
Novel Hardware Architecture for Fast Address Lookups
Pronita Mehrotra, Paul D. Franzon

ECE Department, North Carolina State University,
Box 7911, Raleigh, NC 27695-791 1, USA

Ph: +1-919-515-735 1, Fax: +I-919-515-2285, email:{pmehrot,paulf}@eos.ncsu.edu

I . INTRODUCTION

The most time critical part in packet forwarding is the
route lookup which determines the next hop address of
the packet. The problem of searching for routes in large
databases is compounded by the fact that routing tables
store variable length prefixes and their corresponding next
hop addresses. In order to forward a packet, routers need to
find the longest matching prefix for the destination address.
The work presented here describes a new fast and efficient
algorithm for searching a large database. The scheme de-
scribed here requires several accesses to a small, fast on-
chip SRAM and only one access to a slower DRAM in or-
der to determine the next hop address.

Two main factors motivated this work. The first is the
belief that for Gigabiflerabit routing in the future, per-
forming lookups in hardware will be the only altemative.
Larger databases make the problem worse because more
memory accesses are required to determine the next hop ad-
dress. Moreover, a large forwarding table cannot be stored
in an on-chip memory or a cache and therefore, very ex-
pensive off-chip accesses need to be made. The other im-
portant factor is the need for a constant lookup time which
is especially important for emerging applications like Op-
tical Burst Switching (OBS) that rely on good estimates of
time taken from source to destination. If the set-up time
at each node is variable, i t would make the delay more un-
predictable and would lead to a more inefficient network.
Our aim therefore, in designing the forwarding engine was
to minimize the off-chip accesses while maintaining a fast,
constant lookup time.

The rest of the paper is organized as follows. Section I1
discusses some of the related work and approaches in per-
forming route lookups. Section I11 describes our proposed
algorithm where only a single off-chip DRAM access is re-
quired to determine the next hop address. Section IV dis-
cusses some of the details of the hardware implementation
and Section V lists some of the results of the scheme. Sec-
tion VI discusses some of the design issues of the scheme
and we finally conclude with Section VII.

11. RELATED WORK

A number of approaches have been used to search for the
longest matching prefixes. Most approaches fall under one
of the following two methods [I]. In the first method, called
a Search Trie, each bit in the address is checked and a bit
0 points to the left half of the subtree and a 1 points to the

right half of the subtree. The other method, called a Search
Tree checks the value of the entry with the median value of
each subtree. If the value is less than the median value, it is
directed to the left half of the subtree and if it is larger, it is
pointed to the right half.

The different approaches that use trie based schemes in-
clude direct and indirect lookups [2]. The problem with
both of these is the large amounts of memory that are
required to store the forwarding tables. The number of
lookups is small (1-2) but these schemes don’t scale well
with size. Binary tries store data fairly efficiently. However,
they require a large number of memory accesses as com-
pared to the direct or indirect lookup schemes. In the worst
case, lookup time can be 32 memory accesses for IPv4 and
128 for IPv6 making this approach unsuitable in the future.
Variations of the basic binary trie like Patricia [3] and LC
tries[4] improve performance to some extent, though aver-
age number of memory accesses is still fairly large. Tech-
niques that use CAMS are not suitable either since CAMS
can’t be scaled to larger sizes and are more expensive than
DRAMs[5].

The other approaches are variations of the binary search.
The length of the search in these approaches depends on the
number of entries in the routing table. Binary search by it-
self does not work for the longest matching prefix problem
because they can do only exact matches. Lampson et a1 [61
suggested a modification, where each prefix is encoded as
a range. In their scheme, each entry is expanded to two en-
tries, doubling the size of the forwarding table. Waldvogel
et al[7] suggested a hash based scheme and a binary search
is performed over possible prefix lengths. Their scheme
scales well with the size of the routing table and at most 5
hash lookups (for IPv4) are required to determine the next
hop address.

Still other approaches taken to improve performance use
caching [8], [9]. This may not be very useful for core
routers since caching relies on the temporal locality of data
and data on core routers exhibit very little temporal locality.

Our Contribution:
Our approach to performing an address lookup attempts

to compress the trie information such that it is small enough
to make an on-chip implementation possible. By doing this,
we reduce expensive off-chip memory accesses to only a
single access. To do this, we dissociate the trie data (i.e
the next hop addresses) from the pointers and store the data
in an off-chip memory. This is not a new concept. For in-

- 105 -

mailto:email:{pmehrot,paulf}@eos.ncsu.edu

stance, array implementations of trie structures in [101 store
the indices of the data array in separate arrays. However,
storing indices is equivalent to storing pointers from a hard-
ware perspective. For a routing table with 40,000 entries, a
total of over IMb of memory is required to store the en-
tire set of indices. Our approach focuses on computing the
indices on-the-fly instead of storing them. Since memory
speeds are much slower than transistor speeds, by trans-
ferring the computation of indices to hardware instead of
storing them in memory, we consume less memory without
incurring any hits on the overall performance.

111. DESCRIPTION OF THE ALGORITHM

This section discusses in detail the working of the pro-
posed algorithm. The proposed scheme compacts the trie
data structure such that it is small enough to fit on an on-
chip SRAM. A final off-chip DRAM access is required to
read the next-hop address.

A. Data Structure

We build the SRAM and the DRAM databases from the
conventional multiway trie structure. The offsets in DRAM
(equivalent to pointers) are calculated from the bit pattern
in the SRAM. The levels in the trie are traversed by com-
puting the offsets for each level. This makes the amount
of memory required much less because no pointers (or in-
dices) need to be stored.

The SRAM is built by writing a bit for every node with
all its children in the trie structure. Each of the children in
the node gives rise to a similar 1 or a 0 depending on the
presence or absence of its child nodes. As an example, con-
sider the 4-way trie shown in Figure 1. For this trie, the
SRAM contains a “1” for every node with its 4 children.
Each 1 in the SRAM bit-pattem, gives rise to 4 more bits
in the bit-pattern as shown in Figure 1. A “0’ is not propa-
gated while generating the bit-pattem. Also, each “1” in the
SRAM corresponds to a row in the off-chip DRAM which
stores the 4 possible output port numbers for each of the 4
children. In practice, a DRAM row would hold more next
hops and determining the correct DRAM row and column
is easy from the bit pattern. This leads to a very compact
structure making the SRAM size much smaller than the cor-
responding DRAM trie structure.

The route lookup is done in two stages. The first stage
involves only SRAM lookups and the longest path com-
sponding to the address is determined from the bit-pattern
stored in the SRAM. At the end of this stage, the row and
column address of the DRAM where the corresponding
next-hop address is stored can be determined. In the next
stage, a single DRAM lookup is done and the next-hop ad-
dress is read. The two stages can be pipelined to give a
result every 60-65 ns (random access time for a DRAM)
giving over 15 million lookups per second. To improve the
speed even further, multiple DRAMS containing identical
information can be used in parallel.

_ - -
Bil hrlcm: I hlc !0101 ’. 1001

I O . ’ .___..
Fig. I . Sample 4-way trie and the corresponding bit pattem

B. Building the data structure

The data structure to be stored in the SRAM is built from
the corresponding binary trie. Our implementation uses a
16-way trie, although any degree of trie can be built. The
steps involved in the building the trie are as follows:

Step 1 Each entry from the routing table is read and stored
in a list.
Srep 2 The list is sorted in an ascending order. For prefixes
of different lengths, the prefix with the smaller length is
considered to be smaller. For example, IO* would be con-
sidered smaller than loo*. The reason for doing this is to
ensure that a smaller prefix is always entered first in the trie
structure. If the reverse were to happen, additional steps
would be required to ensure that correct next-hop entries
are stored in child nodes.
Srep 3 The root node is created and each of the child node
pointers are initialized to NULL.
Step 4 Each entry from the list is read and expanded if nec-
essary to complete the trie. The trie is traversed and the
child node pointers and next hop addresses are updated ac-
cordingly.

, where X is
the degree of the trie. An insertion of an entry into the trie
structure can take up to these many lookups in the worst
case. Since building the trie requires inserting N entries,
where N is the total number of entries in the routing table,
the cost of building the trie is N * D, where D is the depth
of the trie.

Once the trie is built, the compact SRAM data structure
can be constructed by doing a breadth-first traversal on the
trie.

The depth of the trie is IN’’ ”{ Addre)’’
toga X

C. Searching the Datu Structure

The algorithm to search for the longest matching prefix
for a given address is summarized below:
Srep 1: The start pointer is initialized to the first X-bit pat-
tern in the SRAh4 data structure, where X is the degree of
the trie.

- 106-

TABLE I
A SAMPLE DATABASE OF PREFIXES A N D THEIR ASSOCIATED HOPS

- Prefix Prefix Length NextHop
128.0.0.0 2 3
128.0.0.0 4 6 . 140.0.0.0 8 3

OxoooO

Sfep 2: The first log,(X) bits of the address are read. For
a 4-way tree this would mean 2 bits and for a 16-way tree,
4 bits of the address.
S t e p 3 These address bits are used as the offset in the X
bit pattem from the start pointer.
Step 4a: If the bit indicated by the offset is 1, then the start
pointer is moved to the next level. The position of the start
pointer is calculated by computing the sum of all the previ-
ous 1’s in the level and multiplying it by X. Steps 2-4 are
repeated again.
Srep4b: If the bit indicated by the offset is 0, then the
search terminates. The total number of 1’s before and in-
cluding the parent 1 (the 1 that led to the 0) gives the DRAM
row number containing the next hop address.

OxoooO OxoooO 0x8000 0x0008 Lcve, I

C. 1 Example of a Search on a 16-way trie

Table I shows a sample set of prefixes along with their
prefix lengths and the next hop addresses. The prefix length
is the number of valid bits of the prefix in the routing table.
The 16-way trie for the sample set of prefixes is shown in
Figure 2. The bit pattem that the SRAM stores for each of
the levels is shown in Figure 3. The first few bits of each
SRAM row (the “Sum” column) contain the sum of 1’s in
the current level in previous rows. This is useful to main-
tain for the following reason. If the SRAM bit-pattem for
a particular level spans more than one SRAM row, multiple
SRAM accesses would be required to compute the sum of
1’s. By adding additional bits in each SRAM row to store
this sum, only one SRAM access per level is required. This
sum value is easy to compute while generating the SRAM
bit-pattern and adds a small overhead to the memory con-
sumption. In this case, since the bit pattern of each level
fits in a single SRAh4 row, these bits are all 0. The off-
chip DRAM needs to store only the next hop addresses as
shown in Figure 4, where the * represents the default next
hop. Each row in the DRAM shown in the figure contains
16 (equal to the degree of the trie) next hop entries. This
is only a logical organization and in practice two or more
of these rows can be merged together. The row and col-
umn address of the DRAM would still be determined easily
while traversing the SRAM.

Searching for an address in the SRAM and DRAM

OXoooO 0xl0000x8oooo

Sum Bit Pattern

Level 2

1 OxoooOI 0x2980 I Level0

OXoooO oxoooooxoooo Level 3

Fig. 3. Bit pattern of the trie as stored in the SRAM

* * * 1 2 7 9 6 3 3 3 * * * Row 0

* * * * 9 5 * I * * * Row 1

12 1 7 7 7 7 1 1 1 7 1 7 1 7 17Row 2

9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 Row 3

6 6 6 6 6 6 6 6 6 6 6 6 3 6 6 6 Row 4

9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 Row 5

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 Row 6

5 5 5 5 9 9 9 9 9 9 9 9 9 9 9 9 Row 1

3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 Row 8

Fig. 4. Data stored in the DRAM

strucutres can be easily accomplished by following the
steps listed previously.

IV. HARDWARE IMPLEMENTATION

The trend in current routers has been to push more in-
telligence into the line cards to increase message handling
capacity [1 I]. Each of the line cards contains a copy of
the forwarding table generated from the main routing ta-
ble. The forwarding tables in the line cards get updated
every couple of seconds. Operations like address lookup,
scheduling and configuring the switch fabric are performed
by the line cards themselves.

The most time critical part in the design of the router is
the forwarding i.e. determining the next hop address from
the packet destination address. The block diagram of the
forwarding engine is shown in Figure 5 . In our implemen-
tation, a 16-way trie is used to build the data structure. The
bit extractor therefore, picks the next 4 bits of the address.
This along with the offset is used to generate a mask for
computing the sum of 1’s. The sum of 1’s unit takes the
mask and the SRAM row to determine the next offset. Once
the SRAM traversal is complete, a read request for the off-
chip DRAM is generated and after the DRAM access time,
the next hop address is available. The data stored in the
SRAM and DRAM is generated in software.

The SRAM traversal is implemented as a Finite State
Machine (FSM) and Figure 6 shows the state diagram for
traversing the bit-pattem in the SRAM. Each state takes

- 107-

Fig. 2. 16-way trie for the prefixes in Table I

Fig. 5 . . Block diagram of the Forwarding Engine

8ns to complete and so a total of 16ns is taken to traverse
one level in the SRAM bit-pattern. Since there are a total
of 8 levels to be traversed in the SRAM (because of 32-
bit addresses in IPv4), it would take 128ns to traverse the
SRAM. The loop in Figure 6 can be unrolled and pipelined
more than once to increase the throughput. In our imple-
mentation, we unrolled the loop once and pipelined the two
FSMs, to give results every 64ns as shown in Figure 7. This
was done to match the random DDR DRAM access time
[12]. The main hardware block used in the design of the
forwarding engine is the unit that computes the sum of 1’s
till a given bit position in the SRAM row. The design for
this is discussed next.

A. Generating the Mask

To compute the sum of 1’s till a certain bit position,
we generate a mask to remove the unwanted bits from the
SRAM row. The result obtained after bit wise ANDing the
mask with the SRAM row is given as the input to the unit
computing the sum of 1’s.

To generate the mask, the bit position is first decoded
and depending on the 8-bit input, one of the output bits of
the decoder goes high. The output of the decoder feeds
into the mask generator circuit as shown in Figure 8. The
mask generator is a very simple circuit where the inputs are
connected to the outputs as shown in Figure 9. The de-
lay through the generator is the maximum delay at line 127

Fig. 6. State Diagram for traversing SRAM

Fig. 7. Pipeline stages of the forwarding engine

with a fanout of 128. The 8:1.28 bit decoder takes around
0.711s (in 0.181 technology) to decode [13] while the mask
generator again takes around 0.6ns to complete.

B. Computing the sum of I ‘s

Sum of 1’s can be computed in a number of ways. The
simplest way is to use a bank of adders. For a 128-bit wide
SRAM row, the adders that would be required is shown in
Figure 10. The 7:3 compressors used in the first row add up
7 1-bit numbers and reduce the result to a 3-bit number. For
a 0 . 1 8 ~ technology, a 32-bit adder takes about 0.6ns [14].
We have kept the same budget for our smaller adders, even
though smaller adders take less time. The total worst-case
time taken to compute the sum would be less than 4ns. In
all, the total time taken to compute the sum of 1’s is well
under the budget time of 8ns (for each state in Figure 6).

- 108 -

Y a
a 3
?!

Fig. 8. Generation of Mask from the bit position

in0
in1
in2

in126
in127

127 126 I O

Fig. 9. Mask Generator circuit

v. PERFORMANCE OF THE SCHEME

We ran the algorithm on practical routing tables from
[15]. The results have been summarized in Table I1 which
shows the amount of memory required for these routing
tables. For instance, the MaeEast routing table with over
23,000 entries takes around 25KB of SRAM to store the bit
pattem and around 12- of DRAM to store the next hop
addresses. In a conventional trie implementation, around
25MB of DRAM memory (the second last column in the ta-
ble) would be required. The last column in the table shows
the amount of compaction that can be achieved in the on-
chip SRAM. For all the routing tables around 1 byte of
SRAM memory per entry in the routing table is required.

I

Fig. 10. Adders used in the computation of the sum of 1’s

This gives very good scalability which would be very im-
portant when routing tables become even larger in the fu-
ture.

VI. DISCUSSION

The overall compaction achieved in our scheme is much
higher than other existing schemes that we are aware of.
The required SRAM is small enough (about 35KB for a
routing database >30,000 entries) to easily fit on a chip.
The data in our case is compacted to around 1 byte for ev-
ery entry in the routing table. In comparison, the forward-
ing table by Degermark et al [161 uses 5-6 bytes per entry.
The implementation by Huang et a1 [I71 has an even larger
forwarding table. Also, the overall memory consumption
(SRAM and DRAM) using this scheme is almost half that
required in conventional implementations. The total CPU
time taken to build the SRAM and DRAM data is in the
order of looms on a Sun Ultra 5 with a 333 MHz proces-
sor. Updating a route only requires changing an entry in
the DRAM. Adding or deleting a prefix, on the other hand,
requires the data structure to be built from scratch. Since
most forwarding tables need to be updated only about once
every second, building the entire database from scratch is
not an issue and is common practice in other algorithms.

The number of memory accesses in our implementation,
are 8 SRAM accesses and 1 DRAM. The number of SRAM
accesses can be reduced further by splitting the SRAM and
performing a direct lookup on the first 16 bits. The num-
ber of accesses then would be 5 SRAM accesses and 1
DRAM access. This is easily pipelined so that the DRAM
cycle time is the limiting factor. By implementing queues
and multiple DRAMS in parallel, an even higher throughput
can be obtained. In our current implementation with a sin-
gle DRAM, a lookup can be done every 64ns which gives
over 15 million lookups per second. In a conventional im-
plementation, the number of memory accesses that would
be required are 8 DRAM accesses. DRAM accesses being
quite expensive (60-6511s per random readlwrite as opposed
to <10ns for SRAM) [121 the conventional implementation
would be much slower than our scheme.

The amount of SRAM compaction can be shown to lie
between the following limits:
1 bitlentry 5 SRAM Memory 5 D.X bitslentry
where, D is the depth of the trie and X is the degree of the
trie structure.. The upper and lower bounds correspond to
extreme cases and are not representative of practical routing
tables. The lower bound assumes that the trie is complete
whereas the upper bound case assumes that all entries are
32 bits wide (for IPv4) and don’t share a common node
along the path. This is hardly the case for practical routing
tables which are usually sparse and share common nodes.

The overall performance of the forwarding engine, in
terms of throughput can be kept constant by altering the
hardware FSM. The amount of SRAM memory consumed
decreases, mainly due to less wastage in the trie completion

- 109 -

TABLE I1
MEMORY REQUIREMENTS FOR VARIOUS ROUTING TABLES

Site Noof Entries Degree=16 Degree=8 Degree=4 DegreemZ

M a e h t 23,113 24.4(I .08) l6(0.71) 8.09(0.36) 6.57(0.29)

PacBell 27.491 29.08(1.08) 19.W0.72) 9.7 6 (0.3 6) 7.99(0.3)
PdiX 17.641 20.3 I. 19) 13.09(0.76) 6.86(0.4) 5.6(0.33)

AADS 31,958 32.25(1.03) 21.33(0.68) 10.67(0.34) 8.67(0.28)

KB(Bytes/entry) KB(By(es/entry) KB(Bytes/entry) KB(Byles/entry) .

’TciaEr35.752)4.750)23.03011.410 9;530

TABLE 111
SRAM REQUIREMENTS FOR DIFFERENT DEGREES OF THE TRIE STRUCTURE

step. The amount of SRAM required for various degrees
of the trie is shown in Table 111. Efficiency of memory
consumption increases with decreasing degree of the trie,
i.e. fewer bytes per entry are required to store the SRAM
data. This is due to less memory wastage in trie comple-
tion. The total latency of the address lookup changes with
the degree of the trie. This is due to the fact that for smaller
degrees, more SRAM accesses have to be made to traverse
the trie since the depth of the trie increases. A more deeply
pipelined FSM would be required to maintain the same
throughput. Our implementation chose a 16-way trie in or-
der to reduce the latency and to keep the hardware simple.
This comes at a cost of higher memory consumption.

A wider SRAM like 512 or 1024 bit-wide could be used
in the design. This would not change the performance of
the system but would reduce the memory overhead of the
forwarding engine. In the current implementation, 20 bits
are used to hold the sum of 1’s value for every 128 bits of
data in the SRAM row. The memory overhead in the design
is an additional 15-1670. By going to a design using 5 12 bit-
wide SRAM, the memory overhead can be reduced to under
4%. The number of memory accesses would still remain the
same though additional hardware would be required.

VII. CONCLUSIONS

This paper presents a fast, efficient address lookup
scheme that is easy to implement in hardware. The scheme
involves using a small on-chip SRAM to store a compacted
version of the table, and an off-chip DRAM to store the
next hop address. The throughput of the scheme is lim-
ited solely by the single DRAM memory cycle required per
access. The amount of SRAM required is quite small and
on practical routing tables, 1 byte of SRAM memory is re-
quired per entry in the table (for a 16-way trie). The op-
eration of the SRAM and DRAM is pipelined such that a
lookup can be done every 64ns giving a lookup rate of over
15milliodsec.

REFERENCES
N. McKeown and B. Prabhakar, “High Performance Switches and
Routers: Theory and Practice:’ in Hot Interconnects Tutorial Slides
(kttp://tiny-teru.stui~ord.edu/ nickttJtulkdlndex. htrtrl), Aug. 1999.
P. Gupta. S. Lin, and N. McKeown, “Routing Lookups in Hard-
ware at Memory Access Speeds,” in Pme. IEEEINFOCOM’98, (San
Francisco, CA). pp. 1382-1391, 1998.
K. Sklower. “A Tree-Based Routing Table for Berkeley Unix:’ in
Technirul Report, (University of Califomia, Berkeley).
S. Nilsson and G. Karlsson, “1P-Address Lookup Using LC-Tries:’
IEEE Journul on Selerred Areus in Cortimunirutions, vol. 17,
pp. 1083-1092, June 1999.
A. J. McAuley and P. Francis, “Fast Routing Table Lookup Using
CAMS,” in Proc. l E E E I N F O C O M ’ 9 3 , pp. 1382-1391, 1993.
B. Lampson. V. Srinivasan. and G. Varghese, “IP Lookups using
Multiway and Multicolumn Search:’ in Pmc. IEEE INFOCOM’98,
vol. 3, (San Francisco, CA), pp. 1248-1256. 1998.
M. Waldvogel, G. Varghese. J. Tumer, and B. Plattner, “Scalable
High Speed 1P Routing Lookups,” in Proe. ACM SIGCOMM, vol. 27,

T. cker Chiueh and P. Pradhan, “High-Performance IP Routing Ta-
ble Lookup Using CPU Caching:’ in Pmr. IEEE INFOCOM’99,

T. cker Chiueh and P. Pradhan, “Cache Memory Design for Net-
work Processors,” in Proceedings of Sxth International Sytriposiwtr
O I I Hi.qh-Perforiiwttre Computer Arrhiterture. 2000, vol. HPCA-6,
DD. 4O!M 18.2000.

pp. 25-36, Oct. 1997.

pp. 1421-1428, 1999.

,.
[IO] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Intmdur-

tion to Algoritlutu. MIT Press, second ed., 2001.
[1 I] N. McKeown, “Scalability of IP routers:’ in Optirul Fiber Cortutru-

riirurion Coilference, Mar. 2001.
[I21 “128Mb DDR SDRAM Datasheet.”

(http://www.micron.com/products/datasheets/ddrsd~~.html).
[I31 L. Mavroidis, “A Low Power 200 MHz Multiported Register

File for the Vector-IRAM chip.” (http://www.cs.berkeley.edu/ mau-
rog/report.pdf).

[I41 B.-H. Lim and J.-K. Kang. “A Self-Timed Pipelined Adder Using
Data Align Method:’ in The Second IEEE Asiu Par$r ConJerenre

[I51 “Michigan University and Merit Network. lntemet Per-
formance Management and Analysis (IPMA) Project.”
(http://nic.merit.edu/ ipma).

[I61 M. Degermark. A. Brodnik, S. Carlsson, and S. Pink, “Small For-
warding tables for fast routing lookups,” in Pmc. ACM SIGCOMM,

[I71 N.-F. Huang and S.-M. Zhao, “A Novel IP-Routing Lookup Scheme
and Hardware Architecture for Multigigabit Switching Routers:’
IEEE Joumul 011 Selected Areus in Cottimunicutions, vol. 17.
pp. 1093-1 104. June 1999.

0 1 1 ASICS, pp. 77-80, Aug. 2000.

vol. 27, pp. 3-14, Oct. 1997.

- 110-

http://www.cs.berkeley.edu/
http://nic.merit.edu/

	ieee.org
	Novel hardware architecture for fast address lookups - High Performance Switching and Routing, 2002. Merging Optical and IP Technologies. Workshop on

