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Abstract—Signature-based Intrusion Detection 

Systems (IDSs) monitor network traffic for 

security threats by scanning packet payloads for 

attack signatures. IDSs have to run at wire speed 

and need to be configurable to protect against 

emerging attacks. In this paper we consider the 

problem of string matching which is the most 

computationally intensive task in IDS. A

configurable string matching accelerator is

developed with the focus on increasing throughput 

while maintaining the configurability provided by

the software IDSs. Our preliminary results suggest

that the hardware accelerator offers an overall 

system performance of up to 14Gbps. 

Index Terms—Intrusion detection, Snort accelerator, 

string matchin 

I. INTRODUCTION

Traditionally networks have been protected using 

firewalls that provide the basic functionality of

monitoring and filtering traffic. Firewall users can

then write rules that specify the combinations of 

packet headers that are allowed through. However, 

not all incoming malicious traffic can be blocked and

legitimate users can still abuse their rights. Intrusion

Detection Systems (IDSs) go one step further by

inspecting packet payload for attack signatures.

Currently, most IDSs are software based running on a 

general purpose processor. Snort [1] is a widely used

open-source IDS in which the rules refer to the header

as well as to the packet payload. A sample Snort rule

that detects CGI-PHF attack is shown in Fig. 1. The 

rule examines the protocol, source IP address, source

TCP port, destination IP address and destination TCP 

port. The part enclosed in parenthesis is the rule 

options that are executed if the packet headers match.

The content option indicates that the packet payload is

to be matched against the string enclosed in double

quotes.

Intrusion detection can be divided into two 

problems; packet filtering or classification based on 

header fields and string matching over the packet 

payload. The first problem was studied extensively in

the literature and many algorithms were suggested [5].

A recent study [4] showed that the string matching

routines in Snort account for up to 70% of the total 

execution time. We also have studied the snort rules 

and have showed that 87% of the rules contain strings

to match against. Therefore, the second problem of

string matching is the most computationally intensive.

Fig. 1. Sample Snort rule 

The explosion of recent attacks by Code Red and

MSBlast affected the productivity of computer

networks all over the world. It is also becoming
_________________________________
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increasingly difficult for software based IDSs running 

on general purpose processors to keep up with 

increasing network speeds (OC192 and 10Gbps at 

backbone networks). This has prompted the need to 

accelerate intrusion detection and to maintain the 

configurability needed to detect new attacks. Several 

hardware accelerators have been proposed. For 

example, Deterministic Finite Automata (DFA) 

mapped on an FPGA has been used to accelerate 

string matching. However, DFA based 

implementations achieve low throughput and are 

complex to build and configure. On the other hand, 

discrete or parallel comparators were used to achieve 

higher throughput at the expense of increased area 

and poor scalability. CAM based solutions reduce the 

area used by discrete comparators and achieve similar 

throughput. Finally, Bloom filters and hash functions 

were used to compress the string set, find probable 

matches and reduce the total number of comparisons. 

This paper focuses the most computationally 

intensive part of the problem that is the string 

matching of the packet payload against hundreds of 

patterns at wire-speed. We suggest a memory based 

accelerator that is reconfigurable and have high 

throughput. The IDS accelerator is composed of a 

software based component that runs on a general 

purpose processor, and a standard RAM based 

technique for FSM implementation. The software 

generates an FSM from the set of strings extracted 

from the Snort rule database. The FSM matches 

multiple strings at the same time based on the Aho-

Corasick string matching algorithm. This accelerator 

is flexible, easy to update and can achieve high 

throughput. The throughput increases as the on-chip 

RAM bandwidth increases. 

 The rest of the paper is organized as follows. 

Section II gives a background on string matching 

algorithms, summarizes IDS acceleration efforts and 

points out some of the differences between the 

proposed accelerator and the other architectures. 

Section III describes the suggested architecture for 

string matching. Section IV presents the simulation 

results, analyzes of the performance of the accelerator 

and compares it with previous work. Section V 

summarizes the contributions of this paper and 

discusses directions for future work. 

II. RELATED WORK

Most known IDS implementations use a general 

purpose string matching algorithms, such as Boyer-

Moore (BM) [3]. BM is the most widely used 

algorithm for string matching, the algorithm compares 

the string to the input starting from the rightmost 

character of the string. To reduce the large number of 

comparisons, two heuristics are triggered on a 

mismatch. The bad character heuristic shifts the 

search string to align the mismatching character with 

the rightmost position at which the mismatching 

character appears in the search string. If the mismatch 

occurs in the middle of the search string, then there is 

suffix that matches. The good suffix heuristic shifts 

the search string to the next occurrence of the suffix 

in the string. Fisk and Varghese suggested a set-wise 

Boyer-Moore-Horspool algorithm specifically for 

intrusion detection [12]. It extends BM to match 

multiple strings at the same time by applying the 

single pattern algorithm to the input for each search 

pattern. Obviously this algorithm does not scale well 

to larger string sets. 

On the other hand, Aho-Corasick (AC) [2] is a 

multi-string matching algorithm, meaning it matches 

the input against multiple strings at the same time. 

Multi-string matching algorithms generally preprocess 

the set of strings, and then search all of them together 

over the input text. AC is more suitable for hardware 

implementation because it has a deterministic 

execution time per packet. Tuck et al. [13] examined 

the worst-case performance of string matching 

algorithms suitable for hardware implementation. 

They showed that AC has higher throughput than the 

other multiple string matching algorithms and is able 

to match strings in worst-case time linear in the size 

of the input. They concluded that their compressed 

version of AC is the best choice for hardware 

implementation of string matching for IDS. 

 We use a different method to store the AC 

database in an SRAM that achieves a higher 

throughput than Tuck’s implementation while having 

a similar memory requirement. It works by building a 

tree based state machine from the set of strings to be 

matched as follows. Starting with a default no match 

state as the root node, each character to be matched 

adds a node to the machine. Failure links that point to 

the longest partial match state are added. To find 
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matches, the input is processed one byte at a time and 

the state machine is traversed until a matching state is 

reached. Fig. 2 shows a state machine constructed 

from the following strings {hers, she, the, there}. The 

dashed lines show the failure links, however the 

failure links from all states to the idle state are not 

shown. This gives an idea of the complexity of the 

FSM for a simple set of strings. 

There have been several attempts to accelerate 

IDS recently, most of the implementations used 

regular expressions. Regular expressions are 

generated for every string in the rule set and a 

Nondeterministic/ Deterministic Finite Automata 

(N/DFA) that examines the input one byte at a time is 

implemented. FAs are complex, hard to implement, 

have to be rebuilt every time a string is added and 

result in designs with a modest throughput. Sidhu and 

Prasanna mapped an NFA into an FPGA [5]. Carver 

et al. wrote a regular expression generator in JHDL 

that extracts strings from the Snort database, generates 

regular expressions and a netlist for a Xilinx FPGA 

[6]. 

Other architectures used discrete comparators to 

exploit parallelism and achieve higher throughput. 

The disadvantage of this approach is the large area 

required. Cho et al., for example, used four parallel 

comparators per string [10], and Sourdis at. al used 

pipelining as well as discrete comparators to double 

the throughput [7]. Several implementations [8, 11] 

have used CAMs and DCAMs along with 

comparators to reduce the area and achieve similar 

throughput to the discrete comparators 

implementations. The drawback is the high cost and 

the high power requirement of CAMs. 

Recently, Dharmapurikar et al. [9] used bloom 

filters to perform string matching. The strings are 

compressed by calculating multiple hash function 

over each string. The compressed set of strings is 

stored into a small memory which is then queried to 

find out whether a given string belongs to the 

compressed set. If a string is found to be a member of 

a bloom filter, it is declared as a possible match and a 

hash table or regular matching algorithm is needed to 

verify the membership. Bloom filters use less 

memory, are easy to reprogram and achieve a higher 

throughput than DFA implementations. 

Tuck et al. [13] stored the high level nodes including 

the pointers to the next and failure states in the RAM. 

Because of that a huge memory of about 53MB was 

needed to store the Snort rules set. They used the 

analogy between IP forwarding and string matching to 

apply bit-mapping and path compression to the AC 

tree, reducing its size to 2.8MB and 1.1MB, 

respectively. Our approach stores the state tables in 

the RAM and uses a minimal logic to traverse the 

tables and find a match. The state tables are around 

3MB in size without the use of any compression 

techniques.

III. ACCELERATOR ARCHITECTURE

The accelerator is a part of the configurable network 

processor architecture shown in Fig. 3. It consists of a 

2-wide multiple issue VLIW processor with hardware 

support for eight hyper threads. The memory system 

consists of multi-port RAM and a high speed DMA. A 

number of configurable accelerators are used to speed 

up specific networking tasks such as IP forwarding, 

quality of service and string matching for intrusion 

detection.

The IDS is composed of two components; a 

software that runs on the VLIW core and a hardware 

string matching accelerator. The software extracts the 

strings from the Snort database, creates the FSM tree 

and generates the state tables. The hardware is shown 

in Fig. 4. It implements a Mealy FSM and consists of 

a RAM to store the state tables, a register to hold the 

current state, and control logic to access the RAM and 

find a match.  

Incoming packets need to be matched only against 

a subset of rules that match the packet header in the 

Snort database. To avoid creating one large 

complicated FSM for all of the strings in the database, 

the software performs a simple rule classification 

resulting in a smaller FSM or state table for every 

class. Rules are classified based on the header fields, 

mainly the protocol and port numbers, into classes 

such as ICMP, FTP, SMTP, Oracle, Web-CGI…etc. 

This makes the software faster, reduces the RAM size 

and exploits parallelism between packets to increase 

the throughput. 

ACM SIGARCH Computer Architecture News 101 Vol. 33, No. 1, March 2005



Fig. 2. Finite state machine diagram

Fig. 3. Configurable network processor architecture 

Fig. 4. String matching accelerator 
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Table 1. State table 
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IV. RESULTS

In this section we present the results of our Snort rules 

. Snort Rules Analysis 

ur study of the Oct. 2003 Snort rules set showed that 

T

ussed in the previous section is shown in Table 1. 

The rows are indexed by the current state and the 

columns by the input character. Every element 

contains a pair of values; the next state and a 

matching string ID. The table is mapped onto a RAM, 

where the address of the RAM is the concatenation of 

the current state and the input character. The content 

of the RAM is the concatenation of the next state and 

the Match ID. Although the address and content of the 

RAM are assumed to be 32 in the simulations, they 

could be any value depending on the number of states. 

The right most 24 bits represent the state and the left 

most 8 bits represent the input character or the Match 

ID.

ating the string tables as well as matching the 

strings. A simple FSM matches the packet content 

against the string set a byte at a time. The FSM 

generates the RAM address, reads the next state and 

Match ID, and exits if Match ID doesn’t equal to zero 

(i.e. a match is found). If Match ID is zero the FSM 

processes the next input byte until the end of packet 

content or a match is reached. To add a new string, 

the state table has to be rebuilt and written to the 

RAM.  Because the rules are classified into several 

classes, only one state table needs to be rebuilt. 

study and the simulations of the accelerator. The first 

subsection presents statistics about snort rule set. In 

Subsection B we derive an equation for memory size 

and present the experimental memory requirements. 

In Subsection C we examine the performance of our 

accelerator. Finally, in Subsection D we compare our 

design to the other hardware accelerators. 

A

O

1542 of the total 1777 rules studied (about 87%) 

contained strings to match against the packet payload. 

This demonstrates the strong need for hardware 

acceleration of the string matching aspect of the IDS 

problem. Fig. 5 shows the distribution of the string 

lengths in bytes. We can see that the average string 

length is 14 bytes and the majority of the strings are 

shorter than 26 bytes. It is also clear that there is a 

non-negligible number of strings longer the 40 bytes. 

Our simulator took into consideration all ASCII 

characters including the non-printable characters and 

parsed the hexadecimal strings included in most Snort 

rules. To make sure that the strings accurately 

represent the rules they were extracted from. Multiple 

strings in the same rule within a distance of zero were 

combined into one string. 
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B. Memory Size 

The RAM is the major component in the accelerator;

it dictates the size and limits the throughput. As 

shown in Fig. 6 the disadvantage is that the memory

requirement increases linearly with the number of 

states which in turn depends on the number of

characters in the string set. The memory requirement

in bits was derived in terms of the number of states, 

number of strings and the number of different 

characters in the string set. Equation (1) shows the

memory requirement, where s is the number of states, 

n is the number of strings and c is the number of 

characters per set. 

csnsRAM 22 loglog           (1)

The number of states depends on the number of 

strings and the number of characters per string. As we

mentioned earlier the rules were classified by headers 

to reduce the sizes of the FSMs and state tables. Table

2 shows the RAM requirement only for the largest 

rule classes. The RAM requirement for the largest 

rules classes (web-cgi, web-misc) is around 750KB. 

The size of the state tables for all of Snort 2003 rule 

set is around 3MB which can be fitted on-chip. By

applying state minimization and compression

techniques we expect to shrink the state tables’ sizes 

even more.

Table 2. RAM size in bytes for different rule classes 

Rule class Rules Strings States RAM (bytes) 

FTP 50 49 268 43,997

SMTP 18 24 362 56,840

ICMP 22 11 138 17,501

RPC 124 58 720 132,623

Oracle 25 25 265 40,366

Web-CGI 311 311 3133 747,939

Web-Misc 275 275 3242 768,975

Web-IIS 108 108 1514 314,652

Web-PHP 58 58 914 172,132

Web-Coldfusion 35 35 572 98,081

Web-Frontpage 34 34 367 59,926

Other classes 717 554 - 709,963

Total 1777 1542 - 3,118,996
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Table 3. Comparison of string matching implementations

Description
Input

Bits
Device

Through-

put(Gbps)

Logic

Cells/Char

64 Altera EP20k400E 10.1
Aldwairi et al. State tables/RAM 

32 Altera EP20k400E 5.0
15

Sourdis et al. [8] Pre-decoded CAMs 32 Virtex2 6000 9.7 3.56

Gokhale et al.[11] CAMs/Comparators 32 VirtexE-1000 2.2 15.2

Cho et al.[10] Discrete Comparators 32 Altera EP20K 2.9 10.6

Sidhu et al.[5] NFAs/Regular Expression 8 Virtex 100 0.75 ~31

C. Performance 

The AC string matching algorithm has a deterministic

worst-case lookup time. Once the state tables are 

generated and stored in the RAM, the packet is 

processed one byte at a time, and every byte requires 

one access to the RAM. The processing time mainly

depends on the length of the packet and the RAM

access time. The RAM access time depends on the 

RAM size which is proportional to the number of 

strings and the number of characters per string. As

discussed in Section III, using a simple classification

technique to divide the rules into smaller rule sets

generates separate FSMs that can run in parallel. This
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not only significantly reduces the size of the state 

tables but also increases the throughput by exploiting 

parallelism between the packets and different rule 

classes.

Fig. 7 shows the throughput of the accelerator 

where CACTI version 3.2 [14] was used to model the 

on-chip RAM. The figure plots the performance in 

terms of processing throughput (Gbps) for different 

FSM counts (1, 4, 8) and for rule sets with sizes up to 

3,000 characters. We see that higher throughput is 

achieved by using more FSMs in parallel.  By using 8 

FSMs a throughput of around 14Gbps is achieved as 

opposed to 7 and 2Gbps for 4 and 1 FSM(s), 

respectively. We also notice that the throughput 

degrades as the number of characters grows. The 

throughput for 8 parallel FSMs decreases to about 

5Gbps for 3000 characters. The performance 

degradation is due to the fact that as the number of 

characters increases, the number of states increases 

and the state table size increases as well. 

D. Comparison with Previous Work 

Table 3 compares the performance of our design 

with regular expressions/FAs, discrete comparators 

and CAMs based designs. The performance numbers 

for Bloom filters implementation were not available. 

The data for the other designs was obtained from 

Sourdis et al. [8]. It is clear that our design out 

performed Sidhu’s NFAs, Cho’s discrete comparators, 

and Gokhale’s CAMs in terms of throughput. On the 

other hand, Sourdis’s pre-decoded CAMS used 

extensive fine grain pipelining to increase the 

throughput to 9.7 Gbps. By using 8 FSMs (i.e. 64 bit 

input) our accelerator achieves a throughput of about 

10 Gbps and exceeds pre-decoded CAMs speed. 

Another advantage over Sourdis’s design is the low 

cost and power requirements of RAMs compared to 

CAMs.

V. CONCLUSIONS AND FUTURE WORK

We have studied Snort rules set and have shown that 

87% of the rules have content. This further 

emphasizes the need for hardware acceleration for 

content matching. We have also presented a 

configurable string matching accelerator based on a 

memory implementation of the AC FSM where the 

state tables are directly stored in the RAM rather than 

the high level tree data structure. This results in a 

small memory requirement that is likely to fit in on-

chip SRAM. We have shown that the accelerator can 

achieve up to 14Gbps throughput with a simple 

classification algorithm which highlights the 

importance of classification algorithms. We also 

showed that our design out performed the previous 

work published in this area. 

Despite the work done in this area there is still 

room for improvement, our immediate goals are to 

apply FSM minimization and compression techniques 

to further reduce the size of the RAM. Furthermore, it 

would be interesting to use a better classification 

algorithm to exploit parallelism and achieve higher 

throughput.
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