
Configurable String Matching Hardware for

Speeding up Intrusion Detection

Monther Aldwairi*, Thomas Conte, Paul Franzon

 Department of Electrical and Computer Engineering, North Carolina State University,

Box 7911, Raleigh NC, 27695

{mmaldwai, conte, paulf}@ncsu.edu

Abstract—Signature-based Intrusion Detection

Systems (IDSs) monitor network traffic for

security threats by scanning packet payloads for

attack signatures. IDSs have to run at wire speed

and need to be configurable to protect against

emerging attacks. In this paper we consider the

problem of string matching which is the most

computationally intensive task in IDS. A

configurable string matching accelerator is

developed with the focus on increasing throughput

while maintaining the configurability provided by

the software IDSs. Our preliminary results suggest

that the hardware accelerator offers an overall

system performance of up to 14Gbps.

Index Terms—Intrusion detection, Snort accelerator,

string matchin

I. INTRODUCTION

Traditionally networks have been protected using

firewalls that provide the basic functionality of

monitoring and filtering traffic. Firewall users can

then write rules that specify the combinations of

packet headers that are allowed through. However,

not all incoming malicious traffic can be blocked and

legitimate users can still abuse their rights. Intrusion

Detection Systems (IDSs) go one step further by

inspecting packet payload for attack signatures.

Currently, most IDSs are software based running on a

general purpose processor. Snort [1] is a widely used

open-source IDS in which the rules refer to the header

as well as to the packet payload. A sample Snort rule

that detects CGI-PHF attack is shown in Fig. 1. The

rule examines the protocol, source IP address, source

TCP port, destination IP address and destination TCP

port. The part enclosed in parenthesis is the rule

options that are executed if the packet headers match.

The content option indicates that the packet payload is

to be matched against the string enclosed in double

quotes.

Intrusion detection can be divided into two

problems; packet filtering or classification based on

header fields and string matching over the packet

payload. The first problem was studied extensively in

the literature and many algorithms were suggested [5].

A recent study [4] showed that the string matching

routines in Snort account for up to 70% of the total

execution time. We also have studied the snort rules

and have showed that 87% of the rules contain strings

to match against. Therefore, the second problem of

string matching is the most computationally intensive.

Fig. 1. Sample Snort rule

The explosion of recent attacks by Code Red and

MSBlast affected the productivity of computer

networks all over the world. It is also becoming

*Phone 919 513 2015; fax 919 515 2285

ACM SIGARCH Computer Architecture News 99 Vol. 33, No. 1, March 2005

increasingly difficult for software based IDSs running

on general purpose processors to keep up with

increasing network speeds (OC192 and 10Gbps at

backbone networks). This has prompted the need to

accelerate intrusion detection and to maintain the

configurability needed to detect new attacks. Several

hardware accelerators have been proposed. For

example, Deterministic Finite Automata (DFA)

mapped on an FPGA has been used to accelerate

string matching. However, DFA based

implementations achieve low throughput and are

complex to build and configure. On the other hand,

discrete or parallel comparators were used to achieve

higher throughput at the expense of increased area

and poor scalability. CAM based solutions reduce the

area used by discrete comparators and achieve similar

throughput. Finally, Bloom filters and hash functions

were used to compress the string set, find probable

matches and reduce the total number of comparisons.

This paper focuses the most computationally

intensive part of the problem that is the string

matching of the packet payload against hundreds of

patterns at wire-speed. We suggest a memory based

accelerator that is reconfigurable and have high

throughput. The IDS accelerator is composed of a

software based component that runs on a general

purpose processor, and a standard RAM based

technique for FSM implementation. The software

generates an FSM from the set of strings extracted

from the Snort rule database. The FSM matches

multiple strings at the same time based on the Aho-

Corasick string matching algorithm. This accelerator

is flexible, easy to update and can achieve high

throughput. The throughput increases as the on-chip

RAM bandwidth increases.

 The rest of the paper is organized as follows.

Section II gives a background on string matching

algorithms, summarizes IDS acceleration efforts and

points out some of the differences between the

proposed accelerator and the other architectures.

Section III describes the suggested architecture for

string matching. Section IV presents the simulation

results, analyzes of the performance of the accelerator

and compares it with previous work. Section V

summarizes the contributions of this paper and

discusses directions for future work.

II. RELATED WORK

Most known IDS implementations use a general

purpose string matching algorithms, such as Boyer-

Moore (BM) [3]. BM is the most widely used

algorithm for string matching, the algorithm compares

the string to the input starting from the rightmost

character of the string. To reduce the large number of

comparisons, two heuristics are triggered on a

mismatch. The bad character heuristic shifts the

search string to align the mismatching character with

the rightmost position at which the mismatching

character appears in the search string. If the mismatch

occurs in the middle of the search string, then there is

suffix that matches. The good suffix heuristic shifts

the search string to the next occurrence of the suffix

in the string. Fisk and Varghese suggested a set-wise

Boyer-Moore-Horspool algorithm specifically for

intrusion detection [12]. It extends BM to match

multiple strings at the same time by applying the

single pattern algorithm to the input for each search

pattern. Obviously this algorithm does not scale well

to larger string sets.

On the other hand, Aho-Corasick (AC) [2] is a

multi-string matching algorithm, meaning it matches

the input against multiple strings at the same time.

Multi-string matching algorithms generally preprocess

the set of strings, and then search all of them together

over the input text. AC is more suitable for hardware

implementation because it has a deterministic

execution time per packet. Tuck et al. [13] examined

the worst-case performance of string matching

algorithms suitable for hardware implementation.

They showed that AC has higher throughput than the

other multiple string matching algorithms and is able

to match strings in worst-case time linear in the size

of the input. They concluded that their compressed

version of AC is the best choice for hardware

implementation of string matching for IDS.

 We use a different method to store the AC

database in an SRAM that achieves a higher

throughput than Tuck’s implementation while having

a similar memory requirement. It works by building a

tree based state machine from the set of strings to be

matched as follows. Starting with a default no match

state as the root node, each character to be matched

adds a node to the machine. Failure links that point to

the longest partial match state are added. To find

ACM SIGARCH Computer Architecture News 100 Vol. 33, No. 1, March 2005

matches, the input is processed one byte at a time and

the state machine is traversed until a matching state is

reached. Fig. 2 shows a state machine constructed

from the following strings {hers, she, the, there}. The

dashed lines show the failure links, however the

failure links from all states to the idle state are not

shown. This gives an idea of the complexity of the

FSM for a simple set of strings.

There have been several attempts to accelerate

IDS recently, most of the implementations used

regular expressions. Regular expressions are

generated for every string in the rule set and a

Nondeterministic/ Deterministic Finite Automata

(N/DFA) that examines the input one byte at a time is

implemented. FAs are complex, hard to implement,

have to be rebuilt every time a string is added and

result in designs with a modest throughput. Sidhu and

Prasanna mapped an NFA into an FPGA [5]. Carver

et al. wrote a regular expression generator in JHDL

that extracts strings from the Snort database, generates

regular expressions and a netlist for a Xilinx FPGA

[6].

Other architectures used discrete comparators to

exploit parallelism and achieve higher throughput.

The disadvantage of this approach is the large area

required. Cho et al., for example, used four parallel

comparators per string [10], and Sourdis at. al used

pipelining as well as discrete comparators to double

the throughput [7]. Several implementations [8, 11]

have used CAMs and DCAMs along with

comparators to reduce the area and achieve similar

throughput to the discrete comparators

implementations. The drawback is the high cost and

the high power requirement of CAMs.

Recently, Dharmapurikar et al. [9] used bloom

filters to perform string matching. The strings are

compressed by calculating multiple hash function

over each string. The compressed set of strings is

stored into a small memory which is then queried to

find out whether a given string belongs to the

compressed set. If a string is found to be a member of

a bloom filter, it is declared as a possible match and a

hash table or regular matching algorithm is needed to

verify the membership. Bloom filters use less

memory, are easy to reprogram and achieve a higher

throughput than DFA implementations.

Tuck et al. [13] stored the high level nodes including

the pointers to the next and failure states in the RAM.

Because of that a huge memory of about 53MB was

needed to store the Snort rules set. They used the

analogy between IP forwarding and string matching to

apply bit-mapping and path compression to the AC

tree, reducing its size to 2.8MB and 1.1MB,

respectively. Our approach stores the state tables in

the RAM and uses a minimal logic to traverse the

tables and find a match. The state tables are around

3MB in size without the use of any compression

techniques.

III. ACCELERATOR ARCHITECTURE

The accelerator is a part of the configurable network

processor architecture shown in Fig. 3. It consists of a

2-wide multiple issue VLIW processor with hardware

support for eight hyper threads. The memory system

consists of multi-port RAM and a high speed DMA. A

number of configurable accelerators are used to speed

up specific networking tasks such as IP forwarding,

quality of service and string matching for intrusion

detection.

The IDS is composed of two components; a

software that runs on the VLIW core and a hardware

string matching accelerator. The software extracts the

strings from the Snort database, creates the FSM tree

and generates the state tables. The hardware is shown

in Fig. 4. It implements a Mealy FSM and consists of

a RAM to store the state tables, a register to hold the

current state, and control logic to access the RAM and

find a match.

Incoming packets need to be matched only against

a subset of rules that match the packet header in the

Snort database. To avoid creating one large

complicated FSM for all of the strings in the database,

the software performs a simple rule classification

resulting in a smaller FSM or state table for every

class. Rules are classified based on the header fields,

mainly the protocol and port numbers, into classes

such as ICMP, FTP, SMTP, Oracle, Web-CGI…etc.

This makes the software faster, reduces the RAM size

and exploits parallelism between packets to increase

the throughput.

ACM SIGARCH Computer Architecture News 101 Vol. 33, No. 1, March 2005

Fig. 2. Finite state machine diagram

Fig. 3. Configurable network processor architecture

Fig. 4. String matching accelerator

idle hehh e r s hersher

h
rs

shh shee theres
s

t e

thh thee rt ther

Accelerator 0 to RAM IDS
2 Issue VLIW

OpenRISC
core with

Accelerator 1 IP
ForwardingDMA

•

•

•

Fine Grain
Multithreading
and Extended

ISA
Block Ops Accelerator N QoS

MemSrc MemDest Opcode Parameters

packet_in

reset

RAM
Next State

R/W
State

Register
write data

 Control
 Logic

8
/

packet_in

Address

state

Match ID match ID

 initial state

ACM SIGARCH Computer Architecture News 102 Vol. 33, No. 1, March 2005

Table 1. State table

 Input Character

 e h s t r

- /(idle) -,0 ,0 ,0 t,0 h -,0 s

h he,0 h,0 -,0 s,0 t,0

he he-,0 h,0 r,0 s,0 t,0

her -,0 h,0 -,0 hers,1 t,0

hers s-,0 h,0 -,0 s,0 t,0

s -,0 sh,0 -,0 s,0 t,0

sh she,2 h,0 -,0 s,0 t,0

she he-,0 h,0 r,0 s,0 t,0

t -,0 th,0 -,0 s,0 t,0

th the,3 h,0 -,0 s,0 t,0

the the-,0 h,0 r,0 s,0 t,0

ther ther hee,4 h,0 -,0 rs,1 t,0

C
u

rr
e

n
t

S
ta

te

there -,0 h,0 -,0 s,0 t,0

he state table for the string set and state diagram

disc

The control logic is responsible for building and

upd

IV. RESULTS

In this section we present the results of our Snort rules

. Snort Rules Analysis

ur study of the Oct. 2003 Snort rules set showed that

T

ussed in the previous section is shown in Table 1.

The rows are indexed by the current state and the

columns by the input character. Every element

contains a pair of values; the next state and a

matching string ID. The table is mapped onto a RAM,

where the address of the RAM is the concatenation of

the current state and the input character. The content

of the RAM is the concatenation of the next state and

the Match ID. Although the address and content of the

RAM are assumed to be 32 in the simulations, they

could be any value depending on the number of states.

The right most 24 bits represent the state and the left

most 8 bits represent the input character or the Match

ID.

ating the string tables as well as matching the

strings. A simple FSM matches the packet content

against the string set a byte at a time. The FSM

generates the RAM address, reads the next state and

Match ID, and exits if Match ID doesn’t equal to zero

(i.e. a match is found). If Match ID is zero the FSM

processes the next input byte until the end of packet

content or a match is reached. To add a new string,

the state table has to be rebuilt and written to the

RAM. Because the rules are classified into several

classes, only one state table needs to be rebuilt.

study and the simulations of the accelerator. The first

subsection presents statistics about snort rule set. In

Subsection B we derive an equation for memory size

and present the experimental memory requirements.

In Subsection C we examine the performance of our

accelerator. Finally, in Subsection D we compare our

design to the other hardware accelerators.

A

O

1542 of the total 1777 rules studied (about 87%)

contained strings to match against the packet payload.

This demonstrates the strong need for hardware

acceleration of the string matching aspect of the IDS

problem. Fig. 5 shows the distribution of the string

lengths in bytes. We can see that the average string

length is 14 bytes and the majority of the strings are

shorter than 26 bytes. It is also clear that there is a

non-negligible number of strings longer the 40 bytes.

Our simulator took into consideration all ASCII

characters including the non-printable characters and

parsed the hexadecimal strings included in most Snort

rules. To make sure that the strings accurately

represent the rules they were extracted from. Multiple

strings in the same rule within a distance of zero were

combined into one string.

ACM SIGARCH Computer Architecture News 103 Vol. 33, No. 1, March 2005

0

20

40

60

80

100

120

0 5 10 15 20 25 30 35 40+

String Length (bytes)

N
u

m
b

e
r

o
f

R
u

le
s

Fig. 5. Distribution of the string lengths in the Snort database

B. Memory Size

The RAM is the major component in the accelerator;

it dictates the size and limits the throughput. As

shown in Fig. 6 the disadvantage is that the memory

requirement increases linearly with the number of

states which in turn depends on the number of

characters in the string set. The memory requirement

in bits was derived in terms of the number of states,

number of strings and the number of different

characters in the string set. Equation (1) shows the

memory requirement, where s is the number of states,

n is the number of strings and c is the number of

characters per set.

csnsRAM 22 loglog (1)

The number of states depends on the number of

strings and the number of characters per string. As we

mentioned earlier the rules were classified by headers

to reduce the sizes of the FSMs and state tables. Table

2 shows the RAM requirement only for the largest

rule classes. The RAM requirement for the largest

rules classes (web-cgi, web-misc) is around 750KB.

The size of the state tables for all of Snort 2003 rule

set is around 3MB which can be fitted on-chip. By

applying state minimization and compression

techniques we expect to shrink the state tables’ sizes

even more.

Table 2. RAM size in bytes for different rule classes

Rule class Rules Strings States RAM (bytes)

FTP 50 49 268 43,997

SMTP 18 24 362 56,840

ICMP 22 11 138 17,501

RPC 124 58 720 132,623

Oracle 25 25 265 40,366

Web-CGI 311 311 3133 747,939

Web-Misc 275 275 3242 768,975

Web-IIS 108 108 1514 314,652

Web-PHP 58 58 914 172,132

Web-Coldfusion 35 35 572 98,081

Web-Frontpage 34 34 367 59,926

Other classes 717 554 - 709,963

Total 1777 1542 - 3,118,996

ACM SIGARCH Computer Architecture News 104 Vol. 33, No. 1, March 2005

0

50

100

150

200

250

300

350

0 500 1000 1500 2000 2500

No. of Characters

R
A

M
 S

iz
e

(K
B

)

Fig. 6. RAM size in bytes for different character counts

0

2

4

6

8

10

12

14

16

0 1000 2000 3000 4000
No. of Characters

T
h

ro
u

g
h

p
u

t
(G

b
p

s
)

1 FSM 4 FSMs 8 FSMs

Fig. 7. Throughput for different character counts

Table 3. Comparison of string matching implementations

Description
Input

Bits
Device

Through-

put(Gbps)

Logic

Cells/Char

64 Altera EP20k400E 10.1
Aldwairi et al. State tables/RAM

32 Altera EP20k400E 5.0
15

Sourdis et al. [8] Pre-decoded CAMs 32 Virtex2 6000 9.7 3.56

Gokhale et al.[11] CAMs/Comparators 32 VirtexE-1000 2.2 15.2

Cho et al.[10] Discrete Comparators 32 Altera EP20K 2.9 10.6

Sidhu et al.[5] NFAs/Regular Expression 8 Virtex 100 0.75 ~31

C. Performance

The AC string matching algorithm has a deterministic

worst-case lookup time. Once the state tables are

generated and stored in the RAM, the packet is

processed one byte at a time, and every byte requires

one access to the RAM. The processing time mainly

depends on the length of the packet and the RAM

access time. The RAM access time depends on the

RAM size which is proportional to the number of

strings and the number of characters per string. As

discussed in Section III, using a simple classification

technique to divide the rules into smaller rule sets

generates separate FSMs that can run in parallel. This

ACM SIGARCH Computer Architecture News 105 Vol. 33, No. 1, March 2005

not only significantly reduces the size of the state

tables but also increases the throughput by exploiting

parallelism between the packets and different rule

classes.

Fig. 7 shows the throughput of the accelerator

where CACTI version 3.2 [14] was used to model the

on-chip RAM. The figure plots the performance in

terms of processing throughput (Gbps) for different

FSM counts (1, 4, 8) and for rule sets with sizes up to

3,000 characters. We see that higher throughput is

achieved by using more FSMs in parallel. By using 8

FSMs a throughput of around 14Gbps is achieved as

opposed to 7 and 2Gbps for 4 and 1 FSM(s),

respectively. We also notice that the throughput

degrades as the number of characters grows. The

throughput for 8 parallel FSMs decreases to about

5Gbps for 3000 characters. The performance

degradation is due to the fact that as the number of

characters increases, the number of states increases

and the state table size increases as well.

D. Comparison with Previous Work

Table 3 compares the performance of our design

with regular expressions/FAs, discrete comparators

and CAMs based designs. The performance numbers

for Bloom filters implementation were not available.

The data for the other designs was obtained from

Sourdis et al. [8]. It is clear that our design out

performed Sidhu’s NFAs, Cho’s discrete comparators,

and Gokhale’s CAMs in terms of throughput. On the

other hand, Sourdis’s pre-decoded CAMS used

extensive fine grain pipelining to increase the

throughput to 9.7 Gbps. By using 8 FSMs (i.e. 64 bit

input) our accelerator achieves a throughput of about

10 Gbps and exceeds pre-decoded CAMs speed.

Another advantage over Sourdis’s design is the low

cost and power requirements of RAMs compared to

CAMs.

V. CONCLUSIONS AND FUTURE WORK

We have studied Snort rules set and have shown that

87% of the rules have content. This further

emphasizes the need for hardware acceleration for

content matching. We have also presented a

configurable string matching accelerator based on a

memory implementation of the AC FSM where the

state tables are directly stored in the RAM rather than

the high level tree data structure. This results in a

small memory requirement that is likely to fit in on-

chip SRAM. We have shown that the accelerator can

achieve up to 14Gbps throughput with a simple

classification algorithm which highlights the

importance of classification algorithms. We also

showed that our design out performed the previous

work published in this area.

Despite the work done in this area there is still

room for improvement, our immediate goals are to

apply FSM minimization and compression techniques

to further reduce the size of the RAM. Furthermore, it

would be interesting to use a better classification

algorithm to exploit parallelism and achieve higher

throughput.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous

reviewers for their useful comments on this paper.

This work was supported by DARPA under contract

F33615-03-C-410.

REFERENCES

[1] M. Roesch. Snort - lightweight intrusion detection for

networks, in Proceedings of LISA99, the 13th Systems

Administration Conference. 1999.

[2] A. Aho and M. Corasick. Efficient string match-ing:

An aid to bibliographic search, In Communications of

the ACM, vol. 18, no. 6, pp.333-343, June 1975.

[3] R. Boyer and J. Moore. A fast string searching

algorithm. In Communications of the ACM, vol.20, no

10, pp762–772, October 1977.

[4] S. Antonatos, K. Anagnostakis, and E. Markatos.

Generating realistic workloads for network intrusion

detection systems. In ACM Workshop on Software

and Performance, 2004.

[5] R. Sidhu and V. Prasanna. Fast regular expression

matching using FPGAs. In IEEE Symposium on Field

Programmable Custom Computing Machines

(FCCM01), April 2001.

[6] D. Carver, R. Franklin, and B. Hutchings. Assisting

network intrusion detection with reconfigurable

ACM SIGARCH Computer Architecture News 106 Vol. 33, No. 1, March 2005

hardware. In IEEE Symposium on Field-

Programmable Custom Computing Machines

(FCCM02), April 2002.

[7] I. Sourdis and D. Pnevmatikatos. Fast, large-scale

string match for a network intrusion detection system.

In Proceedings of 13th International Conference on

Field Programmable Logic and Applications, 2003.

[8] I. Sourdis and D. Pnevmatikatos. Pre-decoded CAMs

for Efficient and High-Speed NIDS Pattern Matching.

In Proceedings of 12th IEEE Symposium on Field

Programmable Custom Computing Machines

(FCCM04), April 2004

[9] S. Dharmapurikar, M. Attig and J. Lockwood. Design

and Implementation of a String Matching System for

Network Intrusion Detection using FPGA-based

Bloom Filters. In the 12th Annual IEEE Symposium

on Field-Programmable Custom Computing Machines

(FCCM '04), April 2004

[10]Y. Cho, S. Navab and W. Mangione-Smith.

Specialized Hardware for Deep Network Packet

Filtering. In Proceedings12th International Conference

on Field-Programmable Logic and Applications, Sept.

2002

[11]M. Gokhale, D. Dubois, A. Dubois, M. Boorman, S.

Poole, and V. Hogsett. Granidt: Towards gigabit rate

network intrusion detection technology. In

Proceedings of the 12th International Conference on

Field-Programmable Logic and Applications, Sept.

2002

[12]M. Fisk and G. Varghese. Applying Fast String

Matching to Intrusion Detection, SEP 2002

[13]N. Tuck, T. Sherwood, B. Calder and G. Varghese.

Deterministic Memory-Efficient String Matching

Algorithms for Intrusion Detection. In proceedings of

the IEEE Infocom conference, March 2004.

[14]http://research.compaq.com/wrl/people/jouppi/CACTI.

html

ACM SIGARCH Computer Architecture News 107 Vol. 33, No. 1, March 2005

