
Hardware Architecture of a Parallel Pattern
Matching Engine

Meeta Yadav
Electrical and Computer Engineering

North Carolina State University
Raleigh, NC 27606

Email: myadav@ncsu.edu

Ashwini Venkatachaliah
Electrical and Computer Engineering

North Carolina State University
Raleigh, NC 27606

Email: akvenkat@ncsu.edu

Paul D. Franzon
Electrical and Computer Engineering

North Carolina State University
Raleigh, NC 27606

Email: paulf@ncsu.edu

Abstract— Several network security and QoS applications re-
quire detecting multiple string matches in the packet payload
by comparing it against predefined pattern set. This process of
pattern matching at line speeds is a memory and computation
intensive task. Hence, it requires dedicated hardware algorithms.
In this paper we describe the hardware architecture of a parallel,
pipelined pattern matching engine that uses trie based pattern
matching algorithmic approach. The algorithm optimizes pattern
matching process through two key innovations of parallel pattern
matching using incoming content filter and multiple character
matching using trie pruning. The hardware implementation is
capable of performing at line-speeds and handle traffic rates
upto OC-192, the underlying architecture allows for multiple
patterns to be detected and for the system to gracefully recover
from a failed partial match, the throughput of the system does
not degrade with the increase in the number of patterns or the
length of the patterns to be matched. The solution described
outperforms most current implementations in terms of speed and
memory requirement and outperforms TCAM based solutions in
terms of power consumption, area, and cost while remaining
competitive in terms of throughput and update times. We use
the complete Snort rule set (2005 release) and VoIP RFC to
validate our performance and achieve a throughput of 12Gbps
with 6KBytes of content filter memory and 0.3 MBytes of total
memory for Snort and 0.5KBytes of filter memory and 12KBytes
of total memory for SIP.

I. INTRODUCTION

Deep packet inspection can be broadly defined as the
process of inspecting the header as well as the content of the
packet. Several networking applications like Network Intrusion
Detection Systems (NIDS), Network Intrusion Prevention Sys-
tems (NIPS) and Packet Classifiers (PC) perform deep packet
inspection to analyze the packet payload by searching for
predefined content. The performance of these application is
is critically affected by pattern matching algorithms and their
implementations. Software based pattern matching implemen-
tations cannot achieve line speeds. Hence there is an emphasis
on hardware based NIDS and NIPS that can operate in multi
Gbps range, are configurable and scalable, and have a stringent
upper bound on their worst case performance.

In this paper we present a multi-way trie based algorithmic
approach to pattern matching. The trie based technique was
developed for IP forwarding by Mehrotra et al. and has been
described in [9]. We present two key enhancements to this
approach that adapt the technique to pattern matching and

significantly improve the throughput of the system. The two
enhancements are Incoming Content Filter and Trie Pruning.
The incoming content filter splits the packet payload into
multiple subs-streams that could lead to a possible match,
these multiple streams are then passed to dedicated pattern
matching engines that match the sub-streams in parallel. The
ability of the algorithm to match multiple streams in parallel
significantly improves the throughput of the system and en-
ables the algorithm to recover gracefully from a failed partial
search. Trie pruning aids in reducing the memory required for
storing the patterns and allows for multiple characters to be
matched in one clock cycle, thus removing the dependence of
the throughput of the system on the number of patterns to be
matched and the length of patterns to be matched.

The rest of the paper is organized into the following four
sections. In Section II we present some of the related work
in the field of hardware based pattern matching system. In
Section III we describe trie based pattern matching algorithm.
The hardware architecture is presented in section IV and we
conclude with the results in section V.

II. RELATED WORK

Hardware based pattern matching algorithms have been
a point of interest for researches for some time, several
innovative algorithms have been proposed so far that can
process multi gigabits of data per second. However, most
implementations have not handled the issue of scalability and
the worst case performance issues which occur due to partial
match failures.

Several systems use off the shelf TCAMs to perform pattern
matching, TCAMS based solutions are easy to implement,
have high throughput and are scalable. In [13], the authors
present a TCAM based approach that performs at 2 Gbps but
the performance of the system degrades for large patterns.
TCAM based solutions also suffer from high cost and high
power consumption.

Pattern matching algorithms have also been designed for
specific FPGA implementations. In [12], [3], [4], [5] the au-
thors present algorithms that exploit the embedded technology
in the FPGAs to speed up the task of pattern matching. These
designs achieve high throughput and are reconfigurable but
lack portability since they are designed for specific FPGAs.

13691-4244-0921-7/07 $25.00 © 2007 IEEE.



The state based pattern matching architectures are also
extremely popular owing to their high throughput. The authors
of [7] [11] propose deisgns that use Aho-Corasick algorithm
and its variations. The systems proposed by however do not
recover efficiently from partial match failure and perform
poorly in detecting long strings and also suffer from scalability
issues due to higher memory requirements.

Bloom Filters have been extensively used in many network-
ing applications. The authors of [6] present a parallel bloom
filter technique to pattern matching that performs extremely
well for short string matches. The biggest drawback of this
approach is performance degradation with increase in the size
of incoming content and high false positive rate.

III. PATTERN MATCHING ALGORITHM

Pattern matching problem is broadly defined as the task of
finding multiple occurrences of signatures P[0], P[1],..P[m-1]
in the incoming content S of length i. The incoming content
should be matched against all possible signatures to detect a
match. The signatures do not occur on predefined boundary
and can occur anywhere from 0 to i − 1th characters of the
incoming content.

A. Incoming Content Filter

The content filter breaks down the incoming stream S into
multiple sub-streams S[0], S[1], S[2]..S[i-1] that can result in
a possible match. The characters in the input stream S are
combined into sets of two as shown in figure 1, and passed
through the content filter. On detecting a match the stream S is
split and all the characters preceding the matched character set
are stored in a buffer. Each stream is then passed to dedicated
parallel pattern matching units.

S I T E C H A N G E S I T E C H O W N

Incoming Content

0x I 0x 0x H 0x 0x 0x 0x 0x I 0x 0x 0x H 0x

SITECHANGESITECH
OWN CHANGESITECHOWN SITECHOWN CHOWN

0x 0x0x

. . .

Pattern Matching 
Unit 1

Pattern Matching 
Unit 2

Pattern Matching 
Unit 3

Pattern Matching 
Unit n

Content
Filter

Buffer 1 Buffer 2 Buffer 3 Buffer 4

Fig. 1. Incoming Content Filter

B. Parallel Multi-Way Trie Algorithm

Tries are ordered tree data structure that use the ”thumb
indexing” method of dictionaries to store and retrieve infor-
mation. Information is stored in tries as paths from root node
to the leaf nodes and information is retrieved by traversing
to the leaf nodes through the root node. Figure 2 shows a
multi-way trie constructed using a few patterns from Snort’s
FTP rule set, the empty leaves of the trie are not shown. Trie

M p RC S

0 0

E M W

0 10 00 10 01 0 1 00 0 0 10 0 00 0 0 0

0

0

0 1 0 1 0 1 0 0

K O

0 0 1 0 0 0 1 0 0

a

0 0 1 0 0

E M

0 0 1 0 0 0 1 0 0

I T

0 0 1 0 0 0 1 0 00 0

Fig. 2. Trie constructed using partial Snort FTP rule set content

TABLE I
SRAM MEMORY STRUCTURE

Sum of 1s Bit Map Shadow Bit
0 00001000100000000000...0 00000..0

based schemes perform search by looking at multiple bits at
a time. This feature determines the degree of the trie. The
number of leaves in a particular node are determined by the
degree of the trie and the depth of the trie is given by the
number of bits in the largest pattern.

No. Of Leaves Per Node = 2Degree Of The Trie (1)

All the leaves of the nodes in the trie are initially set to 0,
presence of a character is marked by setting the corresponding
indexed location to 1 and the absence of a character is
represented by setting the corresponding indexed location to 0.
Each 1 in the SRAM pattern gives rise to a child with 256 bits,
where a 0 is not propagated while generating the bit pattern.
The patterns P are stored in the on-chip memory in the trie
form. Searching for a pattern requires partitioning address bits
into sections of m bits and addressing different levels of m-
ary trie. The Trie depth is given by equation 2, where X is
the degree of the trie.

Trie Depth =
No. Of Address Bits

log2X
(2)

C. Trie Pruning

The efficiency of the algorithm is further enhanced by
pruning the tries and matching multiple characters in one
cycle. The trie is pruned at a stage after which a particular node
and its children stop branching out. Figure 3 shows sections of
the trie that can be pruned and stored in memory for dedicated
multi character match. The pruned sections of the tries are
stored in off-chip mempry, rhe address of the pruned portion
of the trie is calculated by adding the number of ones in all the
previous levels with the Sum of 1s before the indexed value.
The pruned trie sections are stored as characters in the off-chip
memory and are matched against the incoming content using
dedicated comparators.

We illustrate our pattern matching algorithm with an at-
tempt to match the incoming content “SITECHANGESITE-
CHOWN” against predefined patterns of snort FTP ruleset.

1370



C

E

L

w

D

*

M

D

S

TI

T

E

*

A

T

M

OK

D D

E

R

ME

S D

I

R

E

t

p

a

s

s

*

H

O

Fig. 3. Trie Pruning

T

E

C

H

A

A

T

E

C

H

O

W

N

A

INPUT UNIT 1INPUT UNIT 2

INPUT UNIT 3 INPUT UNIT 4
1 2 3 4 5 6 7 8 9 10 1111 10 9 8 7 6 5 4 3 2 1

Engine 1

Engine 2

Engine 3

Engine 4

Comparator 1

En
gi

ne
s

Comparator 1

Engine 4

Engine 3

Engine 2

Engine 1

Cycles

Comparator 1

Comparator 1

Comparator 1

Comparator 1

Fig. 4. Pattern Matching Graph using Filter and Trie Pruning

The signature SITECHOWN in the incoming content is em-
bedded in other innocuous content. The content filter splits
the incoming stream into four sub streams “SITECHANGE-
SITECHOWN”, “CHANGESITECHOWN”, “SITECHOWN”,
“CHOWN”. These sub streams are passed to separate pattern
matching units as shown in figure 4, where red indicates failure
and blue indicates success.

IV. HARDWARE ARCHITECTURE

In this section we discuss the hardware design details
and implementation details of the Pattern Matching Engine.
The Pattern Matching Module has “n” stages. Each stage is
associated with a separate input buffer.

A. Content Filter

The content filter consists of level 0 and level 1 of the tries.
The incoming data is passed through the content filter and split
into several sub-streams which are stored into separate buffers.
We use two trie levels as content filters instead of three since
the memory requirement for the filter goes up substantially in
case of three levels, figure 5 illustrates that.

0

100

200

300

400

500

600

700

800

900

1000

pop2 virus ICMP telnet DNS DDOS p2p chat FTP exploit

Rule Categories

F
ilt

er
 S

iz
e 

(B
yt

es
)

Content Filter (2 Levels) Content Filter (3 Levels)

Fig. 5. Content Filter Size

B. Trie Lookup Engine

Figure 6 shows a dedicated pattern matching module. A
pattern matching module has 3 input fields and 3 output fields;
the three inputs are: Input Character: the input character to
me matched, Match Input: signal from the previous trie lookup
that indicates match of a character in the previous level, Sum
of 1s: used to calculate the memory address of the node to be
inspected.

Bit Pattern

Input 
Buffer

M
U
X

EN=0

EN=1

Search 
Logic

Sum of 1s Shadow Bits

Previous Memory 
Locations Sum of 1s

Current Memory 
Location Sum of 1s

Match Output

+

Partial Match Output

Sum of 1s 
Output

Match 
Output
Partial 
MatchMatch 

Input

Sum of 1s 
Input

Input 
Character Match 

Logic

Sum of 1s 
adder 

MemoryComparator

Fig. 6. Sub Engine of the Pattern Matching Unit

The Match Input enables or disables a particular pattern
matching unit. The SRAM contains, Sum of Ones field, Trie
Bitmap and Shadow Bit Vector. The Sum of Ones field is used
to calculate the memory address of the next trie location. The
Bitmap indicates presence or absence of a character and the
Shadow Bit Vector indicates a partial match. The SRAM is
indexed into using the Sum of 1s field and the corresponding
trie bitmap is traversed using the character in the input buffer,
if the corresponding bit in the bitmap register is set to 1
then the character is matched positively. The match output
signal is then set to 1 and communicated to the input of the
pattern matching unit to enable it to look at the next character.
The sum of ones in the Bit Map before the indexed bit are
calculated and added to the Sum of 1s of Previous Nodes and
the Sum of 1s Output Signal is generated and communicated
to the input of the pattern matching unit.

1371



C. Comparators

The pattern matching trie lookup sub-engine matches a
character at a time and, on hitting a pruned node calculates
the memory address. The contents of the memory are read and
compared against the unmatched content in the input buffer
using dedicated comparators.

V. RESULTS AND CONCLUSIONS

In this paper we have presented a hardware architecture of
a parallel pattern matching coprocessor using multiway tries
which is capable of detecting multiple patterns at line-speeds.
The design uses memory compaction and scales gracefully
with the increase in the number of signatures without a sig-
nificant increase in the memory. The throughput of the system
does not degrade with the number and length of patterns to
be matched. The graphs in figure 8,9 show the performance
results, graph 8 shows the comparison between traditional
state based approaches and trie based approach in terms of
average number of cycles required for pattern matching. The
technique using ‘tries with pruning‘” out performs “tries with-
out pruning” technique and “state based” techniques. Graph
9 compares the memory required for tries with pruning and
tries without pruning with shows significant increase in the
memory required for tries without pruning with the increase
in the number and length of signatures.

The pattern matching engine was implemented using the
0.25 micron library with an area of 2sq mm with 20
input buffers and 20 dedicated trie look up modules and
comparators. We use the complete Snort rule set (2005 release)
and VoIP RFC to validate our performance. We achieve a
throughput of 12Gbps with 6KBytes of content filter memory
and 0.3 MBytes of total memory for Snort and 0.5KBytes of
filter memory and 12KBytes of total memory for SIP.

0

20

40

60

80

100

120

140

pop2 virus ICMP telnet DNS DDOS p2p chat FTP exploit

Rule Caetgory

A
ve

rg
ae

 R
u

le
 L

en
g

th
 a

n
d

 N
u

m
b

er
 o

f 
R

u
le

s

Average Number of Characters Number of Rules

Fig. 7. Rule Summary for Snort Rules

ACKNOWLEDGMENT

The authors would like to thank John Leon from Irvine
Sensors Corporation.

REFERENCES

[1] http://www.snort.org.
[2] A.V.Aho and M. J. Corasick. Efficient string matching: An aid to

bibliographic search. volume 18(6), pages 333–340. Commun. ACM,
1975.

0

5

10

15

20

25

30

virus pop2 DDOS ICMP p2p telnet FTP chat DNS exploit

Rule Caetgory

N
u

m
b

er
 o

f 
C

yc
le

s

With Trie Pruning Without Trie Pruning State Based

Fig. 8. Average Cycles for Pattern Matching

0

5

10

15

20

25

30

35

40

45

50

virus pop2 DDOS ICMP p2p telnet FTP chat DNS exploit

Rule Categories

M
em

o
ry

 in
 K

B
yt

es

Tries without pruning Tries with pruning

Fig. 9. Memory Usage

[3] Z. K. Baker and V. K. Prasanna. A computationally efficient engine for
flexible intrusion detection. ACM/SIGDA, 2004.

[4] Z. K. Baker and V. K. Prasanna. Time and area efficient pattern match-
ing on fpgas. pages 223–232. 2004 ACM/SIGDA 12th International
Symposium on Field Programmable Gate Arrays, 2004.

[5] C.R.Clark and D.E.Schimmel. Efficient reconfigurable logic circuits for
matching complex network intrusion detection systems. In 13th In-
ternational Conference on Field-Programmable Logic and Applications,
2003.

[6] S. Dharmapurikar, P. Krishnamurthy, T.S.Sproull, and J.Lockwood. Deep
packet inspection using parallel bloom filters. volume 24, pages 52–61.
IEEE Micro, 2004.

[7] S. Dharmapurikar and J. Lockwood. Fast and scalable pattern matching
for content filtering. volume 1-59593-082-5/05/0010. ANCS, 2005.

[8] P. Mehrotra. Memory Intensive Architectures for DSP and Data
Communication. PhD thesis, North Carolina State University, 2002.

[9] P. Mehrotra and P. Franzon. Novel architecture for fast address lookups”.
pages pp. 66–71. IEEE Communications Magazine, 2002.

[10] RFC. http://www.ietf.org/rfc/rfc3261.txt.
[11] L. Tan and T. Sherwood. A high throughput string matching archi-

tecture for intrusion detection and prevention. volume 1063-6897/05.
International Symposium on Computer Architecture, 2005.

[12] Y.Cho and W.Mangione-Smith. A pattern matching co-processor for
network security. ACM, 2005.

[13] F. Yu, R.Katz, and T.V.Lakshman. Gigabit rate packet pattern matching
using tcam. IEEE International Conference on Network Protocols, Oct.
2004.

1372


