System-Level Specification of Instruction Sets

Todd A. Cook* Paul D. Franzon*

Ed A. Harcourt! Thomas K. Miller I1I*

*Department of Electrical and Computer Engineering
tDepartment of Computer Science
North Carolina State University
Raleigh, NC 27695

Abstract

System-level design requires some sort of specifica-
tion for a system at the level of abstraction of the sys-
tem. When the system (or sub-system) is a processor,
the appropriate level of abstraction is the instruction
set. However, there are no good approaches for de-
scribing processors at this level.

Nevertheless, this type of specification has a num-
ber of benefits: it is more concise (and thus less error-
prone) than more general alternatives; it can be re-used
in later re-implementations; and it provides support for
software codesign through compiler-generators (which
rely on higher-level abstractions than other techniques
provide). Therefore, we have developed a methodology
and an embodying language for specifying processors at
the instruction set level.

1 Introduction

System-level design is obviously a very critical stage
in the overall design process. Poor decisions at this
carly stage can cause significant cost and time prob-
lems during implementation. On the other hand, the
greatest potential for decreasing costs and design time
is also at this stage [4].

Addressing these issues requires accurate, concise
specification at the system level with the intent to
support simulation, verification, and documentation.
A designer will analyze such a specification to decide
upon the best approach to developing a structure that
implements the behavior of the system. The accuracy
and completeness of the specification will have a direct
influence on the accuracy and completeness of the fi-
nal design; an incomplete specification can only lead

1063-6404/93 $03.00 © 1993 IEEE

552

to an incomplete design or a design filled out by im-
plementation considerations (which may be contrary to
system-wide considerations).

For processor-based systems, the highest level of ab-
straction is the instruction set. Proper implementation
of an instruction set and its associated software tools
(i.e., assemblers, simulators, compilers, etc.) requires
a detailed specification of what each individual instruc-
tion does. This requirement is particularly true of new
implementations of existing instruction sets, where the
behavior of the new implementation must exactly du-
plicate that of the old.

Our interest is in providing tool support for system-
level design, where we include software development
tools as part of the system (since their quality will af-
fect system quality). However, to provide such sup-
port requires some means of specifying the system to
the tools. Unfortunately, there are no adequate tech-
niques for directly specifying the abstract behavior of
an instruction set. Existing alternatives (HDLs) rely
on including some level of implementation detail that
unnecessarily biases the final design towards that par-
ticular implementation.

Therefore, we propose that HDLs be supplemented
with languages specifically designed for the domain of
instruction set description and containing the higher
level abstractions of that domain. At this level, descrip-
tion languages should contain constructs that directly
represent instruction set features, such as instructions,
addressing modes, encodings, etc.

In this paper, we describe the requirements for spec-
ification at the instruction set level and present a lan-
guage that embodies them; this language is what we
call an instruction set description language (ISDL).
We then contrast specification using our language with
specification using Verilog. (We use Verilog as an ex-

ample for convenience; our comments also apply to

other HDLs such as VHDL.)

2 Specification at the Instruction Set
Level

For our purposes, we will divide a processor into four
levels of abstraction:

e The instruction set architecture (ISA) level repre-
sents the logical operation of a processor as seen
by an assembly language programmer.

e The organization level consists of a pipeline struc-
ture and a collection of functional units that can
perform the operations specified by an instruction
set.

e The datapath level comprises the elements (multi-
plexors, ALUs, latches, etc.) necessary to imple-
ment the structures of the organization level.

e The logic level consists of the logic equations and
state machines that implement a given datapath.

An important characteristic of the above hierarchy
of abstractions is that anything that can be specified
at a given level can also be specified at a lower level.
For example, if we start with a behavioral description
of a pipeline, we can create a set of logic equations that
implements the exact same behavior. However, we do
not really want to start a pipeline design at the logic
level: the behavioral description gives us a global view
of the pipeline that is not easily derivable from logic
equations.

This situation is equally true for instruction set de-
scription (embodied in ISDLs) versus generic hardware
description (embodied by HDLs such as VHDL or Ver-
ilog). It is certainly possible to take an instruction set
specification written in an ISDL and write a high-level,
behavioral description in an HDL that produces the
same behavior.

Nevertheless, information about the instruction set
will be lost in the translation to the HDL. An ISDL will
represent ISAs at the level of abstraction of instruction
sets; for example, an addressing mode will be directly
represented with an addressing-mode primitive. On
the other hand, an HDL would have to represent the
same addressing mode with at least one (probably two)
generic function(s); there will be no indication in the
description of the purpose of these functions. Explicit
indication of purpose, however, is required for some
uses of instruction set specifications (see below).

Thus, there is a real difference in specification at
the instruction set level and specification at the hard-

553

ware behavioral level. A specification at the ISA-level
is written in terms of ISA entities such as “instruc-
tions”, “addressing modes”, and “data types” rather
than in terms of organizational entities such as “buses”,
“pipelines”, and “caches”; any use of organizational
features in a specification biases the specification to-
wards a particular implementation.

Furthermore, HDLs are generally oriented towards
hardware simulation and synthesis, and they work well
for these tasks. However, there are other applications
for instruction set specifications besides hardware de-
velopment, and unfortunately, HDLs do not serve these
tasks as well. We will consider compiler generation as
an example.

Traditional HDL applications do not need to under-
stand that which is being described. For example, an
HDL simulation system can operate by simply know-
ing the behavior of the language primitives; simulation
of these behaviors then produces the behavior of the
entire system without any knowledge of what that be-
havior represents.

However, compiler generation systems require some
coarse understanding of the ISA being specified. A
compiler-generator, for example, will need to be able to
determine what addressing modes are available. But,
even though an HDL will provide all the mechanisms
necessary to describe the addressing modes, there will
be no linguistic means for distinguishing such descrip-
tions from those of other parts of the processor.

Unfortunately, while a human reader may be able
to easily see that a particular function implements ad-
dressing modes, an automated system will not, since
determining the purpose of an arbitrary function is in-
computable [2]. Furthermore, even though heuristic
algorithms can be used for locating such features, they
will not be reliable in the presence of unusual varia-
tions.

The overall theme here is that the higher level of
abstraction of an ISDL can increase the number of ap-
plications of instruction set specifications. This larger
set promotes quicker and more efficient exploration of
design alternatives because more of the support work
(i.e., compiler generation) can be automated.

3 An ISDL

To demonstrate the above concepts of instruction
set description languages, we have developed an ISDL
that we call LISAS (Language for Instruction Set
Architecture Specification). We first describe the se-
mantic basis for LISAS, and we then present a brief,

informal overview of the language through a small ex-
ample.

3.1 The Semantic Basis of LISAS

We can view an ISA as a set of storage elements
(e.g., memory and registers) that represents a state and
a set of operations (e.g., instructions) that transform
the state. Given this view, instruction set descriptions
consist of a set of memory and register declarations
(state declarations) and a set of instruction specifica-
tions (state transformations).

We can also view an instruction set as a collection of
what we call architectural data types, where each type
encompasses a set of abstract values and a set of ab-
stract operations on those values. Each set of abstract
values also has an associated abstract representation.

This notion of architectural data type is very similar
to the notion of abstract data types in high-level pro-
gramming languages (HLLs). In HLLs, abstract data
types represent a set of operations and values, but do
not specify the representations of the values. However,
for our application, a representation is needed since
the results of some operations (i.e., overflow from two'’s
complement arithmetic) depend on the representation.

We can map the second view above onto the first
in order to derive a method for describing instruction
sets. Thus, the steps in creating a specification are

o describe the set of architectural data types us-
ing standard programming language techniques for
specifying abstract data types;

e declare the memories and registers comprising the
state;

e describe how the values of the architectural data
types map onto the state; and

e describe the operations of instructions on the state
in term. ~*he operations of the architectural data
types.

Thus, we specify an ISA as a state and a set of transfor-
mations, where the transformations are described using
the operations of the architectural data types.

3.2 An Informal Overview of LISAS

Our overview will be based on the partial specifi-
cation shown in Figure 1. This example shows part
of a specification of a custom microprocessor, named
PERC, that was designed for biotelemetry applica-
tions [1]. This fragment is only a small portion of the
entire description, but it is largely self-contained.

554

type word = twos_comp(16)

register r : word = [16]<16>
memory M : word = [65636]<16>

access Register (reg,) = (r, reg)

access Indirect (reg, _) = (M, rlregl)

access Postinc (reg, _) = (M, r[regl)
with
rlregl’ = rlregl + 1;
end

access Indexed (reg, ext) = (M, rlreg]l + ext)

selector a_modes (mode, Teg, ext) =
mode == 0 => Register (reg, ext);
mode == 1 => Indirect (reg, ext);
mode == 2 => Postinc (reg, ext);
mode == 3 => Indexed (reg, ext);
end
selector ext_size (mode) =
mode == 0 => 0;
mode == 1 => 0;
mode == 2 => 0;
mode == 3 => 16;
end

format two_op = (OP<4>, sm<2>, dm<2>, src<4>,
dst<4>, exti<ext_size(sm)>,
ext2<ext_size(dm)>)

insn add two_op =
0P = 0;
opl : word = a_modes (sm, src, exti);

op2 : word = a_modes (dm, dst, ext2);
in

op’ = opl + op2;
end

Figure 1: An Example Specification in LISAS

The first line of the description declares word to
be a 16-bit, two’s complement integer type, where
twos.comp is a module containing a specification of
two’s complement values and operations. LISAS pre-
defines several of these modules, including ones for un-
signed integers, IEEE single precision floats, IEEE dou-
ble precision floats, and a number of others.

The next two lines describe the memory elements
that form the instruction set’s state. The element r
is a register file containing sixteen 16-bit registers, and

M is a memory with 64K 16-bit words (which are the
smallest addressable units of the memory). The decla-
rations specify that references to register and memory
locations are to be by default interpreted as of type
word.

The above register and memory declarations contain
implicit mapping declarations that specify how the val-
ues of the word data type map onto the memory el-
ements. The declaration that elements of r and M
should be interpreted as being of type word actually
specifies that values of type word should be bitwise
mapped onto the elements of the memories. Explicit
mappings are also allowed; in this form, the values of a
type are mapped into a memory by giving the bitwise
correspondence between the values and a group of bits
in the memory which are specified relative to some base
address.

The following six lines describe four addressing
modes (Register, Indirect, Postinc, and Indezed), which
in LISAS are called access modes. An access mode sim-
ply describes where operands are located; each access
mode returns a pair, where the first member is a storage
element, and the second member is the address of the
operand within that element. Access modes may also
have side-effects. For example, Postinc causes a regis-
ter to be incremented after the register is used as an
address (see “State Changes” below). (A similar con-
struct exists for specifying state changes that should
occur before the address is formed.)

Next, there are two selector function declarations.
The purpose of selectors is to specify encodings or de-
codings that are orthogonal to the behavior of the func-
tion being encoded or decoded; the justification is that
the same operation may be encoded in different waysin
different places. In the example, the a_modes selector
encodes the addressing modes, and the ezt_size selec-
tor decodes the size (or presence) of extension words to
instructions.

An actual instruction encoding, named two_op, is
specified by the following format declaration. This
declaration simply lists the format’s fields, giving their
names and sizes. In cases where the size of a field can
vary (such as an optional immediate value), the size can
be specified using a selector function; in the example,
extl and ext2 are two such fields.

The last part of the example is a declaration of a
two’s complement addition instruction. Its first line
declares that the instruction is named add and that it
is encoded using the two.op format; the specification
of a particular format also introduces the names of its
fields into the scope of the instruction description. The
next line specifies that OP field of the encoding should

555

be 0 (in general, assignment of a constant to a field of
the encoding is a specification of an opcode field). The
declaration then uses the a_modes selector to select an
operand access mode for each of the two operands (op!
and op2) using fields from the instruction encoding as
parameters.

The actual operation that an instruction performs
is enclosed within the in and end keywords. This in-
struction simply specifies that in the next state of the
processor, the location described by op2 should contain
the sum of the current values of op1 and op2. Since
both op1 and op2 are declared to be words, the ad-
dition will be two’s complement addition. The prime
notation denotes state changes and is described below.

Note that the syntaz of the instruction specification
is imperative. We chose this syntactic style because in-
struction specification has traditionally relied on RTL-
like imperative statements.

State Changes. In LISAS, operations are specified
as state changes. An instruction description takes the
current state as an implied argument and generates a
new state in which some of the storage elements may
have new values. The prime notation indicates the new
values; for example

op2’ = opl + op2
means that in the next state, op2 will have the value
of opl + op2 evaluated in the current state.

Side effects from access modes are propagated into
the set of state changes generated by the corresponding
instruction. For example, any side effects generated by
the access mode for op2 occur with the state changes
in the body of the add instruction.

However, in some cases, intermediate states are nec-
essary to produce deterministic behavior. For exam-
ple, both operands of the add instruction can use the
Postinc access mode with the same register, and for this
processor, we want these accesses to occur sequentially.
When such conflicts occur (or might occur), LISAS re-
solves them by ordering the conflicting state updates
as they are written, thus producing intermediate tran-
sitions.

4 LISAS and Verilog

Figure 2 shows one possible translation into Verilog
of the example of Figure 1. There are a number of alter-
natives to this translation, some of which are shorter;
however, the given version most closely matches the
details of Figure 1.

module example;

reg [15:0] r([15:0];
reg [15:0] M[65635:0];

function [15:0] Register_read;
input [3:0] rg:
begin
Register_read = rlrgl;
end
endfunction

task Register_write;
input [3:0] rg;
input [16:0] data;
begin
r(rg] = data;
end
endfunction

function [15:0] Indirect_read;
input [3:0] rg;
begin
Indirect_read = M{r(rgll:
end
endfunction

task Irdirect_write;
input [3:0] rg:
input [15:0] data;

begin
Mlr[rgl]l = data;
end
endfunction
reg [15:0) Postinc_addr;

function [15:0] Postinc_read;
input [3:0] rg:
begin
Postinc_addr = r[rgl;
Postinc_read = M[r[rgl];
rlrg) = add_2s (rlrgl, 1);
end
endfunction

task Postinc_write;
input [15:0] data;
begin
M[Postinc_addr] = data;
end
endfunction

function [15:0] Indexed_read;
input [3:0] rg:
input [15:0] index;
begin

Indexed_read = M{add_2s(rlrg],index)];

end
endfunction

Figure 2: Verilog Version of LISAS Example

task Indexed_write;

input [3:0] rg;
input [15:0] index;
input [15:0] data;
begin
M[add_2s(r[rgl,index)] = data;
end
endfunction
function [15:0] a_modes_read;
input [1:0) mode;
input [3:0] rg;
input [15:0] index;
begin
case (mode)
0 : a_modes_read = Register_read (rg);
1 : a_modes_read = Indirect_read (rg);
2 : a_modes_read = Postinc_read (rg);
3 : a_modes_read = Indexed_read (rg, index);
endcase
end
endfunction
task a_modes_write;
input [1:0] mode;
input [3:0] rg;
input [15:0] index;
input [15:0] data;
begin
case (mode)
0 : Register_write (rg, data);
1 : Indirect_write (rg, data);
2 : Postinc_write (data);
3 : Indexed_write (rg, index, data).
endcase
end
endfunction
task decode
input [15:0] ir;
input [15:0] extl;
input [15:0] ext2;
begin
case (ir{15:12])
0 : add (ir[11:10], ir(9:8], ir[7:4],
ir{3:0], extl, ext2);
endcase
end
endtask;
task add;
input [1:0] sm; input {1:0] dm;
input [3:0] src; input [3:0] dst;
input [15:0] exti; input [15:0] ext2;
wire [15:0] opi; wire [15:0] op2;
begin
opl = a_modes_read (sm, src, exti);
op2 = a_modes_read {(dm, dst, ext2);
a_modes_write (dm, dst, ext2, add_2s(opl,op2));
end
endtask
endmodule

The Verilog version turns out to be much longer than
the LISAS version. The three main reasons for this
expansion are that

o addressing mode descriptions are more compli-
cated;

o side-effects require additional support; and

o there is no direct way to specify instruction for-
mats.

(All of these are equally applicable to HDLs in general,
not just Verilog.) We elaborate on each of these below.

Addressing Modes. LISAS describes addressing
modes as a pair, where one element represents the
memory to be accessed and the other element repre-
sents the address into this memory. An operand decla-
ration thus represents the location of the operand in-
stead of the operand itself; the location is implicitly
dereferenced when the operand is used.

In Verilog, however, we must represent the address-
ing mode using the actual addressing operation. Fur-
thermore, since fetching and storing an operand are
actually two different operations, we must have two dif-
ferent representations of the addressing mode. Thus,
the Verilog version in Figure 2 requires a function and
task for each mode, representing fetching and storing,
respectively.

Side Effects. It is common for addressing modes to
have side effects, such as post-incrementing a register.
In most cases, the side effect only occurs once when
the operand is fetched; if a result is to be stored, it
is put into the location from which the operand was
fetched. LISAS directly supports this common case by
way of the with ...end clause: the given side effect
only occurs when the operand is fetched, and the same
address is used for fetching and storing.

In Verilog, however, we must explicitly construct a
similar mechanism ourselves. Since the Postinc mode
of Figure 1 increments the register used to compute
the operand address for fetching, the address must
be preserved so that it can be used for the store
operation. Therefore, the Verilog version introduces
a register, Postinc_addr, to hold this address, and
Postinc_write uses the register as the address for stor-
ing data. We should note that Postinc_addr repre-
sents an tmplementation detail since it is not defined
by the ISA.

Instruction Formats. LISAS provides a mechanism
for explicitly describing instruction formats. They are

557

specified as a named list of fields, where each field is
given a size in bits.

There is no equivalent mechanism in Verilog for de-
scribing formats directly. Instead, we describe them
indirectly using a decoder, which selects an instruction
and then extracts the fields that instruction needs. The
decode task in Figure 2 performs this function; if any
other instructions were to be added, they would be in-
cluded in decode’s case statement.

Note that there is a substantial semantic difference
between the LISAS and Verilog versions. The LISAS
format declaration simply describes an arrangement of
bits. The Verilog version describes such an arrange-
ment as well, but it also introduces a decoding struc-
ture that is not part of the ISA.

5 Conclusion

The status of our work is that we have completed the
design of the LISAS specification language and have
implemented a language processor for it that does er-
ror analysis on specifications. We are currently work-
ing on two projects: integration of LISAS with Verilog
for lower-level systems development, and derivation of
compiler-code generators. Furthermore, we are also
working on formal and rigorous techniques (based on
Milner’s process calculus [3]) for specifying system-level
timing; these techniques will be integrated with func-
tional specifications in LISAS to provide more complete
system-level specifications.

References

[1] Kenneth W. Fernald, Todd A. Cook, Thomas
K. Miller III, and John J. Paulos. “A
Microprocessor-Based Implantable Telemetry Sys-
tem”. IEEE Computer, 24(3):23-30, March 1991.

C. A. R. Hoare and D. C. S. Allison. “In-
computability”. ACM Computing Surveys, pages
169-178, September 1972.

(2]

Robin Milner. Communication and Concurrency.
Prentice-Hall, New York, 1989. QA267 M533 1989.

3

—

(4] Steven E. Schulz. “An Overview of System De-
sign”. ASIC & EDA: Technologies for System De-

sign, pages 12-21, January 1993.

