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ABSTRACT

All electrical circuits are inherently nonlinear
and frequently their design requires nonlinear cir-

cult analysis. [n addition, some systems have
large multi-frequency excitation, and this paper
considers the analysis of such circuits, In this

paper a new frequency domain analysis method, based
on functional minimization, is developed. Results
are presented for the analvsis of a diode mixeér and
our method is compared to those of others.

INTRODUCTION
All electrical circuits and physical systems
are ' inherently nonlinear as a result of the very
nature of the electronic components used. In most

analog electrical circuits the nonlinearity becomes
evident as a departure from ideal pertormance
the input signal becomes large. The offending sig-
nal may not be just the desired information carrier

but may be an undesired signal resulting, in the
case of communication receivers, from a nearby
transmitter. In some systems one or more nonlinear

devices form the basis of operation of the system.
This is the case with diode mixers where typically
an information carrier at a high frequency is cou-
pled, by way of the nonlinear diode, to a large
local oscillator signal to produce a low frequency
signal that is more conveniently processed. When
the circuit nonlinearity is significant, the design
process requires an analysis procedure which accom-
modates large input signals.

This paper presents a power-series-based
numerical nonlinear analysis technique that can be
used with multifrequency large-signal excitation.
The convergence properties of the method are excel-
lent and are illustrated via an analysis of a
pumped waveguide diode mixer and by comparing our
method with those of earlier workers. The research
reported here was driven by the need for computer
aided design tools for microwave monolithic
integrated circuits wherein device nonlinearities
are significant, active components operate near
their frequency Llimits, and it is not feasible to
breadboard circuits.

as-
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REVIEW
The analysis of nonlinear systems is by no
means a new area of sclence or mathematics. Since
the end of the 19 th century Van der Pol, and oth-

ers, have investigated various forms of second
order nonlinear differential equations as many sim-—
ple but important nonlinear systems can be so
described. Initially graphical techniques were
used to solve the equations with a periodic excita-
tion. Now analogue computers, or digital computers
using numerical integration, are used and higher
order nonlinear differential equations can be han-
dled. However, it is difficult to formulate a sin-
gle differential equation for a. system containing
more than two or three elements (even if only one
of the elements is nonlinear), or solve a system of
coupled differential equations.

Numerical nonlinear analysis methods can be
classed as either time domain or frequency domain
depending on how the nonlinear element is handled.
Time = domain methods ' generally use numerical
integration or, where possible, calculate the
instantaneous value of the output from the instan-
taneous value of the input. An example of a com-
puter aided analysis technique using this approach
is the popular computer program "SPICE". Unfor-
tunately analysis can be very slow and convergence
problems can be significant. Several specialized
circuit analyses treat nonlinear elements in the
time domain yet analyze the linear part of the cir-
cuit in the frequency domain using numerically
efficient nodal techniques (e.g. [1]-{4]). With
these analyses the conversion between the frequency
domain solution of the Llinear embedding network,
and the time domain solution of the nonlinearity,
is accomplished using fast Fourier transforms
(FFT's). These time domain methods are limited to
systems with only harmonically-~related (or in the
case of Ushida and Chua's analysis [4] nearly
harmonically-related) components,  as then the
response of the system is periodic for a few cycles
of the input components. With all cthese methods
convergence is still a problem and analysis of a
nonlinear circuit requires a skilled operator with
knowledge of both circuit operation and of the con-
vergence properties of the numerical analysis pack-
age being used.

Frequency domain nonlinear analyses use - func-
tional expansions of the input-output characteris-—
tic of the nonlinear element. Cenerally, the func~
tion itself is the summation of basis functions of
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the input, and the response due to each functional
component -of the expansion are summed to yield the
total response of the system. Perhaps the most
general method is that of Antonov and Ponkratov [5]
who derived a formula for the output of a system
described by the functional relation u(t) = F(x(t))}
where x{t) is a sum of sinusoids, and F(.) is a
function which can be expressed as a possibly
infinite sum of orthonormal functions. Their out~
put formula involved multiple infinite sums of
integer order Bessel functions. As a result of the
Bessel functions, convergence of the summations
will be slow with poor numerical accuracy.

Two other frequency domain nonlinear ‘analysis
methods, using power series and Volterra series,
can be viewed as special cases of the system
described by Antonov and Ponkratov in that they use
subsets of the infinite set of orthonormal func-
tions. The simplest <functional expansion is the
representation of u(t) as a power series in x(t).
Conventional power series (i.e. a power series with
real coefficients and not  incorporating & time
delays) -expansions can only be used with frequency
independent systems with single valued input=-output
characteristics (that is, without hysteresis).
Other basis function expansions, such as the expan-
sion of the Shockley diode equation in terms of
Bessel functions 6], [7], have been used but
these are generally restricted to systems with par-—
ticular idealized input-~output characteristics.

In 1930 Volterra introduced functionmal -expan-
sions that could be used with a large class of nou~
linear systems. His work was developed further by
Weiner in the 1950's for the expansion of function-
als in terms of orthogonal polynomial series.
Weiners functional expansions, now known as Vol-
terra nonlinear transfer functions, while having a
form similar to that of a power series, can handle
frequency dependent systems with single valued
input-output characteristics. Unfortunately, Vol-
terra nonlinear transfer function analyses are res~
tricted to weakly nonlinear systems because of the
algebraic complexity of determining Volterra non-
linear transfer functions of higher order than 3
(as required with more strongly nonlinear systems
or large signals). Because of this, systems are
usually described by fixed, typically third order,
Volterra series, although no indication of the
error involved in doing this 1is available. For
more strongly nonlinear systems, or large signals,
the number of terms that must be considered becomes
very large and the analysis becomes unwieldy.

However the great importance of Volterra series
analysis 1s that it can be systematically used to
analyze fairly complex systems with possibly non-
commensurable (that is not linearly related) fre-
quencies of the input components.

Yet
analysis

another frequency domain nonlinear
was introduced by Steer and Khan [8], who
used a power series expansion of the input-output
characteristics of a nonlinear system. In the
method of Steer and Khan the output u(t) of a sys-
tem having an N component multi-frequency input

N
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is [8]
~ N {
u(t) = ay 2 bkxk(t) (1)
(_.
where u(t) is the output of the system; f{ is the
order of the power series terms; Ai and a ,i are
complex coefficients; and by ; is a real coeffi-

cient. Note that leI is tﬁe peak magnitude of an
input sinusoid so that a dec¢ input component has
o, =0 and ¢ =0 o0r s radians. The complex coef-
flcxents are defined as introducing a phase shift
in the frequency components of the output. The
rigorous definition of the complex coefficients is
embodied in the following algebraic formula for the
output of the power series. The phasor of the q th

component of u of frequency wqis given by [8]
U =t b u
q n=0 - nl,...,nN q (2)
!n11+...+|an=n
N
where o £ n o (a set of n's defines an inter=-
el K K K
modulation product),
, N o |
U =Rele | mXx Kl.T
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q

is a single intermodulation product.
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Xk is the phasor of x ,

K
o= X fn >0
X ko
= x° ifn <O,
k k
¢ (¢ =1,n=03¢ =2,n#0) is the Neumann factor,
n n n

n is the order of intermodulation.

and Re[.] for
)

is defined such that it is ignored

o # 0 but for o = 0 the real part of the expres-
q

sion in square brackets is taken. This algebraic
formula (together with the harmonic balance itera-
tion procedure of Hicks and Khan {[1]) has previ-



ously been used to successfully analyze a resistive
mixer [9). While convergence could always be
obtained with a large input signal in addition to
the local oscillator excitation, considerable
operator intuition was required to successfully
select the convergence parameters described in [1].

DEVELOPMENT OF METHOD

For our purposes, a current controlled non-
linear element embedded in a linear circuit can be
viewed as single frequency Thevenin equivalent cir-
cuits separated from each other and the nonlinear
elements by ideal bandpass filters, as shown in
figure 1. E_, Z., I_ and V_ are all phasor quanti-
ties of the q th component of frequency 9qe The

time-domain total current and voltage at the non-
linear element are given by

N jo,t
: - \'Re[le q]

q=1 1
and
N juqt
v = I |Re(V_e )
- q
q=1
Since the nonlinear element is current-controlled,
we can write V = fadl ,eee,] ,404,1 ) where we
q i q N

consider N frequency componencs. Under steady

state conditions Vq - Eq + Lqu = 0 for all q.

Alternatively, for a voltage-controlled nonlinear

element we use the multifrequency Norton equivalent

circuit of figure 2, where I = fn'(Vl,...,V yoansy
q q

Vy)+ Now under steady state conditions Iq - I .+

8q
VY =0 for all q.
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' Figure 1
Multifrequency Thevenin equivalent circuit of a

cyrrent-controlled nonlinear element embedded in a
linear circuit.

For both equivalent circuits, the steady state
condition can be obtained by minimizing the func-
tion

N 2
p= ¢ Q|
q:l q

where

=0, -G, + X W
Qq q q 9
and U_ is the nonlinear term, G is the source
term, X is the nonlinear input, and W_ is the
immittance for the q th component. In the Frevenin
equivalent circuit, the source Cq = E_, immittance

wq = Z_, nonlinear input X, = I , and nonlinear
output * U = V_, for the qth frequency component.
The Norton_c1rcu1t has Gq = {gq’ Hq = Yq, and Xq =
Vq and Uq = Iq.

Minimization of P using efficient minization
techniques ( e.g. [10]) requires evaluation of P as
a function of the X 's.as well as partial deriva-
tives of P with reSpect to the amplitude and phase
of the X 's. In the following we present algebraic
formulasd for P and its derivatives with respect to
the amplitude, X , and phase, y of them th com-
ponent of the Tnput to the noflinearity are given

by
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Figure 2
Multifrequency Norton equivalent circuit of a
voltage-controlled nonlinear element emebedded in-a
linear circuit.



where

I N (lnkI*ZSk)
4 L JA,. .« R .o (b .
i=1] an+2¢,1 n+2o,1 k=1( k,l) }

: X 0 q*m ‘DISCUSSION
ITXT I X As an example of the analysis procedure
m T—ST q=m developed above, we consider the pumped waveguide
Xq diode mixer, figure 3, first analyzed by Kerr [3],
and then by Hicks and Khan [1] to show the speed
advantage of their method over Kerr's approach.
283 igﬂ iiﬂ More recently the same circuit was analyzed by
Je " 3¢ Tt g Camacho-Penalosa [2] to show that, under weak pump-
m m m ing conditions, their method offers significant
and advantages over Hicks and Khan's method. However
under large pumping conditions Camacho-Penalosa's
i_ﬂ 0 q#m method is inferior to that of Hicks and Khan.
ag X q=m These three methods are concerned with the algo-
m q rithm used in the harmonic balance iteration

The derivatives of U with respect to Ith and’ ¢m

are obtained by differentiating (2) (11}

between the time domain solution of the diode and
the frequency domain solution of the linear cir=-
cuit, Our method represents a significant depar-
ture from this approach as we treat both the diocde

au - ou and the linear embedding circuit in the frequency
fT_iT = ) ,T_ST domain. The number of iterations required for our
d Xm ‘n=0 nl"."nN a xm method, as a function of DC diode current, is given

Inli+...*lnN|=n

in figure 4 where it is compared to the analyses of
Hicks and Khan and of Camacho-Penalosa. 0On the
whole our method requires significantly fewer

and iterations, convergence was always obtained, and
' the number of iterations required to obtain a solu-
ay - au . . . L.
B R 5 | tion virtually }ndependent of the initial voltage
de dy estimate at the diode.
m a=0 N1,eee,ny m
In |+...+|n_|=n In comparing our method with the time domain
1 N techniques it should be realized that our method
where requires more computation per iteration. Neverthe-
less, as a result of the excellent convergence
ay’ properties of our method, 1little intuitive under-
—9=in U standing of the nonlinear analysis process required
I¢m mq to carry out an analysis. Furthermore, since our
' method can- be extended to larger circuits and
. design specifications can be incorporated in the
au Ny objective functiom, our method is ideally suited to
IXT= ;’-Uq the computer aided design of large nonlinear cir-
m m cuits.,
NI ' |nk] = (n+20)! azl
*eg X . L [a("+2°)_TE:5;7'5Ti_T
k=1 a=0 2 m j
and LI
dz - Zq
o 1%,1 v
E‘i
28 .28 -1
x 1 % esx i "
P 7 k Y )' 3 '%‘rkri’s )' Figure 3
Sl,...,SN N Sk‘([nk[ S0t Sy nm\ m '] Equivalent circuit of Kerr's waveguide mixer with i
k=1

= iofexp(av)—l], io =5 nA and a = 40 V™ *, Zg(f)

k*m for the 16 harmonics considered in the analysis can
be found in {3].
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Number of iterations required to solve Kerr's
waveguide diode mixer versus dc diode current (o -
Hicks and Khan's method, + Camacho-Penalosa's
method, & - method proposed here). Convergence is

deemed to have been achieved when the circuit wvol-
tages were calculated to within 1%Z of their final
values. The initial voltage across the dicde was
taken as zero.

CONCLUSION

In this paper we presented a frequency domain
method of nonlinear analysis which operates by
minimizing an objective function derived trom
Kirchoff's current and voltage laws. As an example
a diode mixer was considered and the method was
seen to have excellent convergence characteristics.
Since the method can be extended to handle more
sophisticated «circuits and design specifications
can be incorporated in the objective function, the
technique presented here is ideally suited to the
computer aided design of large nonlinear circuits.

120

{11]

2]

(31

(4]

[s]

[6]

(7]

{8]

(9]

[10]

[11]

REFERENCES

Khan, "Numerical
analysis - of nonlinear solid-state device
excitation in microwave circuits,"  IEEE
Trans. Microwave Theory Tech., vol. MIT-30,
pp. 251-259, March 1982.

R.G. Hicks and P.J.

C. Camacho-Penalosa, "Numerical teady state
analysis of nonlinear microwave circuits
with periodic excitation," IEEE Trans.
Microwave Theory Tech., vol. MTT-31, pp.
724-730, September 1983.

A.R. Kerr, "A technique for determining . the
local oscillator waveforms in a microwave
mixer," IEEE Trans. Microwave Theory Tech.,
vol., MTT-23, pp. 828-831, October 1975.

A. Ushida and L.O. Chua, "Frequency-Domain
Analysis of Nonlinear Circuits Driven by
Multi-Tone Signals," IEEE Trans. Circuits
and Systems, vol. CAS-31, pp. 766-779, Sep-
tember 1984.

and V.S. Ponkratov, "Further
discussion - of the action of the sum of har-
monic oscillations on nonlinear elements,"
Radio Engin. and Electon. Phys. , vol. 19,
no. 2, 1974, pp. 44-53.

0.E. Antonov

L.M. Orloff, "Intermodulation analysis of
crystal mixer," Proc. IEEE, vol. 52, pp.
173-179, February 1964.

intermodula-
diode
1528-

W.R. Gretsch, "The spectrum of
tion generated 1in a semiconductor
junction," Proc. IEEE, vol. 54, pp.
1535, November 1966.

M.B. Steer and P.J. Khan, "An algebraic
formula for the complex output of a system
with multi-frequency excitation,”" Proceed-

ings of the IEEE, pp. 177-179, January 1983.

M.B. Steer and P.J. Khan, "Large signal
analysis of resistive mixers,” Submitted for
publication.

R. Fletcher, "A new approach to the variable
metric algorithms," Computer J., vol. 13,
pp. 317-322, August 1970.

M.B. Steer and B.D. Bates, Frequency domain
nonlinear circuit analysis using a minimisa-
tion technique. To be published.




