
INFRASTRUCTURE AND COURSE PROGRESSION FOR COMPLEX IC DESIGN

EDUCATION

Paul D. Franzon, Wentai Lui, Clay Gloster,
Toby Scha�er, Alan Glaser, Andy Stanaski

Department of Electrical and Computer Engineering
Box 7911

North Carolina State University
Raleigh, NC 27695-7911

paulf@ncsu.edu

ABSTRACT

The ability to cope with design complexity is an important
skill for computer engineers, especially potential System On
a Chip design engineers. Complexity has many facets, in-
cluding gate count, the ability to handle multiple disciplines
simultaneously, and the ability to cope with complex CAD
tools. Teaching complexity also requires considerable invest-
ment in tool 
ows, design examples and tutorials. Here, the
approach used at North Carolina State University will be de-
scribed and illustrated.

1. INTRODUCTION

A core skill required of competent computer engineers, es-
pecially those designing tomorrow's Systems on a Chip, is
the ability to cope with complexity. Teaching a student
to cope with complexity involves addressing multiple issues
including:

� Design size, in terms of gate count, module count, etc.

� Design complexity, in terms of the disciplines needed,
including hardware, software, and applications knowl-
edge.

� Veri�cation complexity, i.e., learning how to verify cor-
rectness and debug complex and subtle designs.

� Dealing with CAD tools. Modern CAD tools lend
tremendous power to designers but are often more com-
plex and buggy than the design itself. For example, our
installation of tools from Cadence Design Systems re-
quires 4 GB of storage space and our list of \known
problems and workarounds" gets longer every year.

In this paper, we describe our course progression, which
is intended to teach students how to cope with complexity,
and part of our supporting infrastructure.

2. UNDERGRADUATE COURSE
STRUCTURE

We start speci�cally dealing with complexity in a required
junior-level course, ECE 342 { Design of Complex Digi-
tal Systems. The capstone project in this course requires
students to design a small MIPS microprocessor using a
mixture of Verilog HDL and schematic capture within the
Cadence design environment. Our experience is that using
commercial tools doubles the e�ort required for the lab-
oratories (for both students and instructors) but pays o�
enormously for the students in terms of an improved ability
to cope with complexity and a marketable skill to mention
on their resume.

The infrastructure required for the laboratory in this
course took about 6 TA-months to develop (not counting
actual contact and grading time) and takes another 2 TA-
weeks per year to maintain.
This course feeds into a number of senior electives, in-

cluding:

� ECE 460 { Digital Systems Interfacing

� ECE 463 { Computer Design and Technology

� ECE 491B { Embedded Systems

� ECE 491T { Optimizing Compilers

3. GRADUATE EDUCATION

Our graduate education expands the use of real-world CAD
tools to include several IC design tools from a variety of
vendors, in particular Cadence and also Synopsys (Design
Compiler/Design Analyzer), Avanti (HSPICE), and Ansoft
(Maxwell 3D). Our philosophy is not to turn our courses
into training courses for the tools but to use the tools so
students learn how design work is done in a modern CAD
tool environment. Our argument is that this is necessary
because the constraints imposed by the CAD tools can in-

uence the design and veri�cation approach even more than
basic design skills do.
The core courses in this sequence are:

� ECE 520 { ASIC Design

� ECE 746 { VLSI Design

In both courses, tools from Cadence, Synopsys and
Avanti are used to illustrate and implement the design steps
as well as convey the importance of \CAD-tool-aware" de-
sign management and design 
ows.
The students are then encouraged to pursue courses in

each of three areas:

1. Applications (DSP, communications, networking, etc.)

2. Systems (computer architecture, RTOS, programming)

3. Advanced Design (FPGAs, DFT, etc.)

The CAD-related materials used in these courses required
about three man-years of investment. Fortunately, we
needed to get these tools working for our research projects,
so it was those projects that provided the e�ort | a perfect
example of the marriage of teaching and research!
Besides a number of tutorials and scripts, our infrastruc-

ture consists largely of a design kit which was put together
to support the scalable MOSIS ruleset for IC design within
Cadence. This kit and associated 
ow tools took most of
the e�ort and is described next.



4. CDK ORGANIZATION

Our Cadence environment has been customized with sev-
eral technology �les and a fair amount of custom SKILL
code. These �les contain information useful for full-custom
CMOS IC design via MOSIS. Some of this information in-
cludes layer de�nitions (e.g. colors, patterns, etc.), parasitic
capacitances, layout pcells, SPICE simulation parameters,
Diva rules for DRC, extraction, and LVS veri�cation, and
various GUI enhancements. This environment is called the
NCSU Cadence Design Kit (CDK) and is freely available
via the Web for download and use by any institution (see
the URL at the end of this paper). Below is a very brief
description of the CDK contents.

� Technology Files and Diva Rules Files

The technology �les included in the CDK de�ne the
mask layers and their appearances and properties, as
well as parameters used at library creation time which
set the value of lambda, the technology code, and the
availability of process-dependent layers (layers that are
not common to all MOSIS processes).

The structure of these �les follows the 
ow described
in the OpenBook section Technology File and Display
Resource File User Guide.

Veri�cation (DRC, circuit extraction, LVS) is done
with Diva, which is controlled by included rules �les.

� Technology Libraries

One technology library is provided for each MOSIS
CMOS process which supports the SCMOS rules. Usu-
ally, design libraries are linked to the appropriate tech-
nology library to obtain process-dependent parameters.

� Standard Parts Libraries

The CDK includes libraries for standard parts. These
libraries contain common analog and digital parts sym-
bols (e.g., transistors and RLC components), Verilog
primitives (e.g., logic gates), and example sheet bor-
ders.

� Device Models

The CDK includes transistor models (HSPICE level
13/Spectre level 4 and HSPICE level 49/Spectre level
11) for most MOSIS SCMOS processes, which are ob-
tainable from the MOSIS web site.

� SKILL Code

SKILL is the Lisp-like language that is used to inter-
face with the Cadence design environment, from con-
structing new GUI elements to modifying the design
database directly. The CDK includes a variety of cus-
tom SKILL code | forms, menus, CDF callbacks, and
pcell de�nitions. This code, along with the Diva rules,
provides the large majority of the CDK's added value.

4.1. CDK Functionality

The CDK provides customizations for the Design Frame-
work, Composer, Analog Artist, Verilog, Virtuoso and Diva.
See our Web page (URL given below) for more information.

5. CONCLUSIONS

This paper presents an overview of our \CAD-tool"-centric
approach to teaching IC design and some of the supporting
infrastructure. You can �nd out more about and download
the CDK from www.ece.ncsu.edu/cadence/CDK.html, and
there is class information at www.ece.ncsu.edu/lockers.


