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Abstract

A stochastic global optimization approach is presented for skew mininization in
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1 Introduction

In designing high performance CMDS circuits, it is often necessary to properly size the
various transistors inaskeletal cell, inorder to neet performance requirenents. For exanpl e,
transistor sizing has been extensivel yused for del ay and power optimzation of digital CMb
circuits. [3], [8]. Inthis paper, we describe a sizi ng programbased on stochastic opti mzation
of a nodel function. This is a direct search nethod whichis more accurate than traditional

nonlinear opti mzation programs, and is considerably faster than si ml ated anneal i ng.

There are two basic approaches for transistor sizing that have been expl ored by vari ous
researchers. The first approachinvol ves devel opi ng a sinplified nodel of signal del aythrough
a OMP gate, either anal ytically [ 3], or by macromnodel s based on simil ations [8]. Then, the
del ay of the entire cell is conputed using this model. The transistor sizing problemis then
formil ated as an opti mzation probl emvi th the objecti ve of m ni zi ng the del ay, as predicted
by the model . Sone optimzation probl ems have a special formto guarantee effici ency and
accuracy of the optimzation process, e.g. the posynomal objective function, usedin 3], [5].

G hervise, a nonlinear optimzation tool is required.

The second approach invol ves coupling a circuit simil ator to a nonlinear optimzation
tool (or tool set). For exanple, (thotta et. al. [13] enploy an augnented asymptotic
wavef ormeval uati on techni que to eval uate the behavi or of eachcircuit visited by a siml ated
annealing program In Delight.Spice [12], a set of nonlinear optimzation program are

integrated vith the SPI(Ecircuit simlator.

The first, ‘equation based’, approach, though effecti ve for del ay optimzation, is diffcul t
to generalize to other problens, such as del ay skewoptimzation, as is required for wave-
pipelined circuits. Skew, in general, cannot be estimated using a single process corner or
data vector. Mintaining accuracy in estimating the spread in del ay over input data vector
and process variations using a sinple nodel is verydifleult. The only solutionis to eval uate
each sizing schene through detailed circuit simlations, to account for data and process
variations. 'This nmakes objective conputation a very expensive task, even for very small

sizedcircuits.



The second, ‘simlation based’ approach has the conbined conputational burden of
runni ng a non-linear optimzation programand runni ng at 1east one full circuit similation
eachtine the objective functionneeds to be eval uated. There are sone addi tional hi ndrances

in enpl oyi ng a conventional non-linear optimzation programfor this task:

1. Gradient informationis verydifftult to obtain. Though there are nunerical optimza-
tion techni ques which do not require explicit gradient information, these techni ques
tend to be slow Also, they try to eval uate the gradi ent through perturbation. This

inplies a further increase in the nunber of objective eval uations.

2. Transistor sizes can only be varied in certain quanta. Mst nunerical optimzation
techni ques operate on a continuous paraneter range. Hence the final sol uti on mght
be an infeasible sizing schene. Mving the solution to the closest feasible size my

lead to a sub-optiml sol ution.

3. (bnstraints in the optimzation problem e.g. area and power, further conplicate the

optimzation task.

4. 'The user has no direct control over the optimzer, i.e., the optimzation task is not
interactive, andit is diflcult for the engineer to use his or her judgenent in gui di ng

the optim zer.

5. The optimzation routines look for strict local mnima. Uually, the designer is in-
terested only in obtaining a rough approximation to a globally optimal solution. T
achi eve the gl obal m ni mum the optimzer has to be runfrommil tiple, random initial
solutions. Fven then, there are not eventheoretical guarantees of achieving a globally

optimal sol ution, except for sone veryrestricted probl ens.

(he way of avoi di ng gradi ent eval uati on and restricting the sol utions to feasible sizings is by
enpl oyi ng simil ated annealing [ 6] for optimzation. Ibwever, simil ated anneal i ng prograns

tend to be prohi bitively slow, specially when each objective eval uation is so expensi ve.

In viewof these difftul ties, we present a new approach to transistor sizing in smll,

hi gh performance circuit blocks. This approach is based on stochastic modeling of the



circuit responses of interest. It is a direct search for the best design armong feasible ones.
No gradient conputations are required. The designer has direct control over the nunber

of simlations conducted, and the search process can be stopped any tine the designer is
satisfied wi th the best sol ution produced thus far. The stochastic model hel ps in identifying
the nost promsing design based on the existing information about the problem (hly

the nmost promsing designs are siml ated. Hence siml ations are organized naturally and
efftiently. 'The nethod is capable of identifying the global mnimmmch faster than

exhaustive search.

Recently, global optimzation nethods have been proposed for optimzation of contin-
uous functions based on stochastic modeling [17], [10]. Since this approach is relatively
unknown in the circuit optimzati on domain, we will briefly reviewits i nportant features in
the next section. InsectionIIl we will propose an opti mzation al gori thmconsistent with the
stochastic modeling philosophy. In section IVwe present results obtained on two exanple
circuits. Finally, section Vis devoted to a discussion of the scope and limtations of this

net hod.

2 Optimization by stochastic mdeling of objective

function

(bnsider the followi ng unconstrained opti mzation problem
mn, ((z) € ACF (1)

vhere z is a d di nensional vector, Ais a finite subset of. K (z) is the objective function
vwhose val ue at any # € Acan be determned onl y through an expensi ve si mil ati on. Besides

this, there is verylittle information about the objective function. Suppose the objective
functionis perceivedto be conti nuous and "smwoth”, but not uni nodal . In such a situation,

it is reasonable to approximte ((z) by a sinpler function and to performan optimzation

on this sinplified function. Ibwever, a global pol ynomal approxi mation is inappropriate;
information is lost in fitting the nodel to data, unless the degree of the pol ynomal is as

large as the data set. Abetter approach to function approxi mation is needed.
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Recently, stochastic nodel s have been proposed to capture conpl ex objective functions
[14]. Wth this approach, the val ue of the unknown function at each point in Ais assumed
to be a randomvariable. Then, the unknown functionitself is a sample path of a stochastic
function. In the general case, a stochastic function ¢(z) is defined by a famly of mltidi-
nensional probability distributions F .(w%,.. . ) = P(é(z;) <wyi,i=1,...,m). For
example, if this distributionis joint Gaussian, then the stocha
the apriori average function pu(z) and mlo.valifi &mvad wes of the stocha:
functionare knowy), e((gr,dxl,...,kthen the conditional distributionof ¢

at any zis normal with the mean val ue

m(z|d(d = ((F,i=1,...,k) =p(2) +
(o(zd,. .., (B rR({(d —p(d,. ... lend] (2)

and variance

(2] $e = C(F,i=1,...,k) =of a,0)
(O'(m,@,...,0’()33),)33%(0’(%,@,...,0’(}33),%‘7, (3)

where,Ris theinverse of the kxkcovariance matrixof therandompro

where the function val ues are known.

Using a stochastic model, and a set of “measurements” onthe ob
prediction of the value of ((#) at untried points can be made usin
bution of ¢(z). This predictionis only probabilistic, i.e., at
distributionassociated withthe possible values for ((z), speci
given above. This allows a searchstrategy for points of small ((
on the conditional distribution. It seems more likely to find a j
val ue whegleetn.) is small. However, l¥mge.yailmtiscaf esregions of g
uncertainity, i.e. regions where function values can differ great
Hence arational choice has to be discriminate betweenpoints of :
ance or points of small variance but somewhat larger mean. We s h;

proposed algorithms that fit the stochastic modeling paradigm.
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stochastic modeling of unknown functions, see reference [14]. Gl

are further described by Mockus in [10].

2.1 Algorithms based on Statistical Modeling

Several algorithms for optimi zationusingastochastic model fun
W summarize some interesting approaches and finish with the P- Al
t he basis of our optimi zation procedure. These approaches essent

model chosen and the method used for mi ni mi zi ng the model functi o

In Grochet. al.[4], the model in the multidimensional case i
function. Instead, the conditional mean and variance of the one d

are generalized. The choice of the next point of eval uationis ma

(8 = Hao) o), i=1,...,n, (4)

where the experimental region Ais divided into Ndisjoint simpli
constant, determ ning the weight gi vento variance withrespect
of eachnewpoint causes the experimental regionto be further su
feature of this methodis that it is simple; rcanbe m nimized ana
imationtothe global opti mumcanbe located by mi nimi zing r. Alo

be then performed.

In Adachi et. al.[7], the model functionis astationary stocl
tional mean is an interpolating function. This interpolating f-
points and its derivatives are easy to compute. The variance of a
sponse bythis functionis also easy to compute. The opti mal poin
the interpolating functionstarting fromthe smallest data poin
a constraint on the coeffici ent of variation. The coefficient of var
mean and variance of the conditional distribution. The procedure
leading to (hopefully) adifferent local opti mumof the objectivef
all local optima can be located. The auxiliary computations are

of anonlinear optimizer at everyiterationtofindthe m ni mumof ¢



Bernardoet. al. [1], employ a stochastic model function to pe
of electronic circuits. Their approach relies heavily on desig
significant parameters through parameter effect plots and also tc

regions inthe design space.

The P-algorithmwas developed and characterizedin [19], [20]
cedure. At eachiteration, a new qhsiesr chioisem phianthas the high
probabilitgofbgizng s mall e} whiamhyi s some chosen val ue smaller t

mean val ue of ¢at each point in A i.e.,

zer1 = Arg max, Pu( %) (5)

is chosen as the next observatigomspoimd whlewe | @s s,chtg(nz min
z;, ((a,2=1,...,k), and

P.(%) = Probability@g(z) <y (6)

Basedonrather intuitive axioms, itis shownin[17] that ¢(2) can

sianrandomvariable whose con(e)t hodalamegdmyrd s gi ven as:

mk(wlz-ch(a),izl,---,k)Z%vi-“C(e:) (7)
si(z] @l(@,i=1,...,k) k{_ljfro(w,w)—a(e:)é:fiv (8)

wherefwre wei ghts chosed¥uowhthatmdgpz| 2((a,i=1,...,k) (=

at the kobserved points, i.e. the mean val ue interpolates the knc

proved that a sequence of points thus generated, converges to the

The P-algorithmis a general formulation of a strategy to max
gained by eachfunctionevaluation, andis quite easy to implemen
mentation of the P-algorithm[17], several decisions have to be .

and the accuracy of the method, namely the foll owing:

¢ The appropriate formof the wei ghtsntgofluenchdbean.w



e The appropriate formof the covariance o(2,3y) has to be chosen.
that oshould be suchthat (o z,2) —o(z,2)) =|lz—z2|| where |[z—=z||[is th

nor 1m.

¢ An appropriate search met hgd hostfimeldagizsed. This coul d be an

mul ti modal optimization probl em.

¢ An appropriate vphae 66 e chosen. It has beenshownin[20] th
a value pl egads to the points of great esy gurecaetretrai ha f yo.r lefqygal
to migame(z| 2¢(a,2=1,...,k), then the next point chosen will

val ues that attainthis minimum.

Inthe next section, we detail our i mplementationof the P-al,
iterative, hence the user canstop the iterations any time the
satisfactory. The number of simul ati ons to be run are directl

The al gorithmonly identifies the most promi  sing points for si

3 Inplemrtation

The P- Algorithmis a formalization of an intuitive search strat
a framework for devising global optimization algorithms. W nox

implementationof the P-Algorithm

1. Choose kpeointsdg...,kuniformly fromAusing Latin Hypercube ¢

and compute)(fysimulation. Start iterationli=1.

2. Using the BLUP and MSE expressionin |[15] (see Appendix 1, eqg
find the mean;mpad varianteat(H >kuniform y distributed point

3. Find the smallest yaluneenf m(z
m ) = mia.y m(g) . (9)

Letly=my( z) —e At eacfimd the probaki(lfi)t.y P
o 7] p ] y



4. Choosyqpaints withlargest prjpbd bomitthe N poi nt s .

5. Compute ((z) atptoientns found abovjern ,{({z)mins satisfactory, the

stop, else continue

6. k=k+m If k>,K, thenstop, elsel=1+1, gotostep 2.

This algorithmis parameterized hyydaha uns fThese hbanameters
have to be adapted to the specific problemor left tothe designer’
k=10 %xd, ;=2d, where dis the di mensionality of the design space 4
good values for problems below. In this way the designer directl
simul ations tobe run. The choice of Nsearchpoints canbe suitabl
judgement, and can account for constraints onthe design space, e

a polytope constrained bylinear inequalities on the design vari

t he mean and vari ance has to be estimated at the Npoints, whichi:

This leads us to another veryimportant question, namely, hanc
design. If the constraints are linear, they can be handled veryr
of the Npoints for violation. Whenthe constraints are implicit :
after simul ation, e.g. a maxi mumdel ay or power restriction when c
t he procedure needs to be modi fied. There are t wo i mmedi ate possib
can be eval uated through the same simul ation, then another stoch
to model the constraint. Acertaintradeoff has to be established
secondary model and the actual objective. If a penalty method is
true objective and the constraint inasingle objective function
isalittle more dificult, as the overall model mi ght have to accou:
Alternatively, the constraint can be modeled piece-wise linear]
experiment [16]. Then the optimizationtaskis considerably si m
depends on the severity of the constraints. For a very tight con
pay close attentionto the constraining function and use the firs
For a loose constraint, the second approach would be more suitab
given below, the first approach was adopted for meeting a maxi mum

additionto optimizing the delay skew.



Inthenext section, the algorithmdescribedaboveis executed
tobe optimized for maxi mumdel ay variation. Inthe first example,
with a maxi muimdel ay constraint. The secondis anessentially unc

probl em.

4 Optimzation exarnpl es

4.1 Delay Controlled Elements for Wave-pipelined circuits

The design of wave-pipelinedcircuits involves verycareful cont
in the combinational blocks. Techniques have been proposed by I
for balancing the path delays byinserting active delay elements
have shown howthe delay of eachgate can be accuratel ycontrolled
For CMOS gates, however, the delay is data dependent. For the CM
example, the rising delayis substantially smaller when both inj
opposed to one input being fixed at 1 and the other switching fro:
avoiding this data dependence is touse the cross coupled biased-
in figure 1 [2]. This gate, however, consumes substantial static
low. Another gate structure suitable for wave pipe-lining is sh
transistor MJis usedtoaddextraresistance tothe pull-up chai
simul taneous switching of bothinputs. It also has the deleterio
circuit. Hence a proper balance has to be struck between the maxi
gate, as well as the data-dependent spread [11]. The delay spread
process variations also. Of course, the easiest parameters to co
the transistor sizes. Hence the goal of the optimizationis to ob:
such that the delay spread througheachcircuit blockis minimze

on the maxi mumdel ay through the circuit.

The optimi zation problemis formalized as foll ows:
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Find'z= Arg mig max §*( z) (10)

subject to ydmlxay(x)m<D (11)

Here Vdenotes the nom nal and the four process corner MOSFET
hypercube formed by restricting the widths of Ml- M3 begaveen 3. 6
bet ween 0.0 and 2.0 V. The widths of N1 and N2 are constrained to kL
of Ml and M2 respectively. zis an arbitrary vector of feasible t
voltage. Note that the m ni mumallowed feature sizeis 0.6pumand
and N2 wererestricted to vary in quanta of .20 pinsodid fyn e Thaes stkleew 6
variationindelaythroughthecircuit showninfigure 2 over the si
(see figure 3), and the delay(z) is the largest delay ovgritshtebe i nput

maxi mumdel ay constraint.

The model s for delayand skewwereinitiallyestablishedbysin
sizing schemes, selectedrandoml yusing Latin Hypercube Sampling
1 shows the sizing scheme with the best skewvalue, satisfying th
these 100 points. This sizing scheme is not feasible. The seco:

feasible point tothis sizing and the delay and skewvalue for tha

Since the number of possible sizings is small, all the feasibl
sizing schemes) were evaluated with five val ues of bias voltagera
equations 17 and 19. This constitutes an exhaustive search of tl
models. Since the smallest possible vglmesfohhotha ¢ kebeimetl p.y 20
feasiblesizes and bias voltages withthelargest probabilitytha
Dy < 1ns were chosen for resimulation. Table 1 shows the resul
simul ations. The best sizing inthe second set was considerably
the first 100 samples and was considered quite suitable for desi
simul ations were performed. The total time taken for simulation
DECstation 5000 while the overhead of model building and searchi

second.

This exampleillustrates howthe optimi zation procedure is em
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s judgement and a good solutionis found

is pruned bythe designer
Inthe next example, the methodology is further expanded to incl

with avery di fferent objective formulation.

4.2 CMOS Clock Driver Circuit

The second exampl e we present hereis the skewoptimization of a si
clock driver circuit shownin figure 4. It is desired to obtain a :
fromthis circuit’s outputs such that there is m ni mumskewbetw
to mi ni m*zemax(n§ H, as shown in figure 5. Again, this skewhas tol
over the process variations. This optimi zation has to be done u
sizing scheme. The absolute delay through this circuit is not a
consumption as this is a customcircuit block usedonly sparingl;
optim zationis essentially unconstrained. To test the scope of
and power supply variations were also considered. The model wa
of transistor sizes, process, temperature and power supply vari
example, process variations were considered by simulating each

process corners and the nomi nal process. The problemis formaliz

Find*z= Arg mig max §*( z) (12)

Here, Ais the hypercube formed by restricting the widths P1-_
12pm, the temperature variati danbded/ eetrw@é&dn 4o 75-5.25 V. As bef c
t he widths of N1-N6 are constrained to be one-half the widths of
represents the process variations considered. The optimization
t he worst delay skewover all ezternal noise factors, i.e., temperat
variations, has to be minimized over the internal noisefactors, i.e.
For this problem, the sizing provided by the resident circuit des
skewof 290ps (rowl of table 2). For optimization purposes, th
using k=100 simul ations, selectedrandoml y using Latin Hypercub
t he effect of temperature and supply variation was factored out.

points were sampled inthe 6-dimensional spacey,)f tAteetacdnsf st ot
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these 1000 points, the modelin equations(17) and (19) (see Append
di ferent combinations of the supply voltage and temperature vari
of the probabid)i (gaR(agti on 6) over these 9 combinations was found

1000 points. This val ue was used toestimate thelikelihood of as

*

z, = Arg min, maxg P, ( %) (13)

was the target for further sjmultaltel bnanHdsed ar wiglitd ke spanced

of permissible transistor widths and Frepresents the temperatu
Agai ngywas chosen to be 0.0 whichis the mi ni mumpossible value o
the 1000 sizing schemes evaluated, the 10 sizing schemes (instea
by equation 13) with the largest probability were chosen for fu
schemes were verified using the 5 process parameters andthe 4 corn
temperature luctuations. The smallest worst-case skewamong thes
a significant improvement over the expert’s design (row2 of table
time was 640 cpu seconds on a DECstation 5000 and the overhead of

optimization was less than 10 cpuseconds.

These examples illustrate the power of this approach in eval
schemes eficiently for different optimi zation problems. The sto
capture the relationship of any performance measure to the tran

accuracyisreflectedinthefewsubsequent eval uations requiredtc

5 Discission

When optimi zi ng high performance combinational sub blocks, the:
knowl edge about the objective function, e.g., the di fference betw
imumdel ay will al ways be greater than zero and less than some uptg
t hrough the block. Also, the objective functionis expectedtob
sides this, little can be said. Gradients are very hard to obtai

di ficult. Each objective function evaluationis going to be expe

made through a full circuit simulation, especially for reasonab
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of input parameters is usuallyfairlysmall, inthe 5-20range, co
transistors that canbe sizedindependently. There m ght exist sc
input parameters. The al gorithms basedonstochastic modeling fit
mainidea behind these algorithms is to maximi ze the chances of
functionafter eachevaluation. Al most any ki nd of a priori infor
up the search for optimal sizing. For example, it’s quite easy t
performed by this algorithmtothe part of the designspace that is
to be most promi sing. The examples gi veninthe previous section
capable of optim zing complex sizing objectives, based only on s
extremely attractive feature of this algorithmis its flexibilit
ationis guaranteed to improve the best solution found thus far,
investigation at any ti me when the attained solutionis deemed tc
this canalso be perceivedas a drawback of the algorithmsince tl
gence criterion, i.e. locationof astationary point. The only wa
successiveiterations returnthe same solution. Another limitat
cost of model estimation grows rapidly with the number of data po
of the model equations (17 and 19) requires the inversion of a nx
many model evaluations are made onthe same dataset (asinstep 2 c
the matrix inversionneeds to be done only once. This method sho
problems of di mensionality upto 25-30. Beyond that, the simple

2is not sufficient to guarantee close to optimal sol utions.

6 Coxclwion and Fuwe Work

W have demonstrated howan al gorithmbased on stochastic modeli
ing some very diflicult transistor sizing problems. This algorith
of a searchstrategy for the optimal sizing scheme. The only inf
algorithmis the val ue of the objective function which can be cal
simul ation. No gradient informationis required. The main thrus

mi ze t he probability of i mproving the best knownsolution withea

14



objective function. This is consistent with the ai mof obtaining
uated through circuit simulations, while mi nim zing simulation
is found at each step of the algorithmand so the search can be st
solution found thus far is considered satisfactory. The exampl e

solutions can be quicklyfound using this approach.

Further work is needed on the programinterfaces. Process var
only using the process corner models. If more detailed models «
given, the procedure needs to be modi fied. For example, if the pr
specified by a normal distribution, then the stochastic model ca
process parameters as variables also. Further investigation is

anal ysis inthis scenario.
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A ppendi x
The model used for the problemabove was:

Y(2) = 8+ i + 9 2) (14)

where zis the ddimensional parametet.vécitson dmd-) X1 vector of

unknown coefficients. ¢(.) is arandomprocess with meanzero and co

V(w,z) = 8L exp( —| w-z;]) (15)

Suppose that nvalues of Y(2) are givep at. gafhles poadtiess are
inthe nx1l vegtdri§ the nx(d+1) matrix of the nparameter vectors :

sites augmented by a unit vector, i.e.
1 351 ... &
F = : (16)
1 s1 ... &

Then the Best Linear Unbiased Predictor gof Y(.) is given as:

N

§ = XB+7'(2) B(§—Fp) (17)
where
B = ( FR'F)'F'R (s (18)

where, as before, Ris the nXxncovariance matrix of the stochasti

sample locations, and ris the nx1 vectog)gfkcolarigncand Xe=s

[1lw.. 4. The Mean Squared Error ( MSE) is given as:

) (19)

-1

0 F
F R

XI

MSE( 3( =) ) 2(ff[X"(ﬂﬂ) ( 2
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Figure 1: Cross coupled NANDgate
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Figure 2: Circuit Block for Wave-pipelining
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