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Abstract— Over the last decade, there has been a growing
recognition that ultra-wideband (UWB) radios offer several
unique capabilities that can enable new sensing, positioning,
and communication applications. Most UWB systems currently
use single- or dual-polarized antennas, which can measure at
most two components of the received electromagnetic (EM)
signal. Since the received signal consists of six field components,
however, potentially useful information is neglected. In principle,
a “vector antenna” that can independently detect or excite three
or more EM field components enables the UWB system to access
additional signaling dimensions, which can be used to enhance
performance in the same way as antenna arrays. In this paper,
we consider the potential advantages of UWB vector antenna
systems for range and direction-of-arrival (DOA) estimation. We
first introduce a general model for an UWB vector antenna
system that incorporates the possibility of arbitrary space- and
frequency-selective antenna coupling. We then use this model
to derive a frequency-domain Cramér-Rao lower bound on the
position error covariance for arbitrary polarized UWB signals.
For two particular 3-element UWB vector antennas, we then use
the bound as a design criterion to derive optimal UWB polarized
signals that minimize a lower bound on mean-square angular
estimation error.

Keywords: Ultra-wideband Signaling, Ranging, Direction-
of-arrival estimation, Cramér-Rao Bound

I. INTRODUCTION

Over the last decade, there has been a growing recognition
that ultra-wideband (UWB) radios offer several unique capa-
bilities that can enable a host of new sensing, positioning,
and communication applications. UWB has long been used
in ground-penetrating radars, and is now being applied to
new imaging devices (e.g. Time Domain’s RadarVision) which
enable law enforcement, fire and rescue personnel to see
through walls and debris during emergencies. These devices
can also improve safety in construction by locating steel
bars, electrical wiring, and utility pipes hidden inside walls
or underground. Recently, UWB medical imaging systems
have been proposed which achieve unprecedented resolution
in mammograms. The precise ranging capability of UWB
can provide accurate tracking for many applications, such as
remote inventory, personnel and asset tracking, and collision
avoidance radars and air bag proximity detectors for auto-
mobiles. In communications, UWB can transmit very high
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data rates over short distances without suffering the effects of
multipath, and can relieve congested spectrum by effectively
opening up new frequency bands in the noise floor (consistent
with Part 15 rules, [1]). Several standardization efforts are now
underway (e.g., IEEE 802.15.3 and 802.15.3 Sg3a) to develop
UWB wireless personal area networks and local area networks
that can overlay and co-exist with existing wireless systems.

Most work on ultra-wideband systems has thus far focused
on single-polarized electric dipole antennas. Dual-polarized
antennas have been studied in certain radar applications, such
as ground-penetrating and synthetic-aperture radars (e.g., [5],
[3], [6] and references therein). Single- and dual-polarized
antennas can measure at most two components of the received
signal. Since the signal detected at the receiver consists of six
electromagnetic field components, however, these antennas ne-
glect data that might be available to improve the performance
of the sensing, positioning, and communications algorithms. A
“vector antenna” that can independently detect or excite three
or more EM field components enables the UWB system to
access additional signaling dimensions, which can be used to
enhance performance in the same way as antenna arrays.

In principle, a 6-element vector antenna might be con-
structed by combining three electric dipoles to detect the elec-
tric field components, with three magnetic dipoles (i.e., loops)
to detect the magnetic field components. Vector antennas that
respond to all six EM field components have been investigated
[11], [14], however, these devices are relatively narrowband
(< 30 MHz) and extremely large (many times the wavelength).
The use of such antennas to estimate the direction-of-arrival of
electromagnetic signals in line-of-sight propagation has been
extensively investigated in narrowband systems [7], [9], [8].
There is a rich literature on beamforming with spatial arrays
of scalar UWB antennas (e.g., [10], [12], [15]).

In this paper, we develop some tools for the design of
UWB systems for precise location estimation. A generalized
asymptotic expression for the Cramér-Rao bound is derived in
section II. Section III presents a signal model for a vector
antenna receiver. The exact error bounds are given in IV
and the optimal signal design criterion is discussed in V.
The notation used is as follows. If A is complex matrix,
A† is the conjugate-transpose of A. E[·] is the expectation
operator, Tr[·] is the trace operator, CN (m, C) is a circularly
symmetric complex Gaussian random variable with mean m
and covariance C.
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II. FREQUENCY-DOMAIN CRAMÉR-RAO BOUND

Consider the discrete-time complex observation

y(t) = m(t, ϑ) + n(t, ϑ), t = 1, . . . , N

where m(t, ϑ) is the r × 1 deterministic signal vector, which
depends on the unknown p-dimensional parameter vector ϑ,
and n(t, ϑ) is a proper1 zero-mean complex Gaussian process
with covariance dependent on ϑ. To evaluate the Fisher Infor-
mation Matrix (FIM), it is convenient to stack the observations
into a single Nr × 1 observation y = (y(1)T , . . . ,y(N)T )T

in which case the FIM is given by [4, pg. 525]

[I(ϑ)]k,l = 2Re
[
∂mH(ϑ)

∂ϑk
R−1(ϑ)

∂m(ϑ)
∂ϑl

]

+Tr
{

R−1(ϑ)
∂R(ϑ)
∂ϑk

R−1(ϑ)
∂R(ϑ)
∂ϑl

}
where m(ϑ) = (m(1, ϑ)T , . . . ,m(N,ϑ)T )T and R(ϑ) is the
Nr × Nr covariance of n(ϑ) = (n(1, ϑ)T , . . . ,n(N, ϑ)T )T .

Our main results are explicit formulas for the Cramér-
Rao Bound (CRB), which provides a lower bound on the
covariance matrix of any locally unbiased estimator of ϑ. More
specifically, if

Cϑ̂ = E
[
(ϑ̂ − ϑ)(ϑ̂ − ϑ)T

]
is the covariance of the estimation error, then the CRB

Cϑ̂ − I−1(ϑ)

is non-negative definite.
If n(t, ϑ) is a stationary process for each ϑ, then its

covariance has a block Toeplitz structure

R(ϑ) =

⎡
⎢⎢⎢⎣

T0 T−1 · · · T−(N−1)

T1 T0 · · · T−(N−2)

...
...

. . .
...

TN−1 TN−2 · · · T0

⎤
⎥⎥⎥⎦

where Tk is the autocorrelation function

Tk = Tk(ϑ) = E [n(t + k, ϑ)nH(t, ϑ)
]

.

Note that R(ϑ) is Hermitian since Tk = TH
−k.

We are interested in an asymptotic frequency-domain ex-
pression for the CRB in the limit as N becomes large. To
this end, we introduce some notation: For any n×n complex
matrix A, the strong norm is defined as the spectral norm

‖ A ‖= sup
x:xHx=1

(
xHAHAx

)1/2
,

and the weak norm is defined to be the normalized Frobenius
norm

|A| =
(
n−1Tr[AHA]

)1/2
.

1A stationary complex random process is proper if the pseudo-covariance
E[(n(t + k) − n(t + k))(n(t + k) − n(t + k))T ] vanishes for all k [13].

Definition 1: Two sequences of n × n matrices, {An} and
{Bn}, are said to be equivalent if there exists an M < ∞
such that ‖ An ‖≤ M and ‖ Bn ‖≤ M and

lim
n→∞ |An − Bn| = 0.

Suppose that for all ϑ, the discrete Fourier Transform

T (ω, ϑ) =
∞∑

k=−∞
Tk(ϑ)e−jkω

exists and is continuous in ω ∈ (−π, π). By Lemma A1 of
the appendix, R(ϑ) is asymptotically equivalent to the block
circulant matrix

CN (ϑ) = (WN ⊗ Ir)HDN (T )(WN ⊗ Ir)

where Wn is the n × n discrete Fourier Transform (DFT)
matrix

[Wn]ij =
1√
n

exp
(
−2π(i − 1)(j − 1)

n

)
,

Dn(T ) is the block diagonal matrix

DN (T ) =

⎡
⎢⎢⎢⎣

T (ω1, ϑ) O · · · O
O T (ω2, ϑ) · · · O
...

...
. . .

...
O O · · · T (ωN , ϑ)

⎤
⎥⎥⎥⎦

and ωi = exp
(
− 2π(i−1)

N

)
.

Similarly, suppose that the discrete Fourier Transform of the
sequence {∂Tk

∂ϑl
} exists and is equal to ∂T

∂ϑl
(ω, ϑ) for all l and

ϑ, then

∂R(ϑ)
∂ϑl

∼ (WN ⊗ Ir)HDN

(
∂T

∂ϑl

)
(WN ⊗ Ir)

and if σ[T (ω, ϑ)] ≥ c > 0 for all ω and ϑ, then

R−1
N (ϑ) ∼ (WN ⊗ Ir)HDN (T−1)(WN ⊗ Ir)

Note that An ∼ Bn and Cn ∼ Dn implies AnCn ∼ BnDn

and
lim

n→∞(1/n)Tr[An] = lim
n→∞(1/n)Tr[Bn] .

It follows that

lim
N→∞

1
N

Tr
{

R−1(ϑ)
∂R(ϑ)
∂ϑk

R−1(ϑ)
∂R(ϑ)
∂ϑl

}

= lim
N→∞

1
N

Tr
{

C−1(ϑ)
∂C(ϑ)
∂ϑk

C−1(ϑ)
∂C(ϑ)
∂ϑl

}

= lim
N→∞

1
N

N∑
i=1

Tr
{

T−1(ωi, ϑ)
∂T (ωi, ϑ)

∂ϑk
T−1(ωi, ϑ)

∂T (ωi, ϑ)
∂ϑl

}

=
1
2π

∫ π

−π

Tr
{

T−1(ω, ϑ)
∂T (ω, ϑ)

∂ϑk
T−1(ω, ϑ)

∂T (ω, ϑ)
∂ϑl

}
dω

Similarly, defining the the r × 1 DFT of the signal as

M(ω, ϑ) =
∞∑

t=−∞
m(t, ϑ)e−jtω ,
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we can show that

lim
N→∞

1
N

Re
[
∂mH(ϑ)

∂ϑk
R−1(ϑ)

∂m(ϑ)
∂ϑl

]

=
1
2π

∫ π

−π

Re
{

∂MH(ω, ϑ)
∂ϑk

T−1(ω, ϑ)
∂M(ω, ϑ)

∂ϑl

}
dω .

Then the asymptotic FIM is

lim
N→∞

1
N

[IN (ϑ)]k,l

=
1
2π

∫ π

−π

[
2Re

{
∂MH(ω, ϑ)

∂ϑk
T−1(ω, ϑ)

∂M(ω, ϑ)
∂ϑl

}

+Tr
{

T−1(ω, ϑ)
∂T (ω, ϑ)

∂ϑk
T−1(ω, ϑ)

∂T (ω, ϑ)
∂ϑl

}]
dω

III. SIGNAL MODEL

We now introduce a simple model to describe the propa-
gation of UWB polarized signals which captures many key
features of the vector antenna environment, but which is
tractable enough to allow an analysis of different antennas
and beamforming algorithms. The model is based on the same
assumptions as the narrowband sinusoidal model proposed
by Nehorai and Paldi [7], but is here generalized to ultra-
wideband, possibly non-sinusoidal signals.

Suppose first that the signal propagates by line-of-sight
from the target to the UWB receiver. If the target is located
at position (r, θ, ϕ) in spherical coordinates centered at the
receiver, as illustrated in Fig. 1, the signal arrives at the
receiver from direction

ur =

⎡
⎣ cos θ sin ϕ

sin θ sin ϕ
cos ϕ

⎤
⎦ (1)

where θ and ϕ are the azimuth and elevation, respectively.
Let E(t) and H(t) denote the 3-dimensional electric and

magnetic field vectors at the receiver, and suppose the target
is sufficiently far from the receiver to justify a far-field
approximation. Thus E(t) and H(t) constitute a plane “wave”
which is constant on planes perpendicular to ur. For a finite-
duration pulse propagating in a nonconductive, homogeneous,
and isotropic medium, E(t) and H(t) must satisfy [7]

ηH(t) = −ur × E(t) (2)

ur · E(t) = 0 (3)

where η is the intrinsic impedance of the propagation medium.
The complete electromagnetic field at the receiver can be

written as [
E(t)

ηH(t)

]
= B(θ, ϕ)s(t) (4)

where s(t) = [s1(t), s2(t)]T is an arbitrary 2-dimensional

u
r

x

y

z

�

�

r

u�

u�

Fig. 1. The orthonormal triad (ur,uϕ,uθ)

pulse and

B(θ, ϕ) =

⎡
⎢⎢⎢⎢⎢⎢⎣

− sin θ cos θ cos ϕ
cos θ sin θ cos ϕ

0 − sinϕ
cos θ cos ϕ sin θ
sin θ cos ϕ − cos θ
− sin ϕ 0

⎤
⎥⎥⎥⎥⎥⎥⎦

. (5)

From Fig. 1, it is clear that s1(t) and s2(t) are the horizontally
and vertically polarized components of E(t), respectively.
Recall that the electric field vector of a sinusoidal polarized
signal describes an ellipse in the plane perpendicular to the
direction of propagation (e.g., [17]). From (4), we see that the
electric field of an ultra-wideband polarized signal also resides
in the plane perpendicular to ur; however, it can describe a
more general motion.

In (5) we consider a vector antenna that detects all six
components of the EM field. A vector antenna with m < 6
outputs can be modeled by selecting the appropriate m rows
from matrix B(θ, ϕ) above. In this paper, we consider the
problem of estimating the target position ϑ = (ϑ1, ϑ2, ϑ3) =
(r, θ, ϕ) based on the data.

IV. CRB FOR UWB VECTOR ANTENNAS

We now consider a special case relevant to the study of
vector antennas. Recall that for a linear time invariant system
the response can be written as a convolution, and that for
a single reflector at a distance r, the received signal can be
written as sr(t) = s(t − 2r/c). The response can be written
as

m(t, ϑ) = B(t, θ, ϕ) 	 sr(t).

so that M(ω, ϑ) = B(ω, θ, ϕ)sr(ω). It seems reasonable to
assume that frequency and angle dependencies are separable,
so that B(ω, θ, ϕ) = G(ω)B(θ, ϕ), where G(ω) is a matrix
that describes how the vector antenna responds to the incident
EM field. If we assume that the noise is intrinsic to the
sensors and independent of the target position, then T (ω, ϑ) =
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T (ω).The asymptotic FIM can be written as

1
π

∫ π

−π

Re
[
DH(ω, r, θ, ϕ)GH(ω)T−1(ω)G(ω)D(ω, r, θ, ϕ)

]
dω

where D(ω, r, θ, ϕ)

=
[
− (2/c)B(θ, ϕ)s′r(ω), Bθ(θ, ϕ)sr(ω), Bθ(θ, ϕ)sr(ω)

]
where s′r(t) are the samples of s′(t − 2r/c), Bθ(θ, ϕ) =
∂B(θ, ϕ)/∂θ and Bϕ(θ, ϕ) = ∂B(θ, ϕ)/∂ϕ.

If r̂, θ̂ and ϕ̂ are unbiased estimates and var(r̂) is the Mean
Squared Range Error (MSRE). δ = arccos(u·û) is the angular
error in the estimate, the mean squared angular error (MSAE)
has a lower bound which can be expressed in terms of the
CRB expressions for θ and ϕ E(δ2) = var(δ) ≥ sin2 ϕ ·
CRB(θ) + CRB(ϕ).

A. Special Case: An UWB Tripole

Consider first the special case of a collection of three mutu-
ally orthogonal dipoles in the presence of spatially and tempo-
rally white noise. In this case, we have GH(ω)T−1(ω)G(ω) =
(1/σ2)I3. For the case of a UWB tripole, we have

B(θ, ϕ) =

⎡
⎣ − sin θ cos θ cos ϕ

cos θ sin θ cos ϕ
0 − sinϕ

⎤
⎦

We define certain signal parameters for short-hand E =
||sr||2, s = ||sr2||2/||sr||2 = E2/E , ω2 = ||s′r||2/||sr||2,
ρ = (2/ωE)Re[< sr2, s′r1 >], µ = (1/E)Re < sr2, sr1 >
Using the expression for asymptotic FIM, we have following
bound for a locally unbiased estimator of the DOA:

var(r̂) ≥ σ2c2

8ω2E
s(1 − s sin2 ϕ) − µ2 sin2 ϕ

s(1 − s sin2 ϕ) − µ2 sin2 ϕ − sρ2 cos2 ϕ

var(θ̂) ≥ σ2

2E
s

s(1 − s sin2 ϕ) − µ2 sin2 ϕ − sρ2 cos2 ϕ

var(ϕ̂) ≥ σ2

2E
1 − s sin2 ϕ − ρ2 cos2 ϕ

s(1 − s sin2 ϕ) − µ2 sin2 ϕ − sρ2 cos2 ϕ

MSAE =
σ2

2E
1 − ρ2 cos2 ϕ

s(1 − s sin2 ϕ) − µ2 sin2 ϕ − sρ2 cos2 ϕ

By Cauchy-Schwarz inequality, −1/2 ≤ µ ≤ 1/2. µ = ±1/2
if and only if linear polarization is used (sr1 = real constant ·
sr2.

B. Special Case: UWB Antenna with 2-dipoles, 1-loop.

Consider a three element receiver with two orthogonally
located ultrawideband dipoles and a ultrawideband loop with
colocated with the dipoles in the same plane. In this case, we
have

B(θ, ϕ) =

⎡
⎣ − sin θ cos θ cos ϕ

cos θ sin θ cos ϕ
− sin ϕ 0

⎤
⎦

We call this the (2,1) antenna henceforth. We can get expres-
sions in a similar way for this antenna structure. We omit the
exact bound expressions for lack of space.

V. OPTIMAL SIGNALS

We use the exact expressions for the variance lower bounds
as a signal design criterion. The signal pair (s1, s2), that mini-
mizes the MSRE lower bound and makes it DOA independent
are optimal for range estimation. Signals that minimize the
MSAE lower bound and make it DOA independent are optimal
for DOA estimation. We make the following observations

• For the tripole antenna, signals with ρ = 0 (orthogonal)
are optimal in the sense just described for range estima-
tion. For the (2,1) antenna, signals with p = 1 and ρ = 0
are optimal for range estimation.

• For the tripole antenna, signals with ρ = ±1, s =
1/2, and µ = 0 are optimal for DOA estimation. For
the (2,1) antenna, signals with p = 1, ρ = ±1, s =
1/2, and µ = 0 are optimal for DOA estimation.

Linearized confidence region is defined as the volume of
confidence ellipsoid of Wald’s test (not developed in this
paper, but will be presented elsewhere). The confidence region
indicates the uncertainty volume for the location estimate
when the parameters are (r, θ, ϕ), and can be written explicitly
in terms of the CRB. This can be used as a criterion for optimal
signal design by choosing signals that minimize that volume.
We find that signals optimal in this sense are optimal in the
sense of DOA estimation. So, we choose this as the design
criterion for joint estimation of range and DOA.

The MSRE and MSAE lower bounds under this choice of
signals are identical for both tripole and (2,1) antennas. (i.e.,
the Maximum Likelihood Estimator asymptotically achieves
these bounds and gives the same performance in target local-
ization for both the antennas). The lower bounds are given
as: MSAE ≥ 2/SNR and MSRE ≥ c2/(8ω2SNR), where
SNR = E/σ2. Choosing the signal pair such that s1(t) =
A cos ωst for t ∈ [−π/ωs, π/ωs] and zero otherwise, and
s2(t) = A sin ωst for t ∈ [−π/ωs, π/ωs] and zero other-
wise, satisfies the optimization criterion. Since, these pulses
are complex envelopes and modulate the carrier waveform
ejωct by choosing ωc/ωs = n + 1/2, where n is positive
integer, we can ensure that modulated waveform is zero at the
boundary. These waveforms satisfy the requirements for DOA
independent angle estimation.

VI. CONCLUSIONS

To demonstrate the advantages of using a polarimetric
vector antenna instead of a single ultrawideband dipole or
loop, we considered the beamforming problem as applied to
EM source localization with receivers that use vector antennas.
We derived an aymptotic expression for frequency domain
CRB for a vector Gaussian process. This result generalizes
the expression obtained in [16] for a scalar Gaussian random
process with separable covariance structure to the case of
vector signal observations from a proper stationary Gaussian
random process. Exact expressions for the asymptotic CRB for
range and direction of arrival estimation were derived. Signals
that make the CRB’s independent of the DOA were obtained
for both range and DOA estimation. With either the MSRE or
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MSAE or the volume of confidence criterion, signals that are
optimal for the 2,1 antenna are also optimal for the tripole.
Further, the performances for both the antennas are the same
under the optimal signal choice.

APPENDIX

In this appendix, we present results on the asymptotic
behavior of block Toeplitz matrices which are used in Sec. II
Consider a sequence of block Toeplitz matrices

Rn =

⎡
⎢⎢⎢⎣

T0 T−1 · · · T−(n−1)

T1 T0 · · · T−(n−2)

...
...

. . .
...

Tn−1 Tn−2 · · · T0

⎤
⎥⎥⎥⎦

where {Tk} is a sequence of r × s complex matrices. Denote
the ij-th element of Tk by tijk .

Lemma A1: If {Tk} is such that
∑∞

k=−∞ |tijk | < ∞ for all
i and j, then Rn is asymptotically equivalent to the block
circulant matrix

Cn = (Wn ⊗ Ir)HDn(T )(Wn ⊗ Is) ,

where Wn is the DFT matrix, Dn(T ) is the block diagonal
matrix, and T (ω) is the discrete Fourier Transform of the
matrix sequence {Tk}

T (ω) =
∞∑

k=−∞
Tke−jkω .

Remarks: For r = s = 1, the result was proved by Gray
[18]. For the particular case r = s > 1, an alternative
asymptotic expression is stated without proof by Gazzah et
al [2]. It can be shown that the expression in [2] is equivalent
to (6); however, we shall omit this and instead give a direct
proof of (6) since it is simpler, a bit more general, and makes
the paper more self-contained.

Proof: Let kIn,r denote an n × rn matrix such that
[kIn,r]ij = δj,k+ir. It is straightforward to prove that the
following properties hold for any rn × sn matrix A:

(A1) kIn,rA is the submatrix of A comprising
the n rows k, k + r, . . . , k + (n − 1)r.

(A2) kIT
n,rkIn,rA is equal to A with all rows

zeroed except k, k + r, . . . , k + (n − 1)r.
(A3) A =

∑r
i=1

∑s
j=1 iI

T
n,r iIn,rA jI

T
n,s jIn,s

(A4) B ⊗ Ir =
∑

i iI
T
n,rB iIn,r for any n × n

matrix B

To prove (6), observe that iIn,rRn jI
T
n,s is an n × n Toeplitz

matrix formed from the scalar sequence tijk , k = 0,±1, . . . for
all i and j. From [18], we therefore have iIn,rRn jI

T
n,s ∼

WH
n Dn(tij)Wn. Observing that Dn(tij) = iIn,rDn(T )jI

T
n,s,

we conclude that

Rn
(A3)
=

∑
ij

iI
T
n,r iIn,rRn jI

T
n,s jIn,s

∼
∑
ij

iI
T
n,rW

H
n Dn(tij)Wn jIn,s

=
∑
ij

iI
T
n,rW

H
n iIn,rDn(T )jI

T
n,sWn jIn,s

=

(∑
i

iI
T
n,rWn iIn,r

)H

Dn(T )

⎛
⎝∑

j

jI
T
n,sWn jIn,s

⎞
⎠

(A4)
= (Wn ⊗ Ir)HDn(T )(Wn ⊗ Is) ,

where the second step follows by observing An ∼ Cn and
Bn ∼ Dn implies An + Bn ∼ Cn + Dn.
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