
Flexible Low Power Probability Density Estimation
Unit For Speech Recognition

Ullas Pazhayaveetil, Dhruba Chandra and Paul Franzon
Department of Electrical and Computer Engineering, North Carolina State University

Email:{ucpazhay,dchandr,paulf}@ncsu.edu

Abstract— This paper describes the hardware architecture for a
flexible probability density estimation unit to be used in a Large
Vocabulary Speech Recognition System, and targeted for mobile
platforms. The speech recognition system is based on Hidden
Markov Models and consists of two computationally intensive
parts – the probability density estimation using gaussian
distributions, and the viterbi decoding. The power hungry
nature of these computations prevents porting the application
successfully to mobile devices. We have designed a flexible
probability estimation unit that is both power efficient and
meets real time requirements while being flexible enough to
handle emerging speech recognition techniques. The flexible
nature of the design allows it to utilize emerging power and
computation reduction techniques (at the algorithm level) to
achieve up to an 80% power reduction as compared to
conventional designs.

I. INTRODUCTION
By their very nature applications such as speech are likely

to be most useful in mobile embedded systems. A fundamental
problem that plagues these applications is that they require
significantly more performance than current embedded
processors can deliver. Most embedded and low-power
processors, such as the Intel XScale, do not have the hardware
resources and performance that would be necessary to support
a full-featured speech recognizer without limiting its
availability for other tasks. The energy consumption that
accompanies the required performance level is often orders of
magnitude beyond typical embedded power budgets [1]. The
conflicting requirements of low power and high-speed real
time recognition cannot be successfully realized using
software solutions alone for mobile domains.

FPGA solutions [2] also fail to meet the increasing
demands of Large Vocabulary Continuous Speech
Recognition (LVCSR) neither completely meeting low power
requirements nor real time recognition. Dedicated hardware in
the form of an ASIC meets these but offers low degree of
flexibility.

In this paper, we propose a VLSI architecture for part of a
speech recognition system – the observation probability
estimation unit – for HMM based speech recognition. Our
architecture offers a high degree of flexibility and adaptability

to emerging techniques, thus allowing power consumption
reduction at the algorithm level.

II. SPEECH RECOGNITION THEORY
The Observation Probability Unit (OPU) evaluates the

observation probability (or senone scores) of the input
observation vector - the likelihood of each senone (state)
model producing the observed input. The computation of the
senone score is an intensive task typically making up between
40-80% of the total computation in a large vocabulary system.
The senone score is given by bj(Ot), and represents the
probability that state j emits observation feature vector Ot for
time frame t. The senone score [3] is given by

() ()∑
=

=
M

m
jmjmtjmtj ONcOb

1

;; σµ , (1)

where cjm is the weight of the mixture component m in state j,
and N(Ot;µjm;σjm) is the multidimensional (multivariate)
Gaussian distribution with mean µ and covariance σ2, and M is
the total no. of mixtures per senone.

 () [] []()
[]

 −
−= ∑

=

D

d j

jt
jjt d

ddO
KON

1
2

2

2
1exp.;;

σ
µ

σµ
 (2)

where

[]∏
=

=
D

d
j

D

d
K

1

2

1
2
1

σ
π

 (3)

D is the dimensionality of the feature vector considered. This
computation can be performed in the log domain to reduce the
floating-point operations with negligible loss in performance
and accuracy. Cjm is the new weight in the log domain. δ is the
inverse of the covariance.

 ()() [] []() []()∑ ∑
= =

×−=
M

m

D

d
jjtjmtj dddOCOb

1 1

2log δµ (4)

Several techniques have been proposed to speed up the
computation of the senone scores. These techniques have been
categorized into different layers [4]. We will briefly go
through these layers and techniques. Frame-layer algorithms
decide whether the senone score of the current frame should
be computed or skipped. The simplest technique called
Simple-Down Sampling (SDS) computes the frame scores
only for every other frame[5]. Conditional Down Sampling
(CDS) [5] is another technique where a frame is skipped if the

11171-4244-0921-7/07 $25.00 © 2007 IEEE.

feature vector is quantized to a codeword, which is the same
as that of the previous frame. Algorithms that decide which
senone scores need to be computed in each computed frame
are placed in the Gaussian mixture model (GMM) layer. One
such representative technique is the Context-Independent
(CI) GMM-based selection (CIGMMS) [6]. CI GMM scores
(scores of monophone models instead of triphone models)
are first computed. For those scores that are within a preset
threshold, the detailed context dependent (CD) GMM
(senone) scores are computed. The rest are backed- off by
their corresponding CI GMM score. The different techniques
used to decide which Gaussians dominate the senone score
computation are categorized as Gaussian-Layer techniques.
One such technique is the Sub-Vector Quantization Gaussian
Selection (SVQGS)[7] where a rough model computation is
first used to decide which Gaussians (in the
multidimensional Gaussian distribution) need to be
computed.

In the next section we propose the architecture for a
dedicated OPU, which achieves real-time performance with
low power consumption while incorporating latest algorithmic
changes in speech and linguistic research making it more
flexible.

III. ARCHITECTURE
A. Implementation

The system context for our OPU is shown in Figure 1. The
extracted feature vectors are fed into the OPU through an
arbiter unit. The arbiter also initializes the DRAM with the
acoustic models for all senones, and obtains feedback from the
Viterbi Decoder. It uses this information to provide the input
to the OPU. The results or senone scores are stored in an
SRAM, from which the Viterbi Decoder accesses them. Figure
2 shows the block diagram of the OPU itself.

The OPU is a highly pipelined IEEE 754 32-bit floating-
point unit. The data path consists of an (a-b)2*c floating point
unit (FPU1) followed by an adder that completes the inner
loop of Equation (4). A fused multiply-add unit (labeled SWA
in Figure 2) then performs the scale and weight adjustment. A
log_add unit completes the outer loop. The basic building
units (adders /multipliers) for this design have a 3-stage
pipeline needing three buffers at both adder units to complete
the calculations. The internal control unit has a coarse grain
control over most of the arithmetic units, and multiplexers (all
shaded boxes in Figure 2). The different mode settings provide
coarse-grain control of different stages of the pipeline, as well
as control over the interaction between the different units. This
will be discussed in detail. From this point on, ‘a’,’b’ and ‘c’
will be used to refer to the inputs to FPU1.

During the initialization and setup phases, the parallel
inputs to the unit, In1 and In2, initialize the internal LUT for
the log_add module, and also setup the vector length or
dimension (dim), number of mixture (mix), scales, weights,
thresholds and other setup information. It should be noted that
many of these parameters change during the course of the

Figure 1. OPU Interfacing

computation, (for example, scale and weight values change for
every GMM), and can be controlled separately and quickly.
The SW register array stores the scale and weight values
during the normal operation mode. The threshold array stores
the different beam values, which the compare (x>y) unit uses
to compare outputs at different stages of the pipeline against.

During the normal observation probability estimation
process, the input feature vector, mean and variance are fed
into the data path. The output of each of the completed
internal loop (over the entire vector length) is a gaussian. This
output is scaled and weighed and passed onto the log_add
unit, which performs the outer loop calculations in the log
domain (mixture of gaussians). The output (ScoreOut) of this
is sent to the SRAM. A crude power save mode compares
each of the individual gaussians as well as the output of the
log_add module to one of four threshold values. If the
observation probability falls below a particular threshold,
further calculations for that particular senones are squashed
and a preset ‘Constant backoff’ is sent to the output.

B. Adapting to the four layer techniques
1) Frame Layer

For the SDS [5] implementation, the arbiter simply feeds
the GM unit every other frame, and in turn updates senones
score value every other frame. The arbiter contains a counter
that can be externally set and triggered. For the SDS, this
counter is activated and its last bit is monitored to find out
which frames are to be skipped.

For the CDS implementation, we first calculate the senone
scores bj(Ot) for lookahead HMM models[5]. Typically these
are small in number allowing this computation to be fast
enough to be performed for every input frame t and every state
j of the lookahead HMM models. Two sets of scores are
maintained in the SRAM memory, one for the previous
calculated frame, and one for the current frame. Scores of
consecutive frame models (the Euclidean distance – D(t)) are
compared and recorded.

1118

() () ()()∑
=

−−=
J

j
tjtj ObObtD

0

2
1

 (5)

() ()
()iD

tDtD
ti

norm
≤≤

=
0max

 (6)

() 3.00.0 ≤< tD norm : skip 2 frames

() 6.03.0 ≤< tD norm
 : skip 1 frame

 () 0.16.0 ≤< tD norm
 : skip no frames (7)

The maximum score Dmax = max(0<i<t)D(i) is also
recorded. To determine whether or not a signal is currently
changing and in turn gives us information on how many
frames to skip the following equations are used. For the
D(t) calculations, ‘dim’ is first modified to fit the required
vector length, and then bj(Ot) is fed to ‘a’, bj(Ot-1) is fed to
b, and ‘1’ fed to c.

D(t) is temporarily stored in the SW register array. Dmax
is recorded by continually feeding the result of the first
sumer unit to the compare unit and updating the threshold if
the current output value is greater than the recorded Dmax
till now. In our implementation, instead of the
normalization (Equation (6)), we scale the max score to
obtain the thresholds (0.3*Dmax, 0.6*Dmax). This is
performed in 2 separate runs of the OPU, where 0.3 and 0.6
are fed into ‘a’, 0 into ‘b’, and Dmax into ‘c’. The outputs
(for both values) from the first sumer unit as well as Dmax
are sent to three of the four threshold buffers. Finally the
values of D(t) are compared to these values using the
compare_unit(labeled ‘x>y’ in Figure 2). The output of the
compare unit (compareOut) is sent to the arbiter to set its
internal counter in turn setting how many frames to skip.

2) GMM layer
CI observation probabilities [6] are first calculated, and

compared to a threshold value using the compare unit. The
output ‘compareOut’ sets a bit in memory signaling
whether the corresponding context dependent phones need
to be computed or not. Else the CD scores are backed off
by the CI score (ScoreOut).

3) Gaussian Layer
Codeword and cluster definitions are done offline. A

pre-calculated threshold value (θ) is sent to the threshold
register array. The output of the first adder unit identifies
the codeword and neighborhood of the input vector [7].

[] []()
[] θ
µ

>
−

∑
=

D

d j

jt

dU
ddO

D 1

2
1 (8)

The output of the compare unit compareOut is sent to
the arbiter and is used to select the codeword and its
neighbors using a LUT. Now each GMM is made up of a
reduced set of mixtures. Finally the mix parameter is varied
for each senone and the observation probability of each one
is calculated using the reduced set of mixture values.

IV. RESULTS
The HMM based OPU design was implemented in

Verilog and synthesized using the Synopsys Design
Analyzer tool in a .18m CMOS technology. The Synopsys
PrimePower tool was used to obtain the power numbers.
Feature vectors are extracted from the input speech
waveforms using the Sphinx-3 front-end. An operational
frequency of 50MHz was achieved. Three of these units
were sufficient to support real-time speech recognition for
about 6000 senones. The die size was about 2.168 mm2.

The design was evaluated for real time performance and
power consumption for six configurations – Baseline
system, crude threshold check (CTC), SDS, CDS,
CIGMMS and SVQGS. Figure 3 shows the real time
performance of each of these techniques on our design.
Real-time performance is measured as a fraction of the
sampling frame rate (every 10ms). Real time performance
is achieved if all required senone scores are computed
before the next set of input observation vectors is available
(10ms later). The frequency of operation for SDS was cut
down to 25MHz so as to reduce power consumption, which
explains its 1xRT performance. Figure 4 shows the power
consumption for each of these techniques with our design.

0
FPU

(a-b)2*c

Input
vector

Σ
(add)

Σ

SWA
Σ

(log_add)

Σ

Threshold

SW
Register Array

x>y

Control

Constant
Backoff

ScoreOut

0

dim mix

compareOut

FPU bypass

-- Input from
Control

mode

In1

In2

Figure 2. Observation Probability Unit (OPU)

1119

The power consumption values reported are for a single
OPU. We achieve a power consumption reduction of up to
48% over conventional designs using these techniques.

vs. Real Time values

0

0.2

0.4

0.6

0.8

1

1.2
B

as
el

in
e

C
TC

S
D

S

C
D

S

C
IG

M
M

S

S
VQ

G
S

x
R

ea
l T

im
e

Figure 3. Performance (speed) vs. real-time

Power Consumption

0

50

100

150

200

250

300

B
as

el
in

e

CT
C

SD
S

CD
S

C
IG

M
M

S

S
V

Q
G

S

P
ow

er
 C

on
su

m
pt

io
n

(m
W

)

Figure 4. Power Consumption for a single OPU

V. DISCUSSION AND RELATED WORK
Several approaches have been taken towards finding

solutions to the problems of speed and power consumption
in speech recognition. Software solutions running on a
desktop PC can barely achieve real-time high accuracy
speech recognition, and completely consumes the resources
of the PC if it does. This coupled with its power hungry
nature prevents porting it successfully to mobile devices.
The Sphinx3 baseline system runs 1.8x slower than real
time on a 2.4 GHz Pentium4 system [8] and consume about
52.3 watts. A dedicated hardware accelerator has been
proposed to speed up the Sphinx3 software implementation
[8]. The design achieved real-time recognition and
consumed about 1.8 watts of power. Hence, even with the
worst case power performance of 3x245mW, we achieve
about 60% power reduction over this design. Adapting our
design to the new techniques (assuming the best case of
3x121mW) leads to about 80% power reduction over the
previous design. Another design for a VLSI speech
processor developed at the National Cheng Kung
University, integrates a programmable core and specific
recognition core to achieve high performance and
flexibility. No power readings were reported. The use of
reconfigurable logic and FPGA devices is another common
approach [2]. The inherent reconfigurability of FPGAs
provides a level of specialization while retaining significant

generality. However the reconfiguration time is relatively
long, and FPGAs have a significant disadvantage both in
performance and power when compared to either ASIC or
CPU logic functions.

While the power savings itself is a step towards porting
our design to mobile domains, what is more important is
perhaps the degree of flexibility that our design
incorporates. With new techniques emerging continually in
speech recognition, it is important that any hardware
accelerator built will be able to incorporate these
techniques at least to some extent, and take advantage of
the savings they provide. Our design has been able to
incorporate new techniques in speech recognition and use it
to reduce power consumption at the algorithm level. The
accuracy achieved with the hardware implementation of
these techniques are consistent with the software
implementations and hence have not been reported here.

VI. CONCLUSION
We have designed and implemented a flexible low-

power VLSI architecture for observation probability
estimation for a large vocabulary HMM speech recognition
system. The design is capable of adapting to new and
emerging techniques in speech recognition. It uses these
new techniques to achieve power consumption reduction at
the algorithm level. We have shown that the design
achieves real-time recognition while reducing power
consumption by up to 80% over comparable designs. This
allows the application to be successfully ported to power
constrained domains such as mobile devices.

REFERENCES
[1] Rajeev Krishna, R., Mahlke, S. and Austin, “Architectural

Optimizations for Low-Power, Real-Time Speech Recognition”.
Proc. 2003 Intl. Conf. on Compilers, Architecture and Synthesis for
Embedded Systems(CASES ’03), 2003, 220 -231.

[2] Melnikoff, S. Quigley, S.F. “Performing speech recognition on
multiple parallel files using continuous hidden Markov models on
an FPGA”, Proc. IEEE International Conference on Field
Programmable Technology (FPT 2002), 2002, pp.399-402.

[3] Young, S., “Large vocabulary continuous speech recognition: A
review”. IEEEWorkshop on Automatic Speech Recognition and
Understanding, Snowbird, Utah, December 1995, 3-28.

[4] Chan, A., Mosur, R., Rudnicky, A., and Sherwani, J., “Four layer
categorization scheme of fast GMM computation techniques in
large vocabulary continuous speech recognition systems”. Intl.
Conf. on Spoken Language Processing, 2004, 689-692.

[5] Woszczyan, M., “Fast Speaker Independent Large Vocabulary
Continuous Speech Recognition”. Universitat Karlsruhe; Institut fur
Logik, Komplexitat and Deduktions system,1998.

[6] Lee, A., Kawahara, T., and Shikano, K., “Gaussian mixture
selection using context-independent HMM” In IEEE ICASSP,
2001.

[7] Bocchieri, E., “Vector quantization for efficient computation of
continuous density likelihoods”. In ICASSP ’93, Volume II, 1993,
II 692-695.

[8] Mathew, B., Davis, A. and Fang, Z., “A Low-Power Accelerator for
the SPHINX 3 Speech Recognition System”.

1120

