
IEEE Communications Magazine • November 200266 0163-6804/02/$17.00 © 2002 IEEE

IEEE WORKSHOP ON
HIGH-PERFORMANCE SWITCHING AND ROUTING

INTRODUCTION

When an IP router receives a packet on one
of its input ports, it must decide to which output
port the packet will be forwarded. To make this
decision, it has to match the packet’s destination
address against a database of destination net-
works and hosts. This database is generated by
the router from a routing table, each entry of
which consists of a variable-length prefix and a
corresponding next hop address. In order to for-
ward a packet, the router needs to locate the
next hop address corresponding to the longest
matching prefix in the routing table for the pack-
et’s destination address, and send the packet to
the appropriate output port.

For instance, a routing table can have an
entry of 128.* with an associated output port of
2, and another entry of 128.14.* with an output
port of 5. The rules are interpreted as follows: if
the destination address begins with 128 the pack-
et should be sent to output port 2, unless the
destination address begins with 128.14, in which
case the packet should go to output port 5.

The work presented in this article describes a
new method for performing route lookups quick-
ly and efficiently. It consists of two parts: an

algorithm for generating a routing database from
a given routing table, and an algorithm for
searching this database. Two main factors moti-
vated this work. First, with current technology,
terabit routing requires lookups to be performed
in hardware. Second, a constant lookup time is
especially important for emerging applications
like optical burst switching (OBS) that rely on
good estimates of time taken from source to des-
tination.

As routing databases grow larger, more mem-
ory accesses are required to determine the next-
hop address for a given destination. Moreover, a
large routing database cannot be stored in an
on-chip memory or a cache; therefore, very
expensive off-chip accesses are required. Our
aim was to design a route lookup method that
minimizes the off-chip accesses while maintain-
ing a fast constant lookup time. Our search algo-
rithm requires several accesses to a small fast
on-chip SRAM and only one access to a slower
DRAM in order to determine the next-hop
address.

In the rest of this article, we look at some
existing approaches to the route lookup prob-
lem. We then describe our algorithms for gener-
ating and searching the routing database. We
also discuss a possible hardware implementation,
and some performance and design issues.

RELATED WORK
A number of approaches have been used to
search for longest matching prefixes. Most
approaches fall into one of two classes [1], both
of which use tree-like structures to store the
routing database. In search trie methods, each bit
in the address is checked, with a 0 bit pointing to
the left subtree and a 1 pointing to the right sub-
tree. In search tree methods, the destination
address is compared to the median value of each
subtree. If the address is less than the median
value, it is directed to the left subtree; if larger,
it is pointed to the right subtree.

Existing trie-based schemes include direct
and indirect lookups [2]. Both of these require
large amounts of memory to store the forward-

Pronita Mehrotra and Paul D. Franzon

ABSTRACT

For every packet an IP router receives, it
makes a routing decision based on the packet’s
destination address. The router’s forwarding rate
is usually limited by the rate at which it can
make these decisions. We describe a new method
for implementing route lookups in hardware.
Our method can be implemented in the forward-
ing engine of a network processor or router
using a small on-chip SRAM and an off-chip
DRAM, and it achieves a rate of one lookup per
DRAM random access time. We present our
method and discuss an implementation that uses
a DRAM with 64 ns random access time to give
over 15 million lookups per second. Our tests
show that the method performs well for realistic
routing tables while using only modest amounts
of memory.

Novel Hardware Architecture for
Fast Address Lookups

IEEE Communications Magazine • November 2002 67

ing tables. The number of lookups is small (1–2),
but these schemes do not scale well with size.
Binary tries, on the other hand, store data fairly
efficiently. However, they require a large num-
ber of memory accesses compared to the direct
or indirect lookup schemes. Variations of the
basic binary trie like Patricia [3] and LC tries [4]
improve performance to some extent, but the
average number of memory accesses is still fairly
large. Techniques that use content addressable
memories (CAMs) are not suitable for large
routing databases.

Other suggested approaches include varia-
tions of binary search. The length of the search
in these approaches depends on the number of
entries in the routing table, as in [5]. Waldvogel
et al. [6] suggest a hash-based scheme where a
binary search is performed over possible prefix
lengths.

DESCRIPTION OF THE ALGORITHM
Our scheme compacts the trie data structure so
that it is small enough to fit on an on-chip
SRAM. A final off-chip DRAM access is
required to read the next-hop address.

DATA STRUCTURE
We build the SRAM and DRAM databases from
the conventional multiway trie structure. The
SRAM database contains information which rep-
resents the topology of the trie, while the DRAM
contains the next-hop addresses corresponding
to the leaves of the trie.

In addition to the SRAM and DRAM
databases, we also maintain an array (Level) in
SRAM. The ith entry of Level points to the bit
in the SRAM database where the ith trie level
starts.

The route lookup is done in two stages. In
the first stage the SRAM is used to traverse to
the longest matching leaf node in the trie, while
in the second stage the DRAM is read to get the
next-hop address.

BUILDING THE DATA STRUCTURE
The data structure to be stored in the SRAM
and DRAM are built from the corresponding
multiway trie. We describe an implementation
using a 16-way trie, although any degree of trie
can be built. The trie is built as follows:

Step 1: Read each entry from the routing
table and store it in a list. Sort the list in ascend-
ing order. For prefixes of different lengths where
one prefix forms the beginning of the other, the
prefix with the smaller length is considered to be
smaller. For example, 10* is considered smaller
than 100*. This ensures that while building the
trie, parent nodes are processed before child
nodes.

Step 2: Create the root node of the trie and
initialize the child node pointers to NULL.

Step 3: Read each entry from the list and
expand if necessary to complete the trie (to
make sure that every internal node has X chil-
dren, where X is the trie degree). Add appropri-
ate nodes to the trie along with their next-hop
addresses.

Step 4: Once the trie is built, construct the
SRAM and DRAM data structures and the

array Level by doing a breadth-first traversal
on the trie. The SRAM is built by writing a 1
for every internal node and a 0 for leaf nodes,
as shown in Fig. 1. While constructing the
SRAM data, the first 1, which represents the
root node, is assumed; there is no need to
store it. The DRAM is built by writing an entry
for every node in the trie in a breadth-first
order.

The depth of the trie is (No. of Address
bits)/(log2X), where X is the degree of the trie.
This is also the number of lookups required dur-
ing insertion of an entry into the trie in the
worst case. Since building the trie requires insert-
ing N entries, where N is the total number of
entries in the routing table, the total number of
memory lookups while building the trie is N * D,
where D is the depth of the trie.

SEARCHING THE DATA STRUCTURE
The algorithm to search for the longest matching
prefix for a given address is summarized below.
The degree of the trie is denoted by X. Level[i]
contains the SRAM bit where the ith level of the
trie begins.

Step 1: Initialize the start pointer (START) to
point to the beginning of the SRAM database
and set PREV and i to 0.

Step 2: Starting at bit i * log2(X), read log2(X)
bits of the destination address and assign this
value to OFFSET.

Step 3: Read the bit at SRAM position
START + OFFSET.

Step 4a: If the bit read is 1, count the number
of 1s between SRAM locations Level[i] and
(START + OFFSET – 1), inclusive, and assign
this to ONES. Set PREV to the current value of
(START + OFFSET). Move the START to
Level[i + 1] + (ONES * X). Increment i and
repeat steps 2–4.

Step 4b: If the bit read is 0, the search termi-
nates. The index of the next-hop address in the
DRAM database is given by (P1 * X) + OFF-
SET, where P1 is the number of 1s between
SRAM locations 0 and PREV, inclusive.

■ Figure 1. A sample four-way trie and the corresponding bit pattern.

1

1010

10010101

Bit pattern: 1 1010 0101 1001

IEEE Communications Magazine • November 200268

Example of a Search on a 16-Way Trie —
Figure 2 shows how the SRAM and DRAM data
is constructed for a 32-bit routing table using a
16-way trie. Figure 2a shows a sample set of pre-
fixes along with their prefix lengths and the out-
put ports. The 16-way trie for the sample set of
prefixes is shown in Fig. 2b, where the numbers
below the node indicate the output ports. Mem-
ory cells in SRAMs and DRAMs are arranged in
rows and columns. An entire row of an SRAM
(128 bits in our implementation) can be read
with a single access, whereas only a single col-
umn can be read at a time from a DRAM. The
bit pattern the SRAM stores for each of the lev-
els is shown in Fig. 2c along with the array Level.
The off-chip DRAM stores only the next-hop
addresses as shown in Fig. 2d, where the * rep-
resents the default next hop. Each DRAM row
contains 16 columns containing 16 output ports.

For the example in Fig. 2 child nodes 2,4,7,
and 8 of the root node are the only internal

nodes, and this is represented in the SRAM as
binary “0010 1001 1000 0000” or hexadecimal
0x2980. Similarly, in the next level, these nodes
while going from left to right give rise to the
SRAM bit pattern 0x0000 0x0000 0x8000 0x0008.
The data stored in the DRAM maps directly
onto the trie in the same breadth-first order.

We introduce two additional data structure to
speed up our implementation. In our SRAM
database, we set aside the first few bits of each
SRAM row for an extra “Sum” field. This field
contains the number of 1 bits that are on the cur-
rent trie level and appear in previous SRAM rows.
This way, even if a trie level spans multiple SRAM
rows, we never need more than one SRAM access
to read an SRAM bit and compute the number of
1s before it on its trie level (i.e., for steps 3 and 4a
in the search algorithm). Second, we store the
total number of 1s for each level in a separate
array. This helps in computing the final DRAM
offset (step 4b in the search algorithm).

■ Figure 2. An example of a 16-way trie: a) sample database of prefixes and associated hops; b) 16-way trie for the prefixes; c) bit pat-
tern as stored in the SRAM; d) data stored in the DRAM.

** * * 7 2 7 9 6 3 3 3 * * * * Row 0

* * * * * * 5 * * * * * * * * * Row 1

12 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 Row 2

9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 Row 3

6 6 6 6 6 6 6 6 6 6 6 6 3 6 6 6 Row 4

9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 Row 5

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 Row 6

5 5 5 5 9 9 9 9 9 9 9 9 9 9 9 9 Row 7

3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 Row 8(c)

(d)

Sum Bit pattern
Level[0]

(a)

* * * * 7 2 7 9 6 3 3 3 * * * *

* * * * * * 5 * * * * * * * * * 12 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 6 6 6 6 6 6 6 6 6 6 6 6 3 6 6 6

9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

5 5 5 5 9 9 9 9 9 9 9 9 9 9 9 9 3 3 3 3

(b)

3 3 3 3 3 3 3 3 2 3 3 3

Prefix length Output portPrefix
2 3128.0.0.0
4 6128.0.0.0
8 3140.0.0.0

16 2140.12.0.0
2 764.0.0.0
8 1264.0.0.0
8 538.0.0.0
4 9112.0.0.0

14 5112.48.0.0
4 280.0.0.0

0x0000 0x0000

Level[1]

0x0000 0x0000 0x0000 0x8000 0x0008

Level[2]

0x0000 0x1000 0x8000

Level[3]

0x0000 0x0000 0x0000

IEEE Communications Magazine • November 2002 69

Now suppose that a packet arrives with a des-
tination IP address of 112.48.32.248 (i.e.,
0x703020f8). The longest prefix search proceeds
as follows, where the step numbers correspond
to those given in the search algorithm.

(Step 1) We initialize by setting START = 0,
i = 0, PREV = 0, X = 16.

(Step 2) The search process starts by looking
at the first 4 bits of the address (0111), which
gives an OFFSET of 7.

(Step 3) Since START + OFFSET = 7, we
look at bit 7 in the bit pattern for level 0. As a
“1” is stored there, the search continues.

(Step 4a) There are two 1s in the bit pattern
before bit 7 in level 0. This means that for the
next level, (level 1), the first 2 * 16 bits have to
be skipped. Therefore, ONES = 2, PREV = 7,
START = Level[1] + (2 * 16), i = 1.

(Step 2) The next 4 bits of the address (0000)
give an OFFSET = 0.

(Step 3) This leads to the starting bit of the
pattern 0x8000 in level 1. Since a “1” is stored
there, the search is not complete.

(Step 4a) Since there are no 1s before bit 0 in
level 1, no bits need be skipped for the next
level. The corresponding variables take the val-
ues ONES = 0, PREV = Level[1] + 32, START
= Level[2] + (0 * 16), i = 2.

(Step 2) Since the next four bits of the
address are 0011, OFFSET gets a value of 3.

(Step 3) This points to bit 3 in the pattern
0x1000, which is set to 1.

(Step 4a) As before, there are no 1s before bit
3 in level 2; therefore, no bits are skipped for the
next level. We set ONES = 0, PREV = Level[2]
+ 0, START = Level[3] + (0 * X), i = 3.

(Step 2) The next four bits of the address are
0000 which gives an OFFSET of 0.

(Step 3) The SRAM bit pointed to is now bit

0 in the bit pattern 0x0000 of level 3. Now this
bit is set to “0,” which means that the search
process terminates.

(Step 4b) As there are a total of 7 1s (starting
from beginning up to the bit pointed to by
Level[2] + 0) in the SRAM database, the 112th
(i.e., P1 * X + OFFSET) DRAM entry needs to
be looked up. In this example, the DRAM row
address is also the total number of 1s and the
column address is the offset, which means that
the entry stored in row 7 and column 0 of the
DRAM needs to be read. A 5 is stored there,
and that is the output port corresponding to the
longest matching prefix.

HARDWARE IMPLEMENTATION
Modern router designs achieve higher message
handling capacity by placing more intelligence in
the line cards. Each line card contains a copy of
the forwarding table, which is generated from
the main routing table and updated periodically.
Operations like address lookup, scheduling and
configuring the switch fabric are performed by
the line cards themselves.

The block diagram of the forwarding engine
and the details of various sub-blocks for a 16-
way implementation are shown in Fig. 3. The bit
extractor picks the next 4 bits of the address.
This is used to generate a mask for computing
the sum of 1s. The sum of 1s unit takes the mask
and the SRAM row to determine the next offset.
Once the SRAM traversal is complete, a read
request for the off-chip DRAM is generated,
and after the DRAM access time, the next-hop
address is available. The data stored in the
SRAM and DRAM is generated in software.

The SRAM traversal is implemented as a
finite state machine (FSM) with two states. In

■ Figure 3. Hardware implementation of the forwarding engine: a) a block diagram of the forwarding
engine; b) generation of a mask from the bit position; c) adders used in the computation of the sum of 1s.

0 1 2 126 127

128-bit mask

(b)

0
1

7

6*0.6 ns
= 3.6 ns

Address

(a)

Bit
extraction DRAM

On-chip SRAM

CPU

Mask
generation

Sum of
1s

7:3 compressors (18)

3-bit adders (9)

4-bit adders (5)

5-bit adders (2)

6-bit adder (1)

7-bit adder (1)

(c)

D
ec

od
er

We build the

SRAM and the

DRAM databases

from the

conventional

multiway trie

structure. The

SRAM database

contains information

which represents

the topology of

the trie, while the

DRAM contains

the next-hop

addresses

corresponding

to the leaves

of the trie.

IEEE Communications Magazine • November 200270

the first state an entire SRAM row is read and
in the second state the mask is generated and
the sum of 1s computed. Each of the two states
takes 8 ns to complete, and a total of 16 ns is
taken to traverse one level in the SRAM bit pat-
tern. Since there are a total of 8 levels to be tra-
versed in the SRAM (for 32-bit addresses in
IPv4), it takes 128 ns to traverse the SRAM. The
FSM loop can be unrolled and pipelined more
than once to increase the throughput. In our
implementation, we unrolled the FSM loop once
and pipelined the two FSMs, to give results
every 64 ns. This was done to match the random
DDR DRAM access time of 64 ns.

GENERATING THE MASK
To compute the sum of 1s till a certain bit posi-
tion, we generate a mask to remove the unwant-
ed bits from the SRAM row. The result obtained
after bitwise ANDing the mask with the SRAM
row is given as the input to the unit computing
the sum of 1s.

To generate the mask, the bit position is first
decoded and, depending on the 8-bit input, one
of the output bits of the decoder goes high. The
output of the decoder feeds into the mask gener-
ator circuit, as shown in Fig. 3b. The delay
through the generator is the maximum delay at
line 127 with a fanout of 128. The 8:128 bit
decoder takes around 0.7 ns (in 0.18 µ technolo-
gy) to decode, while the mask generator again
takes around 0.6 ns to complete.

COMPUTING THE SUM OF 1S
Sum of 1s can be computed in a number of ways.
The simplest way is to use a bank of adders. For
a 128-bit-wide SRAM row, required adders are
shown in Fig. 3c. The 7:3 compressors used in
the first row add up 7 1-bit numbers and reduce
the result to a 3-bit number. For 0.18 µ technol-
ogy, a 32-bit adder takes about 0.6 ns. We have
kept the same budget for our smaller adders,

even though smaller adders take less time. The
total worst-case time taken to compute the sum
is less than 4 ns. In all, the total time taken to
compute the sum of 1s is well within the budget
time of 8 ns for each FSM state.

PERFORMANCE OF THE SCHEME
We ran the algorithm on practical routing tables
from [7]. The results have been summarized in
Table 1, which shows the amount of memory
required for these routing tables. For instance,
the MaeEast routing table with over 23,000
entries takes around 25 kbytes of SRAM to store
the bit pattern and around 12 Mbytes of DRAM
to store the next-hop addresses. In a convention-
al trie implementation, around 25 Mbytes of
DRAM memory (the second last column in the
table) would be required. The last column in the
table shows the amount of compaction that can
be achieved in the on-chip SRAM. For all the
routing tables around 1 byte of SRAM memory
per entry in the routing table is required. This
gives very good scalability, which will be very
important when routing tables become even
larger in the future.

DISCUSSION
The required SRAM is small enough (about 35
kbytes for a routing database > 30,000 entries)
to easily fit on a chip. The data in our case is
compacted to around 1 byte for every entry in
the routing table. Also, the overall memory con-
sumption (SRAM and DRAM) using this
scheme is almost half that required in conven-
tional implementations. The total CPU time
taken to build the SRAM and DRAM data is on
the order of 100 ms on a Sun Ultra 5 with a 333
MHz processor. Updating a route only requires
changing an entry in the DRAM. Adding or
deleting a prefix, on the other hand, requires the

■ Table 1. Memory requirements for various routing tables.

Site No. of entries SRAM (kbytes) DRAM (Mbytes) Trie Memory (Mbytes) Bytes/entry

MaeEast 23,113 24.4 11.43 24.28 1.08

MaeWest 35,752 34.75 16.32 34.683 1.99

PacBell 27,491 29.08 13.66 29.03 1.08

Paix 17,641 20.5 9.63 20.46 1.19

AADS 31,958 32.25 15.15 32.18 1.03

■ Table 2. SRAM Requirements for different degrees of the Trie structure.

Site No. of entries Degree = 16 Degree = 8 Degree = 4 Degree = 2
KB (bytes/entry) KB (bytes/entry) KB (bytes/entry) KB (bytes/entry)

MaeEast 23,113 24.4(1.08) 16(0.71) 8.09(0.36) 6.57(0.29)

MaeWest 35,752 34.75(1.99) 23.03(0.66) 11.41(0.33) 9.23(0.26)

PacBell 27,491 29.08(1.08) 19.24(0.72) 9.76(0.36) 7.99(0.3)

Paix 17,641 20.5(1.19) 13.09(0.76) 6.86(0.4) 5.6(0.33)

AADS 31,958 32.25(1.03) 21.33(0.68) 10.67(0.34) 8.67(0.28)

The SRAM

traversal is

implemented

as a Finite State

Machine with

two states. In the

first state an

entire SRAM row

is read and in the

second state the

mask is generated

and the sum of

1s computed.

IEEE Communications Magazine • November 2002 71

data structure to be built from scratch. Since
most forwarding tables need to be updated only
about once every second, building the entire
database from scratch is not an issue.

Each route lookup in our implementation
requires 8 SRAM accesses and 1 DRAM access.
The number of SRAM accesses can be reduced
further by splitting the SRAM and performing a
direct lookup on the first 16 bits. This would
reduce the number of SRAM accesses to 5.
These are pipelined so that the DRAM cycle
time is the limiting factor. By implementing
queues and multiple DRAMs in parallel, an
even higher throughput can be obtained. In our
current implementation with a single DRAM, a
lookup can be done every 64 ns, which gives
over 15 million lookups/s. In a conventional
implementation, 8 DRAM accesses would be
required.

The overall performance of the forwarding
engine in terms of throughput is constant for dif-
ferent degrees of the trie. The amount of SRAM
required for various degrees of the trie is shown
in Table 2. Efficiency of memory compaction
increases with decreasing degree of the trie
(fewer SRAM bytes per entry are required) due
to less wastage during trie completion. The total
latency of the address lookup increases with a
smaller degree trie as more SRAM accesses are
required to traverse an increased number of trie
levels. A more deeply pipelined FSM would be
required to maintain the same throughput. Our
implementation chose a 16-way trie in order to
reduce the latency and keep the hardware sim-
ple. This comes at a cost of higher memory con-
sumption.

A wider SRAM, like 512 or 1024 bits wide,
could be used in the design without affecting the
throughput. This reduces the memory overhead
of the forwarding engine at the expense of addi-
tional hardware. In the current implementation,
20 bits are used to hold the sum of 1s value for
every 128 bits of data in the SRAM row. The
memory overhead in the design is an additional
15–16 percent. By going to a design using 512-
bit-wide SRAM, the memory overhead can be
reduced to under 4 percent.

CONCLUSIONS
In this article we present a fast efficient address
lookup scheme that is easy to implement in
hardware. The scheme involves using a small on-
chip SRAM to store a compacted version of the
table, and an off-chip DRAM to store the next-

hop address. The throughput of the scheme is
limited solely by the single DRAM memory
cycle required per access. The amount of SRAM
required is quite small, and on practical routing
tables, 1 byte of SRAM memory is required per
entry in the table (for a 16-way trie). The opera-
tion of the SRAM and DRAM is pipelined such
that a lookup can be done every 64 ns, giving a
lookup rate of over 15 million/s.

ACKNOWLEDGMENTS
The authors would like to acknowledge the fol-
lowing funding sources: ARDA under contract
MDA904-00-C-2133 and NSF under contract
EIA-9703090.

REFERENCES
[1] N. McKeown and B. Prabhakar, “High Performance

Switches and Routers: Theory and Practice,” Hot Inter-
connects Tutorial Slides; http://tiny-tera.stanford.edu/
nickm/talks/index.html), Aug. 1999.

[2] P. Gupta, S. Lin, and N. McKeown, “Routing Lookups in
Hardware at Memory Access Speeds,” Proc. IEEE INFO-
COM ’98, San Francisco, CA, 1998, pp. 1382–91.

[3] K. Sklower, “A Tree-Based Routing Table for Berkeley
Unix,” Tech. rep., UC Berkeley.

[4] S. Nilsson and G. Karlsson, “IP-Address Lookup Using
LC-Tries,” IEEE JSAC, vol. 17, June 1999, pp. 1083–92.

[5] B. Lampson, V. Srinivasan, and G. Varghese, “IP Lookups
using Multiway and Multicolumn Search,” Proc. IEEE INFO-
COM ’98, vol. 3, San Francisco, CA, 1998, pp. 1248–56.

[6] M. Waldvogel et al., “Scalable High Speed IP Routing
Lookups,” Proc. ACM SIGCOMM, vol. 27, Oct. 1997,
pp. 25–36.

[7] “Michigan University and Merit Network. Internet Per-
formance Management and Analysis (IPMA) Project,”
http://nic.merit.edu/ipma.

BIOGRAPHIES
PRONITA MEHROTRA (pmehrot@anr.mcnc.org) received her
Master’s degree in electrical engineering from the Indian
Institute of Technology, Bombay, in 1997 and her Ph.D.
degree from North Carolina State University in 2002. She is
currently working as a hardware researcher in the Advanced
Networking Research group at MCNC, North Carolina, where
her focus is on optical burst switched networks.

PAUL D. FRANZON (paulf@ncsu.edu) is currently a professor
in the Department of Electrical and Computer Engineering
at North Carolina State University. He has over 10 years
experience in electronic systems design and design method-
ology research and development. During that time, in addi-
tion to his current position, he has worked at AT&T Bell
Laboratories, Holmdel, New Jersey, at the Australian
Defense Science and Technology Organization, as a found-
ing member of a successful Australian technology startup
company, and as a consultant to industry, including techni-
cal advisory board positions. His current research interests
include design sciences/methodology for high-speed pack-
aging and interconnect and high-speed and low-power
chip design, and the application of microelectromechanical
machines to electronic systems.

A wider SRAM

like 512 or 1024

bits wide, could

be used in the

design without

affecting the

throughput.

This reduces the

memory overhead

of the forwarding

engine at the

expense of

additional

hardware.

	ieee.org
	FRANZON LAYOUT

