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I .  INTRODUCTION 

The most time critical part in packet forwarding is the 
route lookup which determines the next hop address of 
the packet. The problem of searching for routes in large 
databases is compounded by the fact that routing tables 
store variable length prefixes and their corresponding next 
hop addresses. In order to forward a packet, routers need to 
find the longest matching prefix for the destination address. 
The work presented here describes a new fast and efficient 
algorithm for searching a large database. The scheme de- 
scribed here requires several accesses to a small, fast on- 
chip SRAM and only one access to a slower DRAM in or- 
der to determine the next hop address. 

Two main factors motivated this work. The first is the 
belief that for Gigabiflerabit routing in the future, per- 
forming lookups in hardware will be the only altemative. 
Larger databases make the problem worse because more 
memory accesses are required to determine the next hop ad- 
dress. Moreover, a large forwarding table cannot be stored 
in an on-chip memory or a cache and therefore, very ex- 
pensive off-chip accesses need to be made. The other im- 
portant factor is the need for a constant lookup time which 
is especially important for emerging applications like Op- 
tical Burst Switching (OBS) that rely on good estimates of 
time taken from source to destination. If the set-up time 
at each node is variable, i t  would make the delay more un- 
predictable and would lead to a more inefficient network. 
Our aim therefore, in designing the forwarding engine was 
to minimize the off-chip accesses while maintaining a fast, 
constant lookup time. 

The rest of the paper is organized as follows. Section I1 
discusses some of the related work and approaches in per- 
forming route lookups. Section I11 describes our proposed 
algorithm where only a single off-chip DRAM access is re- 
quired to determine the next hop address. Section IV dis- 
cusses some of the details of the hardware implementation 
and Section V lists some of the results of the scheme. Sec- 
tion VI discusses some of the design issues of the scheme 
and we finally conclude with Section VII. 

11. RELATED WORK 

A number of approaches have been used to search for the 
longest matching prefixes. Most approaches fall under one 
of the following two methods [I]. In the first method, called 
a Search Trie, each bit in the address is checked and a bit 
0 points to the left half of the subtree and a 1 points to the 

right half of the subtree. The other method, called a Search 
Tree checks the value of the entry with the median value of 
each subtree. If the value is less than the median value, it is 
directed to the left half of the subtree and if it is larger, it is 
pointed to the right half. 

The different approaches that use trie based schemes in- 
clude direct and indirect lookups [2]. The problem with 
both of these is the large amounts of memory that are 
required to store the forwarding tables. The number of 
lookups is small (1-2) but these schemes don’t scale well 
with size. Binary tries store data fairly efficiently. However, 
they require a large number of memory accesses as com- 
pared to the direct or indirect lookup schemes. In the worst 
case, lookup time can be 32 memory accesses for IPv4 and 
128 for IPv6 making this approach unsuitable in the future. 
Variations of the basic binary trie like Patricia [3] and LC 
tries[4] improve performance to some extent, though aver- 
age number of memory accesses is still fairly large. Tech- 
niques that use CAMS are not suitable either since CAMS 
can’t be scaled to larger sizes and are more expensive than 
DRAMs[5]. 

The other approaches are variations of the binary search. 
The length of the search in these approaches depends on the 
number of entries in the routing table. Binary search by it- 
self does not work for the longest matching prefix problem 
because they can do only exact matches. Lampson et a1 [61 
suggested a modification, where each prefix is encoded as 
a range. In their scheme, each entry is expanded to two en- 
tries, doubling the size of the forwarding table. Waldvogel 
et al[7] suggested a hash based scheme and a binary search 
is performed over possible prefix lengths. Their scheme 
scales well with the size of the routing table and at most 5 
hash lookups (for IPv4) are required to determine the next 
hop address. 

Still other approaches taken to improve performance use 
caching [8], [9]. This may not be very useful for core 
routers since caching relies on the temporal locality of data 
and data on core routers exhibit very little temporal locality. 

Our Contribution: 
Our approach to performing an address lookup attempts 

to compress the trie information such that it is small enough 
to make an on-chip implementation possible. By doing this, 
we reduce expensive off-chip memory accesses to only a 
single access. To do this, we dissociate the trie data (i.e 
the next hop addresses) from the pointers and store the data 
in an off-chip memory. This is not a new concept. For in- 
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stance, array implementations of trie structures in [ 101 store 
the indices of the data array in separate arrays. However, 
storing indices is equivalent to storing pointers from a hard- 
ware perspective. For a routing table with 40,000 entries, a 
total of over IMb of memory is required to store the en- 
tire set of indices. Our approach focuses on computing the 
indices on-the-fly instead of storing them. Since memory 
speeds are much slower than transistor speeds, by trans- 
ferring the computation of indices to hardware instead of 
storing them in memory, we consume less memory without 
incurring any hits on the overall performance. 

111. DESCRIPTION OF THE ALGORITHM 

This section discusses in detail the working of the pro- 
posed algorithm. The proposed scheme compacts the trie 
data structure such that it is small enough to fit on an on- 
chip SRAM. A final off-chip DRAM access is required to 
read the next-hop address. 

A. Data Structure 

We build the SRAM and the DRAM databases from the 
conventional multiway trie structure. The offsets in DRAM 
(equivalent to pointers) are calculated from the bit pattern 
in the SRAM. The levels in the trie are traversed by com- 
puting the offsets for each level. This makes the amount 
of memory required much less because no pointers (or in- 
dices) need to be stored. 

The SRAM is built by writing a bit for every node with 
all its children in the trie structure. Each of the children in 
the node gives rise to a similar 1 or a 0 depending on the 
presence or absence of its child nodes. As an example, con- 
sider the 4-way trie shown in Figure 1. For this trie, the 
SRAM contains a “1” for every node with its 4 children. 
Each 1 in the SRAM bit-pattem, gives rise to 4 more bits 
in the bit-pattern as shown in Figure 1. A “0’ is not propa- 
gated while generating the bit-pattem. Also, each “1” in the 
SRAM corresponds to a row in the off-chip DRAM which 
stores the 4 possible output port numbers for each of the 4 
children. In practice, a DRAM row would hold more next 
hops and determining the correct DRAM row and column 
is easy from the bit pattern. This leads to a very compact 
structure making the SRAM size much smaller than the cor- 
responding DRAM trie structure. 

The route lookup is done in two stages. The first stage 
involves only SRAM lookups and the longest path com- 
sponding to the address is determined from the bit-pattern 
stored in the SRAM. At the end of this stage, the row and 
column address of the DRAM where the corresponding 
next-hop address is stored can be determined. In the next 
stage, a single DRAM lookup is done and the next-hop ad- 
dress is read. The two stages can be pipelined to give a 
result every 60-65 ns (random access time for a DRAM) 
giving over 15 million lookups per second. To improve the 
speed even further, multiple DRAMS containing identical 
information can be used in parallel. 

_ - -  
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Fig. I .  Sample 4-way trie and the corresponding bit pattem 

B. Building the data structure 

The data structure to be stored in the SRAM is built from 
the corresponding binary trie. Our implementation uses a 
16-way trie, although any degree of trie can be built. The 
steps involved in the building the trie are as follows: 

Step 1 Each entry from the routing table is read and stored 
in a list. 
Srep 2 The list is sorted in an ascending order. For prefixes 
of different lengths, the prefix with the smaller length is 
considered to be smaller. For example, IO* would be con- 
sidered smaller than loo*. The reason for doing this is to 
ensure that a smaller prefix is always entered first in the trie 
structure. If the reverse were to happen, additional steps 
would be required to ensure that correct next-hop entries 
are stored in child nodes. 
Srep 3 The root node is created and each of the child node 
pointers are initialized to NULL. 
Step 4 Each entry from the list is read and expanded if nec- 
essary to complete the trie. The trie is traversed and the 
child node pointers and next hop addresses are updated ac- 
cordingly. 

, where X is 
the degree of the trie. An insertion of an entry into the trie 
structure can take up to these many lookups in the worst 
case. Since building the trie requires inserting N entries, 
where N is the total number of entries in the routing table, 
the cost of building the trie is N * D, where D is the depth 
of the trie. 

Once the trie is built, the compact SRAM data structure 
can be constructed by doing a breadth-first traversal on the 
trie. 

The depth of the trie is IN’’ ”{ Addre)’’ 
toga X 

C. Searching the Datu Structure 

The algorithm to search for the longest matching prefix 
for a given address is summarized below: 
Srep 1: The start pointer is initialized to the first X-bit pat- 
tern in the SRAh4 data structure, where X is the degree of 
the trie. 
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TABLE I 
A SAMPLE DATABASE OF PREFIXES A N D  THEIR ASSOCIATED HOPS 

- Prefix Prefix Length NextHop 
128.0.0.0 2 3 
128.0.0.0 4 6 . 140.0.0.0 8 3 

OxoooO 

Sfep 2: The first log,(X) bits of the address are read. For 
a 4-way tree this would mean 2 bits and for a 16-way tree, 
4 bits of the address. 
S t e p 3  These address bits are used as the offset in the X 
bit pattem from the start pointer. 
Step 4a: If the bit indicated by the offset is 1, then the start 
pointer is moved to the next level. The position of the start 
pointer is calculated by computing the sum of all the previ- 
ous 1’s in the level and multiplying it by X. Steps 2-4 are 
repeated again. 
Srep4b: If the bit indicated by the offset is 0, then the 
search terminates. The total number of 1’s before and in- 
cluding the parent 1 (the 1 that led to the 0) gives the DRAM 
row number containing the next hop address. 

OxoooO OxoooO 0x8000 0x0008 Lcve, I 

C. 1 Example of a Search on a 16-way trie 

Table I shows a sample set of prefixes along with their 
prefix lengths and the next hop addresses. The prefix length 
is the number of valid bits of the prefix in the routing table. 
The 16-way trie for the sample set of prefixes is shown in 
Figure 2. The bit pattem that the SRAM stores for each of 
the levels is shown in Figure 3. The first few bits of each 
SRAM row (the “Sum” column) contain the sum of 1’s in 
the current level in previous rows. This is useful to main- 
tain for the following reason. If the SRAM bit-pattem for 
a particular level spans more than one SRAM row, multiple 
SRAM accesses would be required to compute the sum of 
1’s. By adding additional bits in each SRAM row to store 
this sum, only one SRAM access per level is required. This 
sum value is easy to compute while generating the SRAM 
bit-pattern and adds a small overhead to the memory con- 
sumption. In this case, since the bit pattern of each level 
fits in a single SRAh4 row, these bits are all 0. The off- 
chip DRAM needs to store only the next hop addresses as 
shown in Figure 4, where the * represents the default next 
hop. Each row in the DRAM shown in the figure contains 
16 (equal to the degree of the trie) next hop entries. This 
is only a logical organization and in practice two or more 
of these rows can be merged together. The row and col- 
umn address of the DRAM would still be determined easily 
while traversing the SRAM. 

Searching for an address in the SRAM and DRAM 

OXoooO 0xl0000x8oooo 

Sum Bit Pattern 

Level 2 

1 OxoooOI 0x2980 I Level0 

OXoooO oxoooooxoooo Level 3 

Fig. 3. Bit pattern of the trie as stored in the SRAM 

* * * 1 2  7 9 6 3  3 3 * * * Row 0 

* * * * 9 5 * I * * * Row 1 

12 1 7  7 7 7 1 1  1 7 1  7 1 7  17Row 2 

9 9  9 9 9 9 9 9  9 9  9 9 9 9 9 9 Row 3 

6 6  6 6 6 6 6 6  6 6  6 6 3 6 6 6 Row 4 

9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9  Row 5 

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 Row 6 

5 5 5 5 9 9 9 9 9 9 9  9 9  9 9 9 Row 1 

3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 Row 8 

Fig. 4. Data stored in the DRAM 

strucutres can be easily accomplished by following the 
steps listed previously. 

IV. HARDWARE IMPLEMENTATION 

The trend in current routers has been to push more in- 
telligence into the line cards to increase message handling 
capacity [ 1 I]. Each of the line cards contains a copy of 
the forwarding table generated from the main routing ta- 
ble. The forwarding tables in the line cards get updated 
every couple of seconds. Operations like address lookup, 
scheduling and configuring the switch fabric are performed 
by the line cards themselves. 

The most time critical part in the design of the router is 
the forwarding i.e. determining the next hop address from 
the packet destination address. The block diagram of the 
forwarding engine is shown in Figure 5 .  In our implemen- 
tation, a 16-way trie is used to build the data structure. The 
bit extractor therefore, picks the next 4 bits of the address. 
This along with the offset is used to generate a mask for 
computing the sum of 1’s. The sum of 1’s unit takes the 
mask and the SRAM row to determine the next offset. Once 
the SRAM traversal is complete, a read request for the off- 
chip DRAM is generated and after the DRAM access time, 
the next hop address is available. The data stored in the 
SRAM and DRAM is generated in software. 

The SRAM traversal is implemented as a Finite State 
Machine (FSM) and Figure 6 shows the state diagram for 
traversing the bit-pattem in the SRAM. Each state takes 
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Fig. 2. 16-way trie for the prefixes in Table I 

Fig. 5 . .  Block diagram of the Forwarding Engine 

8ns to complete and so a total of 16ns is taken to traverse 
one level in the SRAM bit-pattern. Since there are a total 
of 8 levels to be traversed in the SRAM (because of 32- 
bit addresses in IPv4), it would take 128ns to traverse the 
SRAM. The loop in Figure 6 can be unrolled and pipelined 
more than once to increase the throughput. In our imple- 
mentation, we unrolled the loop once and pipelined the two 
FSMs, to give results every 64ns as shown in Figure 7. This 
was done to match the random DDR DRAM access time 
[12]. The main hardware block used in the design of the 
forwarding engine is the unit that computes the sum of 1’s 
till a given bit position in the SRAM row. The design for 
this is discussed next. 

A. Generating the Mask 

To compute the sum of 1’s till a certain bit position, 
we generate a mask to remove the unwanted bits from the 
SRAM row. The result obtained after bit wise ANDing the 
mask with the SRAM row is given as the input to the unit 
computing the sum of 1’s. 

To generate the mask, the bit position is first decoded 
and depending on the 8-bit input, one of the output bits of 
the decoder goes high. The output of the decoder feeds 
into the mask generator circuit as shown in Figure 8. The 
mask generator is a very simple circuit where the inputs are 
connected to the outputs as shown in Figure 9. The de- 
lay through the generator is the maximum delay at line 127 

Fig. 6. State Diagram for traversing SRAM 

Fig. 7. Pipeline stages of the forwarding engine 

with a fanout of 128. The 8:1.28 bit decoder takes around 
0.711s (in 0.181 technology) to decode [13] while the mask 
generator again takes around 0.6ns to complete. 

B. Computing the sum of I ‘s 

Sum of 1’s can be computed in a number of ways. The 
simplest way is to use a bank of adders. For a 128-bit wide 
SRAM row, the adders that would be required is shown in 
Figure 10. The 7:3 compressors used in the first row add up 
7 1-bit numbers and reduce the result to a 3-bit number. For 
a 0 . 1 8 ~  technology, a 32-bit adder takes about 0.6ns [14]. 
We have kept the same budget for our smaller adders, even 
though smaller adders take less time. The total worst-case 
time taken to compute the sum would be less than 4ns. In 
all, the total time taken to compute the sum of 1’s is well 
under the budget time of 8ns (for each state in Figure 6). 
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Fig. 8. Generation of Mask from the bit position 

in0 
in1 
in2 

in126 
in127 

127 126 I O  

Fig. 9. Mask Generator circuit 

v. PERFORMANCE OF THE SCHEME 

We ran the algorithm on practical routing tables from 
[15]. The results have been summarized in Table I1 which 
shows the amount of memory required for these routing 
tables. For instance, the MaeEast routing table with over 
23,000 entries takes around 25KB of SRAM to store the bit 
pattem and around 12- of DRAM to store the next hop 
addresses. In a conventional trie implementation, around 
25MB of DRAM memory (the second last column in the ta- 
ble) would be required. The last column in the table shows 
the amount of compaction that can be achieved in the on- 
chip SRAM. For all the routing tables around 1 byte of 
SRAM memory per entry in the routing table is required. 

I 

Fig. 10. Adders used in the computation of the sum of 1’s 

This gives very good scalability which would be very im- 
portant when routing tables become even larger in the fu- 
ture. 

VI. DISCUSSION 

The overall compaction achieved in our scheme is much 
higher than other existing schemes that we are aware of. 
The required SRAM is small enough (about 35KB for a 
routing database >30,000 entries) to easily fit on a chip. 
The data in our case is compacted to around 1 byte for ev- 
ery entry in the routing table. In comparison, the forward- 
ing table by Degermark et al [ 161 uses 5-6 bytes per entry. 
The implementation by Huang et a1 [I71 has an even larger 
forwarding table. Also, the overall memory consumption 
(SRAM and DRAM) using this scheme is almost half that 
required in conventional implementations. The total CPU 
time taken to build the SRAM and DRAM data is in the 
order of looms on a Sun Ultra 5 with a 333 MHz proces- 
sor. Updating a route only requires changing an entry in 
the DRAM. Adding or deleting a prefix, on the other hand, 
requires the data structure to be built from scratch. Since 
most forwarding tables need to be updated only about once 
every second, building the entire database from scratch is 
not an issue and is common practice in other algorithms. 

The number of memory accesses in our implementation, 
are 8 SRAM accesses and 1 DRAM. The number of SRAM 
accesses can be reduced further by splitting the SRAM and 
performing a direct lookup on the first 16 bits. The num- 
ber of accesses then would be 5 SRAM accesses and 1 
DRAM access. This is easily pipelined so that the DRAM 
cycle time is the limiting factor. By implementing queues 
and multiple DRAMS in parallel, an even higher throughput 
can be obtained. In our current implementation with a sin- 
gle DRAM, a lookup can be done every 64ns which gives 
over 15 million lookups per second. In a conventional im- 
plementation, the number of memory accesses that would 
be required are 8 DRAM accesses. DRAM accesses being 
quite expensive (60-6511s per random readlwrite as opposed 
to <10ns for SRAM) [ 121 the conventional implementation 
would be much slower than our scheme. 

The amount of SRAM compaction can be shown to lie 
between the following limits: 
1 bitlentry 5 SRAM Memory 5 D.X bitslentry 
where, D is the depth of the trie and X is the degree of the 
trie structure.. The upper and lower bounds correspond to 
extreme cases and are not representative of practical routing 
tables. The lower bound assumes that the trie is complete 
whereas the upper bound case assumes that all entries are 
32 bits wide (for IPv4) and don’t share a common node 
along the path. This is hardly the case for practical routing 
tables which are usually sparse and share common nodes. 

The overall performance of the forwarding engine, in 
terms of throughput can be kept constant by altering the 
hardware FSM. The amount of SRAM memory consumed 
decreases, mainly due to less wastage in the trie completion 
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TABLE I1 
MEMORY REQUIREMENTS FOR VARIOUS ROUTING TABLES 

Site Noof Entries Degree=16 Degree=8 Degree=4 DegreemZ 

M a e h t  23,113 24.4( I .08) l6(0.71) 8.09(0.36) 6.57(0.29) 

PacBell 27.491 29.08(1.08) 19.W0.72) 9.7 6 ( 0.3 6 ) 7.99(0.3) 
PdiX 17.641 20.3 I. 19) 13.09(0.76) 6.86(0.4) 5.6(0.33) 

AADS 31,958 32.25(1.03) 21.33(0.68) 10.67(0.34) 8.67(0.28) 

KB(Bytes/entry) KB(By(es/entry) KB(Bytes/entry) KB(Byles/entry) . 

’TciaEr35.752 )4.750)23.03011.410 9;530 

TABLE 111 
SRAM REQUIREMENTS FOR DIFFERENT DEGREES OF THE TRIE STRUCTURE 

step. The amount of SRAM required for various degrees 
of the trie is shown in Table 111. Efficiency of memory 
consumption increases with decreasing degree of the trie, 
i.e. fewer bytes per entry are required to store the SRAM 
data. This is due to less memory wastage in trie comple- 
tion. The total latency of the address lookup changes with 
the degree of the trie. This is due to the fact that for smaller 
degrees, more SRAM accesses have to be made to traverse 
the trie since the depth of the trie increases. A more deeply 
pipelined FSM would be required to maintain the same 
throughput. Our implementation chose a 16-way trie in or- 
der to reduce the latency and to keep the hardware simple. 
This comes at a cost of higher memory consumption. 

A wider SRAM like 512 or 1024 bit-wide could be used 
in the design. This would not change the performance of 
the system but would reduce the memory overhead of the 
forwarding engine. In the current implementation, 20 bits 
are used to hold the sum of 1’s value for every 128 bits of 
data in the SRAM row. The memory overhead in the design 
is an additional 15-1670. By going to a design using 5 12 bit- 
wide SRAM, the memory overhead can be reduced to under 
4%. The number of memory accesses would still remain the 
same though additional hardware would be required. 

VII. CONCLUSIONS 

This paper presents a fast, efficient address lookup 
scheme that is easy to implement in hardware. The scheme 
involves using a small on-chip SRAM to store a compacted 
version of the table, and an off-chip DRAM to store the 
next hop address. The throughput of the scheme is lim- 
ited solely by the single DRAM memory cycle required per 
access. The amount of SRAM required is quite small and 
on practical routing tables, 1 byte of SRAM memory is re- 
quired per entry in the table (for a 16-way trie). The op- 
eration of the SRAM and DRAM is pipelined such that a 
lookup can be done every 64ns giving a lookup rate of over 
15milliodsec. 
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