Jp( V) is square and nonsingular, it is possible
to cancel J} (V) from both sides of (7), resulting in the following
iteration:

(A1 vy 4 a2y 2 1t = vl

Te(V) [v*+D — yO] = ~F(V). (8)

This iteration is identical to that which results when Newton-Raph-
son is applied to F(V) = 0, hence, the claim by Rhyne and Steer
that optimization can be made as efficient as Newton-Raphson when
applied to solving the harmonic balance equations. However, by
assuming that Jp(V) is nonsingular, any possibility of finding a
minimum of e that is not a root of F has been eliminated. (Recall
that minima occur where either F is zero or where Jp is singular.)
Thus (8) can only be seriously considered a root finding method,
not an optimization method. This, of course, comes as No SUIprise;
since (8) is identical to the Newton-Raphson iteration, it can have
no hidden powers not shared by Newton-Raphson. In fact, the steps
that lead up to (8) are just a rather round-about rederivation of the
standard Newton-Raphson algorithm.

It may be that optimization methods can be used efficiently to
solve large systems of equations, but this has yet to be shown.

One question still remains; if it is necessary to both optimize
circuit performance and solve the harmonic balance equations,
should these two operations be combined into one optimization
process? This idea was first suggested by Lipparini er al. [1]. They
propose augmenting the cost function to be minimized with a con-
tribution related to circuit performance, here denoted E. The list
of design parameters is denoted p. The problem statement becomes

min [F*(V. p) F(V. p) + E*(V. p)] (9)

with the added constraint that E = 0 when all specifications are
met and E > 0 otherwise. This approach is attractive because sim-
ple unconstrained optimization methods are used.

Unfortunately, a serious problem exists; (9) is not an accurate
statement of the problem. The correct problem statement is

min E2(V, p) subjectto F(V,p) =0. (10)
P

By using (9), we allow the optimizer to tradeoff satisfying
Kirchoff’s current law to improve circuit performance. The flaw,
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of course, is that if Kirchoff’s current law is not satisfied, the so-
lution calculated is not feasible, and therefore, the actual circuit
performance is not being measured.

Assuming something can be done to assure that Kirchoff’s cur-
rent law is satisfied, then there are several other important consid-
erations. To treat (9) as a nonlinear least squares problem it is nec-
essary to augment the list of equations with the performance cost
function to be minimized and augment the list of variables with the
optimizable parameters. Let

X—{V] G(X)—[F(X)} (11)
el E(X)
The cost function to be minimized becomes

e(X) = 1G*(X) G(X). (12)

Augmenting the lists of equations and variables presents several
problems. First, the new equations in G create new rows and col-
umns in the Jacobian J; that do not have the same structure as in
Jr, making exploitation of the sparsity of Jacobian more difficult.
Second, the number of design parameters in p is not usually the
same as the number of cost functions in E. Thus Jg is not square.
When applying Newton-Raphson to a system with more variables
than equations, it is necessary to solve for the new iterate either by
forming the normal equation, which effectively increases the num-
ber of equations until equal to the number of unknowns, or to solve
the iteration equation with a method that is suitable for under-de-
termined systems, such as QR factorization. The normal equation
approach is written as

TEXR) J(XP) [XED = XB] = —J5(XP) GXW).
(13)

As mentioned before, this equation is ill-conditioned and not nearly
as sparse as when Newton-Raphson is applied directly to F (V) = 0.
QR factorization would be applied to

Jo(XW) [X**D — x0] = —G(X©). (14)
However, it is not possible to exploit sparsity in any significant
way using QR factorization, and so this approach is impractical for
large J(X).

Lipparini’s approach is not only dangerous, but it is also overly
expensive for large problems. Adaptations that force Kirchoff’s
current law to be satisfied in Lipparini’s approach, such as penalty
functions, make the method even more inefficient. It is best to avoid
this approach. Methods for solving (10) directly do exist, but in
our opinion the two-level optimization/Newton-Raphson approach
is the most promising. With the two-level approach, the best method
can be used for each problem, Newton-Raphson for the large sys-
tem of nonlinear equations and unconstrained optimization with a
small number of parameters.
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Two-Dimensional Analysis of a Merged BiPMOS
Device

J. B. KUO, MEMBER, IEEg, G. P. ROSSEEL, MEMBER, IEEE, AND
R. W. DUTTON, FELLOW, IEEE

Abstract—The BiPMOS device associated with n-well BiCMOS tech-
nologies consumes substantial area for isolation. A merged BiPMOS
device structure is introduced to reduce the device size for BiICMOS
VLSI. The performance of the merged BiPMOS device has been ana-
lyzed by PISCES-2B [1). Comparisons between the merged BiPMOS
device and the conventional one show that the merged BiPMOS device,
which occupies a much smaller area, has a comparable performance.

I. SUMMARY

Fig. 1(a) shows a BiCMOS inverter. The PMOS and bipolar
devices are the most important part during the pull-up transient [2]-
[4]. The BiPMOS device in conventional BICMOS structures is
composed of bipolar and PMOS devices with substantial space for
isolation between the two devices. Drain contact of the PMOS de-
vice and base contact of the bipolar device are wired by intercon-
nects, which may bring substantial parasitics. Consequently, the
performance of the BIPMOS device may be degraded. In this pa-
per, a merged BiPMOS device structure is introduced to reduce the
device size for BICMOS VLSI. The merged BiPMOS device as
shown in Fig. 1(b) is based on a 2 um BiCMOS technology [5],
[6] with a buried layer and a 0.8 um 1 X 10'® cm™ epi layer. The
PMOS and the bipolar devices are located in the same n-well, which
serves as the collector for the bipolar device and the substrate for
the PMOS device. Instead of being connected by interconnects as
in standard BiCMOS structure, the P+ drain region is placed
against the extrinsic bipolar base region. This arrangement shrinks
the length of the BiPMOS device to 5 um. The PMOS device has
an effective channel length of 1.2 um and the bipolar one has a
base width of 0.26 um and a peak concentration of 2 X 10'7 cm™3.

A dc analysis has been carried out for the merged BiPMOS and
the standard one with a simplified cross section [7] as shown in
Fig. 1(c). The source contact of the PMOS device and the collector
contact of the bipolar device are connected together via the collec-
tor/source electrode. The standard device has a bipolar device with
an identical emitter width and a PMOS device with an equivalent
channel length, which are separated by an oxide layer of 5000 A.
The drain contact of the PMOS device and the base contact of the
bipolar device are connected by a common electrode. The substrate
of the PMOS device is connected to the back gate electrode via a
100 kQ resistance, accounting for the effective resistance in the
neutral substrate region.

Applying a bias between the gate and the collector/source elec-
trodes ( Vgg) from 0 V to —5 V and a collector/source-to-emitter
bias (V¢g) from 5 V to 1 V, emitter currents in A /um have been
extracted as shown in Fig. 2(a). Solid lines show the case with the
merged BIPMOS device and the dashed ones with the standard one.
The merged BiPMOS device has a threshold voltage of —0.8 V,
which is defined as the Vg as the magnitude of the emitter current
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