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Abstract— This paper describes the hardware architecture for a 
flexible probability density estimation unit to be used in a Large 
Vocabulary Speech Recognition System, and targeted for mobile 
platforms. The speech recognition system is based on Hidden 
Markov Models and consists of two computationally intensive 
parts – the probability density estimation using gaussian 
distributions, and the viterbi decoding. The power hungry 
nature of these computations prevents porting the application 
successfully to mobile devices. We have designed a flexible 
probability estimation unit that is both power efficient and 
meets real time requirements while being flexible enough to 
handle emerging speech recognition techniques. The flexible 
nature of the design allows it to utilize emerging power and 
computation reduction techniques (at the algorithm level) to 
achieve up to an 80% power reduction as compared to 
conventional designs. 

I. INTRODUCTION  
By their very nature applications such as speech are likely 

to be most useful in mobile embedded systems. A fundamental 
problem that plagues these applications is that they require 
significantly more performance than current embedded 
processors can deliver. Most embedded and low-power 
processors, such as the Intel XScale, do not have the hardware 
resources and performance that would be necessary to support 
a full-featured speech recognizer without limiting its 
availability for other tasks. The energy consumption that 
accompanies the required performance level is often orders of 
magnitude beyond typical embedded power budgets [1]. The 
conflicting requirements of low power and high-speed real 
time recognition cannot be successfully realized using 
software solutions alone for mobile domains. 

FPGA solutions [2] also fail to meet the increasing 
demands of Large Vocabulary Continuous Speech 
Recognition (LVCSR) neither completely meeting low power 
requirements nor real time recognition. Dedicated hardware in 
the form of an ASIC meets these but offers low degree of 
flexibility. 

In this paper, we propose a VLSI architecture for part of a 
speech recognition system – the observation probability 
estimation unit – for HMM based speech recognition. Our 
architecture offers a high degree of flexibility and adaptability 

to emerging techniques, thus allowing power consumption 
reduction at the algorithm level.   

II. SPEECH RECOGNITION THEORY 
The Observation Probability Unit (OPU) evaluates the 

observation probability (or senone scores) of the input 
observation vector - the likelihood of each senone (state) 
model producing the observed input. The computation of the 
senone score is an intensive task typically making up between 
40-80% of the total computation in a large vocabulary system. 
The senone score is given by bj(Ot), and  represents the 
probability that state j emits observation feature vector Ot for 
time frame t. The senone score [3] is given by 
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where cjm is the weight of the mixture component m in state j, 
and N(Ot;µjm;σjm) is the multidimensional (multivariate) 
Gaussian distribution with mean µ and covariance σ2, and M is 
the total no. of mixtures per senone. 
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D is the dimensionality of the feature vector considered. This 
computation can be performed in the log domain to reduce the 
floating-point operations with negligible loss in performance 
and accuracy. Cjm is the new weight in the log domain. δ is the 
inverse of the covariance. 
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Several techniques have been proposed to speed up the 
computation of the senone scores. These techniques have been 
categorized into different layers [4]. We will briefly go 
through these layers and techniques. Frame-layer algorithms 
decide whether the senone score of the current frame should 
be computed or skipped.  The simplest technique called 
Simple-Down Sampling (SDS) computes the frame scores 
only for every other frame[5]. Conditional Down Sampling 
(CDS) [5] is another technique where a frame is skipped if the 
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feature vector is quantized to a codeword, which is the same 
as that of the previous frame. Algorithms that decide which 
senone scores need to be computed in each computed frame 
are placed in the Gaussian mixture model (GMM) layer. One 
such representative technique is the Context-Independent 
(CI) GMM-based selection (CIGMMS) [6]. CI GMM scores 
(scores of monophone models instead of triphone models) 
are first computed. For those scores that are within a preset 
threshold, the detailed context dependent (CD) GMM 
(senone) scores are computed. The rest are backed- off by 
their corresponding CI GMM score. The different techniques 
used to decide which Gaussians dominate the senone score 
computation are categorized as Gaussian-Layer techniques. 
One such technique is the Sub-Vector Quantization Gaussian 
Selection (SVQGS)[7] where a rough model computation is 
first used to decide which Gaussians (in the 
multidimensional Gaussian distribution) need to be 
computed. 

In the next section we propose the architecture for a 
dedicated OPU, which achieves real-time performance with 
low power consumption while incorporating latest algorithmic 
changes in speech and linguistic research making it more 
flexible. 

III. ARCHITECTURE 
A.  Implementation 

The system context for our OPU is shown in Figure 1. The 
extracted feature vectors are fed into the OPU through an 
arbiter unit. The arbiter also initializes the DRAM with the 
acoustic models for all senones, and obtains feedback from the 
Viterbi Decoder. It uses this information to provide the input 
to the OPU. The results or senone scores are stored in an 
SRAM, from which the Viterbi Decoder accesses them. Figure 
2 shows the block diagram of the OPU itself. 

The OPU is a highly pipelined IEEE 754 32-bit floating-
point unit.  The data path consists of an (a-b)2*c floating point 
unit (FPU1)  followed by an adder that completes the inner 
loop of Equation (4). A fused multiply-add unit (labeled SWA 
in Figure 2) then performs the scale and weight adjustment. A 
log_add unit completes the outer loop. The basic building 
units (adders /multipliers) for this design have a 3-stage 
pipeline needing three buffers at both adder units to complete 
the calculations. The internal control unit has a coarse grain 
control over most of the arithmetic units, and multiplexers (all 
shaded boxes in Figure 2). The different mode settings provide 
coarse-grain control of different stages of the pipeline, as well 
as control over the interaction between the different units. This 
will be discussed in detail. From this point on, ‘a’,’b’ and ‘c’ 
will be used to refer to the inputs to FPU1. 

During the initialization and setup phases, the parallel 
inputs to the unit, In1 and In2, initialize the internal LUT for 
the log_add module, and also setup the vector length or 
dimension (dim), number of mixture (mix), scales, weights, 
thresholds and other setup information. It should be noted that 
many of these parameters change during the course of the  

 

Figure 1. OPU Interfacing 

computation, (for example, scale and weight values change for 
every GMM), and can be controlled separately and quickly. 
The SW register array stores the scale and weight values 
during the normal operation mode. The threshold array stores 
the different beam values, which the compare (x>y) unit uses 
to compare outputs at different stages of the pipeline against.   

During the normal observation probability estimation 
process, the input feature vector, mean and variance are fed 
into the data path. The output of each of the completed 
internal loop (over the entire vector length) is a gaussian. This 
output is scaled and weighed and passed onto the log_add 
unit, which performs the outer loop calculations in the log 
domain (mixture of gaussians). The output (ScoreOut) of this 
is sent to the SRAM. A crude power save mode compares 
each of the individual gaussians as well as the output of the 
log_add module to one of four threshold values. If the 
observation probability falls below a particular threshold, 
further calculations for that particular senones are squashed 
and a preset ‘Constant backoff’ is sent to the output.   

B. Adapting to the four layer techniques 
1) Frame Layer 

For the SDS [5] implementation, the arbiter simply feeds 
the GM unit every other frame, and in turn updates senones 
score value every other frame. The arbiter contains a counter 
that can be externally set and triggered. For the SDS, this 
counter is activated and its last bit is monitored to find out 
which frames are to be skipped.  

For the CDS implementation, we first calculate the senone 
scores bj(Ot) for lookahead HMM models[5]. Typically these 
are small in number allowing this computation to be fast 
enough to be performed for every input frame t and every state 
j of the lookahead HMM models. Two sets of scores are 
maintained in the SRAM memory, one for the previous 
calculated frame, and one for the current frame. Scores of 
consecutive frame models (the Euclidean distance – D(t)) are 
compared and recorded. 
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( ) 3.00.0 ≤< tD norm  : skip 2 frames 

( ) 6.03.0 ≤< tD norm
 : skip 1 frame 

     ( ) 0.16.0 ≤< tD norm
 :  skip no frames          (7) 

The maximum score Dmax = max(0<i<t)D(i) is also 
recorded. To determine whether or not a signal is currently 
changing and in turn gives us information on how many 
frames to skip the following equations are used. For the 
D(t) calculations, ‘dim’ is first modified to fit the required 
vector length, and then bj(Ot) is fed to ‘a’, bj(Ot-1)  is fed to 
b, and ‘1’ fed to c. 

D(t) is temporarily stored in the SW register array. Dmax 
is recorded by continually feeding the result of the first 
sumer unit to the compare unit and updating the threshold if 
the current output value is greater than the recorded Dmax 
till now. In our implementation, instead of the 
normalization (Equation (6)), we scale the max score to 
obtain the thresholds (0.3*Dmax, 0.6*Dmax). This is 
performed in 2 separate runs of the OPU, where 0.3 and 0.6 
are fed into ‘a’, 0 into ‘b’, and Dmax into ‘c’. The outputs 
(for both values) from the first sumer unit as well as Dmax 
are sent to three of the four threshold buffers. Finally the 
values of D(t) are compared to these values using the 
compare_unit(labeled ‘x>y’ in Figure 2). The output of the 
compare unit (compareOut) is sent to the arbiter to set its 
internal counter in turn setting how many frames to skip. 

2) GMM layer 
CI observation probabilities [6] are first calculated, and 

compared to a threshold value using the compare unit. The 
output ‘compareOut’ sets a bit in memory signaling 
whether the corresponding context dependent phones need 
to be computed or not. Else the CD scores are backed off 
by the CI score (ScoreOut). 

3)  Gaussian Layer 
Codeword and cluster definitions are done offline. A 

pre-calculated threshold value (θ) is sent to the threshold 
register array. The output of the first adder unit identifies 
the codeword and neighborhood of the input vector [7]. 
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The output of the compare unit compareOut is sent to 
the arbiter and is used to select the codeword and its 
neighbors using a LUT. Now each GMM is made up of a 
reduced set of mixtures. Finally the mix parameter is varied 
for each senone and the observation probability of each one 
is calculated using the reduced set of mixture values. 

IV. RESULTS 
The HMM based OPU design was implemented in 

Verilog and synthesized using the Synopsys Design 
Analyzer tool in a .18m CMOS technology. The Synopsys 
PrimePower tool was used to obtain the power numbers. 
Feature vectors are extracted from the input speech 
waveforms using the Sphinx-3 front-end. An operational 
frequency of 50MHz was achieved. Three of these units 
were sufficient to support real-time speech recognition for 
about 6000 senones. The die size was about 2.168 mm2.   

The design was evaluated for real time performance and 
power consumption for six configurations – Baseline 
system, crude threshold check (CTC), SDS, CDS, 
CIGMMS and SVQGS. Figure 3 shows the real time 
performance of each of these techniques on our design. 
Real-time performance is measured as a fraction of the 
sampling frame rate (every 10ms). Real time performance 
is achieved if all required senone scores are computed 
before the next set of input observation vectors is available 
(10ms later). The frequency of operation for SDS was cut 
down to 25MHz so as to reduce power consumption, which 
explains its 1xRT performance. Figure 4 shows the power 
consumption for each of these techniques with our design. 
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Figure 2. Observation Probability Unit (OPU)
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The power consumption values reported are for a single 
OPU. We achieve a power consumption reduction of up to 
48% over conventional designs using these techniques. 
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Figure 3.  Performance (speed) vs. real-time  

Power Consumption 
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Figure 4. Power Consumption for a single OPU 

V. DISCUSSION AND RELATED WORK 
Several approaches have been taken towards finding 

solutions to the problems of speed and power consumption 
in speech recognition. Software solutions running on a 
desktop PC can barely achieve real-time high accuracy 
speech recognition, and completely consumes the resources 
of the PC if it does. This coupled with its power hungry 
nature prevents porting it successfully to mobile devices. 
The Sphinx3 baseline system runs 1.8x slower than real 
time on a 2.4 GHz Pentium4 system [8] and consume about 
52.3 watts. A dedicated hardware accelerator has been 
proposed to speed up the Sphinx3 software implementation 
[8]. The design achieved real-time recognition and 
consumed about 1.8 watts of power. Hence, even with the 
worst case power performance of 3x245mW, we achieve 
about 60% power reduction over this design. Adapting our 
design to the new techniques (assuming the best case of 
3x121mW) leads to about 80% power reduction over the 
previous design. Another design for a VLSI speech 
processor developed at the National Cheng Kung 
University, integrates a programmable core and specific 
recognition core to achieve high performance and 
flexibility. No power readings were reported. The use of 
reconfigurable logic and FPGA devices is another common 
approach [2]. The inherent reconfigurability of FPGAs 
provides a level of specialization while retaining significant 

generality. However the reconfiguration time is relatively 
long, and FPGAs have a significant disadvantage both in 
performance and power when compared to either ASIC or 
CPU logic functions.  

While the power savings itself is a step towards porting 
our design to mobile domains, what is more important is 
perhaps the degree of flexibility that our design 
incorporates. With new techniques emerging continually in 
speech recognition, it is important that any hardware 
accelerator built will be able to incorporate these 
techniques at least to some extent, and take advantage of 
the savings they provide. Our design has been able to 
incorporate new techniques in speech recognition and use it 
to reduce power consumption at the algorithm level. The 
accuracy achieved with the hardware implementation of 
these techniques are consistent with the software 
implementations and hence have not been reported here.  

VI. CONCLUSION 
We have designed and implemented a flexible low-

power VLSI architecture for observation probability 
estimation for a large vocabulary HMM speech recognition 
system. The design is capable of adapting to new and 
emerging techniques in speech recognition. It uses these 
new techniques to achieve power consumption reduction at 
the algorithm level. We have shown that the design 
achieves real-time recognition while reducing power 
consumption by up to 80% over comparable designs. This 
allows the application to be successfully ported to power 
constrained domains such as mobile devices. 
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