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Abstract

In order to design high performance circuits, the relationship betweencircuit perfor-
mance and design parameters must be precisely established. Previously, experivental
design techri ques have been enpl oyed for performance modeling of MOS VLSI devices
and circuits. Inthis paper ue describe a new conputer-aided methodol ogy for charac-
terizing a fanily of electrical circuits. This methodol ogy is based on mi ti-stage experi-
mental design and prediction through data interpol ation. The techri que presented here
is ful ly aut onat ed and hence hel ps the designer in efficiently characterizing any circuit
response based onfull circuit simid ations. Through exanpl es, ue showthe pouer of this
techni que in characteri zing highl y non-linear rel ationships betueen circuit performnce

and the design paraneters, in a variety of applications.

1This work was s uppor ted byt he Nati onalSci ence Foundation under grant MIP-901704and by
Design Systems



1 Introduction

There are a nunber of design applications where it is necessary to precisely establish the
rel ationship between a circuit’s electrical responses and certain designable parameters. The
process of observing the behavior of a circuit bl ock under different conditions and buil di ng
a sinplified nodel that closely mmcs this behavior is referred to as characterization [2].
Several authors have addressed this issue, albeit with diflerent end goals in mnd. Mlor et.
al. [11] use such characterizations for conputing parametric yield of analog IG. Yuet.al.
[18] characterize VISI circuit performances in the presence of manufacturing fluctuations.
Lowet.al. [10] use characterizations for buil di ng macromodels of the ICfabrication process.
(rcuit characterizations are used for design optimzation of VISI devices [1] and circuits
[3]. Our particular application has been that of using characterizations for formilating

interconnect designrules [7].

The two confli cting goals in obtaining this characterization are accuracy and effici ency.
For exanpl e, anal ytical nodeling is a very effti ent techni que for response estimation, but is
not satisfactory for hi gh performance circuits. GQrcuit simulation using SPICE, for exanple,
is accurate, but running miltiple parametric simulations is quite expensive. It is clear
that this trade-off can be best achievedif sinple nodels are devised based on a mninal,
but sufftient, set of accurate simulations. Such nodels make use of responses obtained
at a fewpoints in the design space to predict responses accurately over the entire design
space. Traditionally, this has been done by using experinental design techni ques for sel ecting
points for similationin the design space and then fitti ng pol ynom al models to the obtained
responses through least square regression [1], [10], [15].

The rational e of these nethods has been brought to questionin [13], for cases where the
responses are obtained fromcircuit simlation. Regression techni ques introduce systematic
bias in the models. Also, classical experimental design techniques [4] are biased by the
assurmed formof the model. They [13] propose nethods for optimzing the experinental
design and postul ate novel prediction techni ques, suitable for determnistic experinents. The
mai n drawback of their nethod is the excessive tine required to opti mze the experinental

design, though large increases in accuracy over classical techni ques are observed.



Qur approach of computer experinental design and response prediction draws fromthe
ideas presentedin [13], [16]. Specifically, we use Mving Least Square Interpolation [9] for
modeling the responses. We use Latin Hypercube Sanpling in a sequential experinental
design for determning the points for simlation. Anovel nethod of error characterization

is used to determne the regionin the design space in whi ch to performthe next experinent.

The organi zation of the rest of this paper is as follows: In section 2. the experinental
design probl emis formil ated. Sections 3 and 4 respecti vel y gi ve our methodol ogy and sone
speci fics of the inpl enentation. Sectionb5illustrates the use of this method for characterizing
very fast data l atches and hi gh speedinterconnect. Section6is devotedto a brief discussion

of sone openissues and the concl usions.

2 Problem Staterart

Formally, the dbjectiveis = fdlows:

(bnsider a general electrical network whi chobeys a set of nonlinear diflerential - al gebraic

equations of the form
G((,z,t) =0, (1)

where (is a vector of instantaneous node vol tages and currents, zis a set of design parare-
ters, andtis tine. The paraneters specified by zdepends on the level of abstractionusedin
the probl emspecification (e.g. various inductances, capacitances etc. in the circuit nodel,

inacircuit level representation)

Let ¢ represent the set of performance paraneters for the network. The exact zto ¢
mappi ng can be obtained onl y by runni ng a conputer siml ation that sol ves the systemof
equations Gnumerically. The objective is to obtain a predictor functiéfiz}y whichis
rel ativel y much cheaper to eval uate than a full circuit siml ation, andis a good approxi ma-
tion of ¢2) over a range of zwhichis referred to as the design space*(z) is obtained by
conducting a conputer experinent in which 2) is evaluated at n sanple sites {z..,z,}

using the conputer simlation. %2) mst satisfy the follow ng restrictions:



1. Predictable accuracy:
1¢7°(2) —42) [< e (2)

for each conponent of ¢ where €is some scal ar error neasure, over the design space.

2. Tnbiasedness: If the value of ¢is known at a certain poi it then ¢ shoul d have the

sane value at 2*, i.e., ¥ =¢*(2*)V2* € f£1,..., 20}

Fence the objecti ve of the experinental designis tochoose asuitable predictor fun¢fepn ¢

and nsanpl e sites {z1,...,2,}suchthat the unbi asedness condi tions is satisfied and the error

of predictionis mnimzed. Chfirst gl ance, the unbi asedness condi ti on m ght appear overtly
restrictive. Ibwever, there are several predictor functions, e.g. BLUPin [12], Mving least
Square Interpolant [9] etc. that easily achieve this condition. The unbiasedness condition
hel ps us formlate the cross-validation error-neasure [17]. It also accounts for ”outliers”
in the data, and hel ps in designing experiments for fully conservative designs where the

“outliers” are of great concern because they represent strong non-linearities in the response,

and not ”noisy” observations, as is the case for physical experinents.

In the next section, we first describe howthe sanple sites are sel ected using sequenti al

experinental design and then discuss the predictor function used.

3 Sequential Experimantal Design

The main goal of experimental designis to choose sites in the design space to be character-
ized such that the error made at all untried inputs by the predictor function is mni mzed.
This is quite a formdable task, especially if no prior information is available about the
nature of the responses, as is the case in the applications described here. In this scenario,
sequential sampling is the most suitable. Wth sequential sanpling, the sanpling can be
repeated to reduce predictive error by further sanpling in the regions where the error seens

to be concentrated. Qur approachis to keepthe sane sanpling strategy during eachstep of

the experinentation. Chly the extent of the design variables z (subsequently called ezperi-

nmental region) change fromone step to the next. Since at eachstep, we try to characterize



the entire experinental region, an experinent design with space filling property, i.e. one
which distributes sites uni fornly over the experinental region, is required. Latin Hypercube
Sanpling (LHS) is very suitable for this purpose.

3.1 Characterization of Error in Prediction

Mter eachstepin the sequential experinent, the data is anal yzed to determne the error in
prediction at untried input val ues. The next experiment is defined i n subregi ons where the

error is largest. This is a crucial stepin the characterization process. (sually, this is done
by computing sore gl obal error statistics. This however, indi cates when to resanple, but

wi th no indi cation of where to sanple more points.

Qur nethod of obtaining global error neasures is to characterize the error at each of
the points simil ated thus far. For this, the response val ue at each point is conputed by the

predi ctor function, assumng that the true response value at this point is not known. i.e.,

¥ 5, 1=1...n

(3)
Compute | ¢*(z) &z 3) |,

vhere ¢*(z) is conputed based on ¢z;)’s, 7 =1...n j #i.

This error neasure is terned cross-validation[17]. The nerit of this strategyis that it
gives desited error of prediction at each siml ated point, wi thout being biased by the val ue
of the response at that point. This method is all the more attracti ve since our predictor
functionis local innature, as described bel ow. A so, since the siml ated points are scattered
uni formy over the experimental region, this gives a good error characterization over the

entire experi nental region.

3.2 Predictor Function

According to the unbi asedness condi tion stated above, the predi ctor function shoul d be exact
at the sanpl ed points. The usual 1east square error predictor, in general, fails to do this. In

this section we gi ve a brief justificati on of using datainterpol ation for prediction and descri be



its exact form Hrst, we surmarize the approach of [13][16] towards the sane problem

In [13] a stochastic response nodqa(z) is postul ated for designi ng the experinent and
a predictor function*$z) is forml ated based on the experinental results. The response

model is chosen to be

$(2) =% F_1a;b5(2) + X(2), (4)
where a; are scalars,;(pz) are pol ynomal terms and X(2) is a stochastic nodel of the
departure of the true response fromthe pol ynomal. with zero nean and covariance V(y, 2)

bet ween any pair of processes X(y) and X(2). The covarianceis given as

V(y2) =0 *R(y2), (5)

where o2 is the variance and R(y2) is the correlation. X(2z) represents the departure of
the response fromthe pol ynomal nodel given by the first termof equation 6. Suppose
that the response is known at a certain set of sample points. In[13], the predictor function,
¢*(2), is the expected val ue of the stochastic procé&(s), used to model the response of

the simil ator:

$(2) =X 74 a;b;(2) + X(2), (6)
¢*(2) is the sumof a generalizedleast squares estimte of the first termin Equation 6,
using the sanpled responses, and a smoothing term expressed as an interpolant of the
residuals at the sanpl ed points. This smwothi ng termcan al so be seen as the posterior nean

of the randomprocess X(2).

In [16] stochastic functions are used to nodel objective functions for the purpose of
findi ng a gl obal optimmof an unknown smwoth function. Wen the stochastic function has
a mul ti di rensional normal distribution (as is the response nodel in [13], with a zero order
pol ynomal ), the val ue of the objective function at any point intheinput spaceis a Gaussian
randomvariable. Under certain sinple axions, the posterior mean of the randomvariabl es

can be approxi mted by i nterpol ation of the sanpled (or known) objective function val ues.

In the spirit of the above discussion, we chose Mving Least Square Interpol ation for

prediction[9]. Followingis a brief description of this nethod:



The response nodel is given by

¢*(2) =X 74 a;b;(2), (7)

where b1(2),...,b,(2) are nlinearly independent polynomals in z These functions are
supplied by the user. The ¢’s are cal cul ated so that a wei ghted sumof the error of prediction

at all sanple points is mni mzed. This is achi eved by sol vi ng the systemof equations:
BW (2 B'd ) =BW(3)¢ (8)

vhere Bis an nx N matrix whose jth rowis [bj(z),...,bi(2)], ¢is the N Xl vector of
responses at the sanple points, and W(z) is a diagonal weighting matrix, with elenents
w; { 2) being the weights assigned to the error af & Inorder to achi eve exact i nterpol ation
at the sanpled points, the function wshould go to infinity at the sanpled pointg sz

Fuinctions of the form
wi(2) =e == /(2= 4||?) (9)

have this behavi or. These functions al so attenuate rapi dl y and hence m ni m ze the i nfluence

of remte data values (i.e.*(¢) is local in nature), while smoothing the response.

Predi ction by MSI has several advantages. It is cheaper to eval uate than the BLUP
in[13], since it invol ves an nxnmatrix inversion, instead of the N XN covariance matrix
for BLUP computation. In our experience, there is no appreciable difference in accuracy
between the two. Also, thereis no need to formlate a correlation structure, al though there
are sone alternatives in choosing the weighting function. In [17], the paraneters in the
correlation structure are estimated to best ”fit” the data through likelihood. This can be a
very expensive operation, sonetines gi ving marginal increase in the quality of prediction.
Qur approach, however, is to generate more sanpl es in regi ons uhere the predi ctor function
has poor fit to the data. 'The local nature of the predictor allows us to use cross-validation
for error estimtion. The inportance of this fact cannot be overemphasized. In order to

characterize error locally, the predi ctor function must al so have 1ocal behavior.



4 Inplemntation

Inthis section, we describe the i npl enentation of the i deas outlined in the previ ous section.
Asoftware modul e, called the Study Generator, has been devel oped with these al gorithns.

K gure 1 shows a bl ock descri ption of the Study Generator. Fromthe user i nput the variables
that formthe di rensions of the design space are specified along with the constraints that
define the design space to be characterized. LI5is perforned within this space and the error

is eval uated as describe in the previous section. The error criterionis used to determne the
sub-regions that needfurther sanpling. The Study Generator uses MtaSi m| 8] for automatic

specification of the similations and extraction of electrical responses|14].

4.1 Identifying the Design Variables and Initial Experimental
Region

The design variables and their ranges are user specified. In general, the ranges of design
variables are interrelated. For example, several interconnect lengths in a layout, though
independent variables, are constrained together by the size of the chip or board. Hence
the required ranges of the variables are specified by linear inequalities. These inequalities
represent closed half spaces, in the Fuclidean space of these variables. The design space,
is the closure of the pol ytope which represents the intersection of these hal f-spaces. 'The
initial experinmental region is specified as the smallest hyperrectangul ar region containing
this pol ytope. To determne this hyperrectangle, the extrene vertices of the pol ytope al ong
each i ndependent axis have to be found. This can be done by linear programmng. LHSis

usedto determne sanple sites inthis region. Ibwever, before actually simil ating the circuit
at a sanple point, it is verifiedto seeif it alsolies intheinterior of the pol ytope. Inorder to
avoid a l owsanpl e count as a result of rejecting too many points, a Mnte- Carl o eval uati on

of the vol une of the pol ytope is made. Fxtra sanples are drawn in the LIS to reflect the

vol uretric ratio of the pol ytope and the experinental region. This strategy hel ps in gi ving

a vell distributed sanple over the pol ytope with a very tractable sanpling schene.
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K gure 1: Study Generator



4.2 Identifying the next Experi mental Region

In section 3.1, cross-validationis suggested as the method for estimating the predictive
error. Frror is evaluated at every point siml ated thus far, as gi ven by equation 3. If this
error is greater than a certain threshold, it inplies that the neighboring poiatsdef z

not interpolate well, either because of alocal 1arge non-linearity, or sparsity of points inits
vicinity. Ineither case, it is desirable to sanpl e nore points in the nei ghbor hpodled 2

nei ghborhood of z is defined as a ball of radius whichis half the mni mumscal ed di stance

between z; and all the other design points, i.e.,
’l"(’L) =0.5%mn jzl,__',N,j#zi —=Z j||2. (10)

The hal f m ni mumdi stance criterionis used to eli mnate overl ap between the nei ghborhoods

of adjacent points. Fach conponent of zis scal ed by the 1 ength of the original experinental
region al ong that direction. The intersection of the largest hypercube that fits inside the
intersection of this ball and the pol ytope representing the design space, is the experi nental
region. Again a sanple is drawn fromthe hypercubic region. A before, each sanpl ed point

is checked to ensure that it lies in the design space. This process is repeated for all the

sanpl e points where the error neasure exceeds the user specified threshol d.

5 IV. Exarples

The feasibility of this approachis tested by using the Study Generator to characterize two
very diflerent circuits. The first applicationis to determne clock circuit timng design rules
consistent with a high speed latch design used in the DHC A pha[5] mcroprocessor. The
second is to determne wiring rules for a high speed net on a Milti-Chip Mdule. The
comon denomnator here is the highl y non-1inear nature of the relationshi p between the

designable circuit paraneters and the circuit responses of interest.

10



5.1 Clock Timing Design for Correct Latch Operation

In this exanple, we characterize a latch structure simlar to one used in the DFC A pha
chip[ 5] (figure 2). IDhta race through was a major concernin these latches as logic design
used a single phase clock. The l1atch was designed using the MINC0.8y process paraneters

wi th mni mumsi ze transistors, except for the weak feedback transistors whi ch were chosen

to have ten tines the channel length of the other devices. The fast process corner was used

to enphasi ze race-through. Inthis setting, we studied the effect of clockrise tine, data rise
tine, and clock skewon race-through in this latch. Race-through is detected by studying

the apparent del ay of a signal passing through two cascadedlatches. Wtha 50% cl ock duty
cycle, if this propagation delayis less than one half clock cycle, a race-through has occurred.

Ghervise the signal is latched correctly.

The foll ovi ng inequalities describe the design space to be characterized:

0.1 <clock rise time <l.57s
0.1 <data rise time <l.37s
0.1 <cl ock skew<1.17s

Inthe experiment design, two sanpling stages were used, with 75 points takeninthe first

stage and 50 in the second. Afirst order pol ynomal inall three variables was chosen{gr b

in the interpolation. Another separate characterization was carried out, using MtaSini§]
vithatotal of 384 points placedonaregul ar gridin the designspace. The predi ctor function
described earlier was used to estimate the response at the sane grid points, based on the
observations fromthe experinent. Fgure 3 shows the plot of signal delay as a function of
data and clock rise tines, for data rise tine of 0.3ns and clock period of 5ns with a 50%
duty cycle. Hgure 4 shows a plot of the same response, but using the predictor function.

The pi ece-wise linear nature of the response is clearly captured by the predi ctor function.

The error statistics, conparing the predicted to actual response are shown in Table 1.
Frror 1is the error inestimting the responses at the 384 grid points with a predi ctor based
only on the resul ts of the first experinent. Frror 2 gi ves the sane statistics when prediction
is performed using all the sanple points after the 2nd experi nent. Gross error 1 reports the

statistics of the cross validational error on the first 75 sanple points, and Goss error 2, is

11



the error reported on all the points after resanpling.

The error statistics showthat the average error in prediction reduces significantl y after
resanpling. 'The cross validational error does not, however, inprove with resanpling. The

reasons for, and inplications of, this are discussed in the next section.

This exanple illustrates howour sequential sanpling strategy can be enpl oyedin a real
circuit design situation. (king the response function, clock design rules can be generated to

ensure race-free operation qui ckl y and accurately. This process is discussed el sewhere [7].

5.2 High Speed Interconnect Design for Signal Integrity

In this characterization study, the rel ati onshi p between i nterconnect length and signal set-
tling tine in a high speed net was studied. K gure 5 shows the topology of a two receiver
net ona thin ilmMM The driver is a 32 mA CMb buffer designed in the MINC0.8p

process. 'The designable paraneters are the lengths of the interconnect segnents in this
configuration. The circuit performance was neasured by the signal settling tine, shownin

K gure 6. Anoise budget of 0.3Vfor reflection noise was chosen. Due to the lossy nature of
this interconnect, the reflecti ons fromthe 1oads and the stubs are absorbed in the 1ine losses
when the lengths get sufftiently long [6]. Hence the settling tine has a highly non-linear

rel ationship to the interconnect 1 ength.

The foll ovi ng inequalities describe the design space to be characterized:

lmsbrachl <l0cm
lmsbrach2 <l0cm
1msstib <L0cm

First, alarge characterization using 1,000 sanple points over a full grid in the design
space was carried out, for benchmarking the results obtained fromexperinental charac-
terizations. Aset of several different experi mental characterizations of this sane net vere
performed using the Study Generator. The intent of this set of characterizations was to
establish sone properties of our sequential - experi nental design, the predictor function and

the error neasure.

12



maxi MImerr or

nean €rror

error variance

Goss error 1 3. 9ns . 69ns -

Gross error 2 3. 95ns . T4ns -
Frror 1 2.4ns . 55ns . 68ns
Frror 2 3. 1ns . 36ns . 70ns

Table 1: Frror Statistics for the Latch Characterization
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Figure 2: Schematic of Latch Circuit
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Figure 3: Signal Delay plot for datarise time of 0.3ns: True respons:

Figure 4: Signal Delay plot for datarise time of 0.3ns: Predictedres
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The first characterization was performed using 100 samples in the first st
atotal of 50 samples in the second stage. Another characterization was perf
samples in the first stage and 100 samples inthe secondstage. Athird charac
performed using 150 points in the first stage and 50 points in the second st
nodel was used for interpolation. Figure 8 shows the same response as in Figu
predictor function fromthe first characterization. Also a full quadratic m
interpolationin the first characterization. Ineachcase, the responses at
points were generated using the predictor function. The error statistics wh

predictedto the actual response at these 1,000 points for all 3 cases are re;

The error statistics bring out some i mportant points about our met hodol og
way the total sampling capability(i.e. thetotal number of simmlations allov
bet ween the first stage and the next does, to a certain extent, affect the ac
characterization. It appears that having more points in the first stage gua
coverage of the sampl e space, and hence makes it possible tobetterlocate the
theresponse. Also, use of a hi gher order pol ynomi al for interpolationi mpro

error. However, this also makes the interpolationslightly more expensi ve.

6 Conclusions and Discussion

Inthis paper, a highly automated met hodol ogy for characterizing electrica
sented. The exampl es demonstrate the power of this techni que incapturing hi
relationships with good accuracy over a large design space, in reasonable

there are some aspects, as evident fromthe examples, that need further disc

Somehowthe initial number of samples, the number of sampling stages and t
of samples ineachstage needto be decided. V¥ haveleft this tothe discreti
especially since the formof the response is not known a priori. The numbe
needed for an accurate characterizationis related to the nature of the re:
to the complexity of the circuit models. An experiment whichis perceived t«

linear response should be conducted with a small number of simml ations, fr

16



mXi mmerrormean errqQqrerror vari gnce

100 initial pjoints

linear model 1. 8ns 0. 3ns . 28ns
50 initial
linear model 2.07ns . 32ns .31ns

100 initial pjoints
quadratic model 1.86ns .219ns .27ns

150 initial pjoints
linear model 1.82ns . 23ns . 27ns

Table 2: Error Statistics for the MCMinterconnect characterizatio:
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Figure 7: Partial characterization of MCMinterconnect. Branch1l =3¢

Figure 8: Sampled characterizati on MCMinterconnect. Branch1l =3cm
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software can take over to determ ne the number of further simlations requi

for highlyirregular responses, alarger number of samples is requiredin th

Smoot hness of the response is far more i mportant in determ ning the tote
sampl es needed than t he di mensionalityof theinput space. Ingeneral, the nu
required grows only linearly with di mension of the design space. Using a li
judgement in the first sampling pass can be quite hel pful in reducing over:
time. Also, since all generated data is reusable for a simlar design, ove

necessarily a big drawback.

Inafully automated experi ment, some appropriate criterion must be devi
ping the iterations in the sequential experimentation. Ideally, a stop cr
one based on the error measure describedinsection3.2. However, the seque:
techni que is such that it concentrates more points in the regi on where the u
of the response is the most. Thus, if all sampled points are used for error c
the cumml ati ve error, mi ght i mprove veryslowly over successiveiterations.
touse the error characterization at the points obtainedin the first samplin
have kept our implementati on deliberately flexible to allowfor the formula

heuristics for managing simul ation time.
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