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Two-Dimensional SPICE-Linked Multiresolution
Impedance Method for Low-Frequency

Electromagnetic Interactions
Michael Eberdt, Patrick K. Brown, and Gianluca Lazzi*, Senior Member, IEEE

Abstract—A multiresolution impedance method for the solu-
tion of low-frequency electromagnetic interaction problems typi-
cally encountered in bioelectromagnetics is presented. While the
impedance method in its original form is based on the discretiza-
tion of the scattering objects into equal-sized cells, our formulation
decreases the number of unknowns by using an automatic mesh
generation method that does not yield equal-sized cells in the mod-
eling space. Results indicate that our multiresolution mesh gen-
eration scheme can provide a 50%–80% reduction in cell count,
providing new opportunities for the solution of low-frequency bio-
electromagnetic problems that require a high level of detail only
in specific regions of the modeling space. Furthermore, linking the
mesh generator to a circuit simulator such as SPICE permits the
addition of arbitrarily complex passive and active circuit elements
to the generated impedance network, opening the door to signifi-
cant advances in the modeling of bioelectromagnetic phenomena.

Index Terms—Dosimetry, electromagnetic modeling, induced
fields, numerical modeling.

I. INTRODUCTION

T HE impedance method was introduced in 1984 by Gandhi
et al. [1] as a simulation method suitable for quasi-static

electromagnetic radiation problems that arise in the field of bio-
electromagnetics. It is a conceptually simple technique for com-
puting the currents induced in objects by a low-frequency elec-
tromagnetic stimulus. The method is attractive for biomedical
simulations because of its relative simplicity, which is retained
even when applied to nontrivial problems involving spatially
varying magnetic sources, or oddly shaped heterogeneous ob-
jects such as the human body.

As with most simulation methods involving complex objects,
the physical model must be discretized into elementary cells
having a size and shape that are amenable to the mathematics
of the simulation method. In the impedance method, the cells
are simply rectangles in two-dimensional (2-D) problems and
rectangular polyhedrons in three-dimensional (3-D) problems.
After the physical model is discretized into a mesh, or grid, of
these simple cells, an impedance network is constructed using
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lumped impedances derived from the material properties of each
cell. The electromagnetic stimulus present in the physical model
is realized as voltages induced around loops, or currents injected
into nodes, of the network. Standard circuit analysis techniques
are then used to obtain the branch currents within the impedance
network. Finally, the correspondence between impedances in
the network and cells in the discretized model is used to trans-
form the branch currents into values of current density with
magnitude and direction in the physical model.

Traditionally, a uniform grid is used—all cells in the dis-
cretized model are identical in size and shape. The use of a
uniform grid permits a very straightforward, space-efficient
software implementation of the method. However, the number
of cells and, thus, the number of branch currents to be solved
for, is determined by the smallest geometric feature that must
be accurately discretized. As the overall model dimensions
become large relative to the smallest feature within the model,
the impedance network to be analyzed can become extremely
large. For example, a 1-mm resolution, full-body model of an
adult man is available [2]. It contains more than 370 000 000
cells, yet many physical details of the human body remain
inaccurately modeled, if not completely lost, at that resolution.
Improving the resolution by a factor of two would result in an
eightfold increase in cells in the uniform grid. However, even at
1-mm resolution, such a model already represents a nontrivial
computational task for today’s fast, memory-laden machines.

In 1983, Armitageet al. [3] introduced a simulation method
that is essentially the dual of the impedance method. In that
method, the unknowns in the discretized model are voltages
rather than currents, and the passive network components are
admittances rather than impedances. To obtain sufficient accu-
racy in the solution, they adopted a technique of selective mesh
refinement. After the entire model was simulated at the coarsest
resolution, a portion of the model was subdivided to double
the resolution. Around the perimeter of the subdivided region,
values from the previous simulation were interpolated to twice
the spatial density and employed as boundary conditions, and
the subdivided portion of the model was simulated again. This
resolution enhancement was then reapplied to a portion of the
already-subdivided region. This is the type of localized resolu-
tion enhancement that we seek in principle. However, it would
be highly desirable to eliminate both the need to perform mul-
tiple solving steps and the need to explicitly specify the bound-
aries of various mesh resolutions.

More recently, Dimbylow [4] has employed the scalar poten-
tial finite difference (SPFD) method [5], [6] as an alternative
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mathematical formulation for problems in which the impedance
method is applicable. The advantage of the SPFD method here
is that it replaces a vector computation with a scalar one, signifi-
cantly reducing the number of unknowns to be solved. However,
a useful feature of the impedance method is the ability to aug-
ment the basic impedance network using familiar lumped circuit
elements such as voltage or current sources, or arbitrarily com-
plex lumped elements of known voltage–current relation. This
can be accomplished by using the impedance network derived
from the biological body as input to a circuit simulator such as
SPICE. With the SPFD method, this flexibility is lost since one
is no longer working with an impedance network.

In the case we describe now, we have retained the basic
mathematical foundation of the original impedance method
because of its flexibility with regard to material configurations
and applied stimuli. To decrease the computational burden of
the method, we have adapted it to a multiresolution (that is,
nonuniform) discretization. The automated meshing scheme
described herein requires no intervention from the user, and
only a single linear system needs to be solved.

The remainder of this paper is organized as follows: Section II
describes our implementation of a multiresolution mesh gener-
ation scheme; Section III explains how current density is com-
puted; Section IV addresses the link with SPICE, Section V ex-
amines results obtained with multiresolution meshes, and Sec-
tion VI addresses extension of our method to three dimensions.

II. M ULTIRESOLUTION MESHING

We now describe a method of multiresolution mesh gener-
ation for 2-D problems. (The extension of the method to three
dimensions is conceptually straightforward) We will use the fol-
lowing terminology.

• A unit cell is a 1 1 cell. These dimensionless “grid
units” correspond to the smallest resolvable feature size
in a mesh. The elements of any uniform mesh are implic-
itly unit cells.

• A border is a property that is associated with an edge or
corner of a unit cell, and it serves as a marker. Borders are
used to represent all material interfaces, but we may define
additional borders anywhere in the mesh we wish to force
unit cell resolution.

• A border cellis a unit cell that has a border associated with
any of its edges or corners. Only unit cells may be border
cells.

• A region is an enclosed area defined by one or more bor-
ders. A region is not necessarily homogeneous; other re-
gions may be embedded within.

The mathematical formulation of the impedance method does
not require all cells to be of uniform size, nor does it require
cell faces to be rectangular. However, rectangular cell faces are
highly desirable because they permit us to model currents and
material properties in terms of orthogonal components, which
greatly simplify the calculation of the lumped impedances for
the impedance network. Thus, we attempt to reduce the size
of the linear system by utilizing a variety of rectangular cells
within the mesh. Our basic approach is to utilize the smallest
cells along the boundaries that separate different materials, and

Fig. 1. A simple multiresolution mesh.

around localized electromagnetic sources, because these are the
places where the current density can change most abruptly. As
we move farther away from the regions at which there may be
abrupt and significant disturbances in current density, we utilize
progressively larger cells.

To ease the construction and subsequent navigation of the
mesh, we have adopted the following constraints on cell size
and abutment.

• A cell may have an aspect ratio of 1:1, 1:2, or 2:1 only.
• Adjacent cells may differ in size along a given axis by a

2:1 ratio only.
• When a cell shares an edge with a pair of neighbors, the

neighbors must abut at the midpoint of that shared edge.

Fig. 1 illustrates a simple multiresolution mesh. The bold line
represents a boundary between two different materials; thus,
unit cells are placed there. Progressively larger cells are utilized
elsewhere as permitted by the size and abutment constraints ex-
plained earlier.

A. Mesh Construction

Our method of constructing a multiresolution mesh may be
summarized as follows:

1) Create unit cells along material boundaries, around local-
ized electromagnetic sources, and anywhere else within
the model space that one wishes to maximize the accu-
racy of current density estimates.

2) For each region in which border cells have not yet been
assigned a specific material, make this assignment via a
trace of all the borders that enclose, or exist within, the
region.

3) Fill all conductive regions with cells of maximum size.
The details of mesh construction vary, depending upon the

form of input we are given. There are two different forms of
input we want to accommodate: a prediscretized model (for ex-
ample, a digitized representation of a medical X-ray), or a model
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Fig. 2. An illustration of the bricking phenomenon.

described geometrically (for example, a 2-D model described in
terms of straight lines and arcs).

A prediscretized model is fit to a uniform grid, and typically
the input is a file of small integers. An integer’s position in the
file corresponds to a cell’s location in the model, and the in-
teger’s value denotes the material present at that cell location.
Given such a model, Step 1 of mesh construction may be per-
formed simply by scanning the input file in search of integer
pairs that correspond to adjacent cells of differing materials.
Given a geometric description of a model, Step 1 is accom-
plished by using standard algorithms (see, for example, [7]) to
map the geometric entities to an orthogonal grid. In either case,
though, these processes are not directly tied to the representation
or subsequent use of the mesh, so we omit further discussion of
them here.

Step 2 applies only when a model (or a portion thereof) is
described geometrically. With this form of input, materials are
not assigned to cells when they are created in Step 1. After the
first step is complete and, thus, all regions are fully defined, “re-
gion locators” are used to link materials to specific locations.
Such locators must be provided for each bounded region in the
model. Each region is explored outward from the locator coor-
dinate, and every border that is discovered is traced so that its
cells may be assigned to the region material.

When filling regions, we could, in theory, place a cell at any
location, subject to the size and abutment constraints described
earlier. The risk is that a region may be filled in a wasteful
manner, as illustrated in Fig. 2. This “bricking” effect is avoided
by adopting the following cell placement restriction: We place
a cell of size only at locations that satisfy

, where is some
chosen reference point.

We use a simple iterative algorithm to perform Step 3. The
algorithm has the following three phases.

1) Fill each row with 2 2, 2 1, 1 2, and 1 1 cells,
choosing the largest cells allowed by the placement con-
straint just described (in this step, there is no danger of
violating the size and abutment constraints).

2) Iterate over the rows, combining adjacent cells where all
constraints permit, until no more combinations are pos-
sible. Note that we may combine two rectangular cells to
create a square cell, or we may combine two square cells
to create a rectangular one.

Fig. 3. (a) The lower half of the simple multiresolution mesh of Fig. 1.
(b) Detail of cellsa andb used for the computation of the impedance on the
boundary between the two cells and (c) the complete impedance network.

Fig. 4. The concentric cylinder model after uniform discretization (3228
cells).

3) Iterate over the rows, combining adjacent cells without
regard to the placement constraint (the size and abutment
constraints must still be respected, of course), until no
more combinations are possible.

III. D ERIVATION OF THE IMPEDANCE NETWORK AND

ASSOCIATEDCURRENT DENSITIES

Derivation of the impedance network is conceptually no dif-
ferent with a multiresolution mesh than with a uniform mesh,
in that each lumped impedance is derived from portions of two
adjacent cells. To illustrate, Fig. 3 shows the lower half of the
simple multiresolution mesh of Fig. 1 and its corresponding
impedance network. In a straightforward extension of the cal-
culation used in the case of a uniform mesh, impedancein



884 IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 50, NO. 7, JULY 2003

Fig. 5. Simulation results for the uniform mesh of Fig. 4.

Fig.3 (b) is derived from the half-cell and the quarter-cell in
Fig.3 (a) using the formula

(1)

After the network is subjected to the desired stimulus and the
branch currents are obtained, current densities are computed by
appropriately dividing each branch current between the two cell
parts comprising the branch impedance, and then using the di-
mensions and properties of the cell parts to convert from current
to current density. For example, having found branch current

in Fig.3 (b), the current density in the quarter-cellb would be
computed as

(2)

In the case of a uniform mesh, each cell will have a pair of cur-
rent density estimates for each axis. These are typically reduced
to a single current density estimate by averaging the pair of cur-
rent density values for each axis, thus obtaining a vector-valued
current density estimate (nominally located at the centroid of
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Fig. 6. The concentric cylinder model after multiresolution discretization
(1101 cells).

the cell). In a multiresolution mesh, a cell may have two, three,
or four current density values for a given orientation (axis), but
they may still be reduced to a single value in the obvious manner.
For example, current density values for cell partsb, c , andd
would be reduced to a single value

(3)

IV. L INK WITH SPICE

Since the physical model is represented by a network of
lumped elements, it is possible to augment the network with
passive and active lumped elements in order to model complex
electrical excitations and biological responses. A circuit simu-
lator such as SPICE is then used to solve the enhanced network.

To permit the use of these enhanced models, we have ex-
tended our mesh generator so that it can output a SPICE netlist
representing the impedance network. Additional lumped ele-
ments are then added to this netlist. An important consequence
is the possibility of including a variety of source conditions
that are difficult to combine in a single method; any combina-
tion of voltage and current sources can be included with only
small modifications to the mesh generator’s internal data struc-
tures and algorithms employed to derive the impedance net-
work. Equally attractive is the capability of introducing complex
electrical lumped elements without additional modifications to
the method. Voltage and current controlled sources, capacitors,
and so on can be used to model bioelectrical responses.

V. RESULTS

The goal of multiresolution meshing is to achieve a substan-
tial reduction in the number of cells (or, more precisely, the
number of branch currents) without an excessive reduction in

accuracy. In this section, we evaluate the performance of our
method to ascertain our success in meeting this goal.

A. Accuracy

A verification of the accuracy will ideally involve a model
for which an analytical solution is obtainable. The concentric
cylinder test case used by Gandhiet al. in [1] is, therefore, used
here. It consists of a pair of concentric cylinders surrounded
by free space, with material properties chosen to approximate
muscle tissue S m in the inner cylinder and fat

S m in the region between the cylinders. The inner
cylinder is 23 cm in diameter, and the outer one is 32 cm in
diameter. Air surrounds the model and, therefore, there is no
need to discretize the region beyond the outer cylinder. In [1], a
0.5-cm-square cell was employed; we also use this as our unit
cell. The incident radiation is a 1 MHz, tesla magnetic
field directed along the positiveaxis.

For this example, we have chosen to use only the simple re-
sistivity , rather than the more general complex resis-
tivity . The analytical solution for this model
is as follows: Given a cylindrical object of conductivity, and
a magnetic flux density (of radian frequency ) oriented per-
pendicular to that object, the expected current density at a dis-
tance from the object’s centroid has a magnitude given by

(4)

Thus, in our specific case, the current density should be zero
at the origin, increase linearly to a maximum of 14.45 Am at

cm, drop abruptly to a value of 0.36 Am , increase
linearly again to a maximum of 0.50 Am at cm, and
then drop abruptly to zero. The current flow should be perfectly
concentric about the centroid of the model; that is, it should be
perpendicular to any radial line anchored at the centroid.

To quantitatively summarize the deviation of our computed
magnitudes from the ideal, we compute the root-mean-square
(rms) value of the percentage error. For each data point, the per-
centage error is computed as

(5)

and the rms error is then computed as

(6)

To summarize the deviation of the computed current flow di-
rection, we compute the rms value of the deviation in degrees
from the ideal value as

(7)

and then compute the rms error as above.
Uniform and multiresolution discretizations of the concen-

tric cylinder model are shown in Figs. 4 and 6, respectively. To
establish a baseline for comparison, we first obtain the current
density at the centroid of each cell in the uniform discretization;
the results are shown in Fig. 5. We observe good agreement with
theoretical values, except near the material interface. (The exis-
tence of relatively large errors where materials of substantially
different conductivities meet is an artifact of the stairstep dis-
cretization of the material interface. This phenomenon has been
studied in [8].)
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Fig. 7. Simulation results for the multiresolution mesh of Fig. 6.

Our results for the multiresolution mesh of Fig. 6 appear in
Fig. 7 (again, data points correspond to cell centroids). For both
the current density magnitude and direction, the distribution of
data points for the multiresolution grid has the same overall
pattern as for the uniform grid: The widest scattering occurs
just inside the perimeter of the inner cylinder. In other words,
the scattering of data points is not strongly correlated with cell
size; instead, it remains strongly correlated with the proximity
to material interfaces. The rms error has increased by a factor
of about 1.9 for the magnitude, and by a factor of about 2.3 for
the direction.

B. Reduction in Cell Count and Solution Time

The impedance method finds natural application in bioelec-
tromagnetic studies, but the use of high-resolution discretized
models has been hindered by the computational burden they im-
pose. For example, we have taken a magnetic resonance image
and digitized it to a resolution of 0.25 mm (that is, a unit cell is
0.25 mm on a side); this yields a discretized model with 670
861 cells. Of these 576 870 cells, 421 657 represent conductive
material; the resulting linear system of 421 657 equations has
1 682 052 off-diagonal coefficients.
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Fig. 8. A skull cross section after multiresolution discretization. Overall
dimensions are 670� 861.

TABLE I
NORMALIZED CPU TIMES FOR A

SIMULATION OF THE SKULL CROSSSECTION IN FIG. 8

Fig. 8 shows the results of applying our multiresolution
meshing scheme to the discretized model. Only 102 411 cells
are needed to fill the conductive material, and the resulting
linear system has 446 830 off-diagonal coefficients: This is
a 76% reduction in loop equations and a 73% reduction in
off-diagonal coefficients. Table I illustrates the benefit of these
reductions: Overall, the multiresolution mesh brings a 66%
reduction in execution time for this example. (We solved the
linear systems using the successive over-relaxation method,
with a relaxation factor of 1.985.) It should also be noted that
a mesh is typically generated once and then used in multiple
simulation runs. In this case, once the mesh is generated, the
multiresolution impedance method actually achieves an 85%
reduction in execution time.

To illustrate the potential for practical biomedical applica-
tions of the method, the current spread in a retina stimulated by
contact electrodes (necessary for the development of a retinal
prosthesis to restore partial vision to the blind) is computed.

Fig. 9. A human retina after multiresolution discretization. The two dark lines
along the bottom of the mesh represent epiretinal electrodes.

Fig. 10. The computed current density for the multiresolution mesh of Fig. 9
when the epiretinal electrodes are used as a current source.

Significant reductions of computer memory and computational
time are achieved with the multiresolution discretization of the
human retina, shown in Fig. 9. The multiresolution scheme
can accurately model the layered structure of the retina and its
boundary using only 17 062 cells, as opposed to the 204 414
cells necessary for the uniform mesh. This represents a 92%
reduction in cell count. The retina is stimulated with a pair of
finite-resistance epiretinal electrodes (visible at the very bottom
of the mesh) with the left electrode functioning as a current
source and the right electrode as a ground, and SPICE is used
to obtain the branch currents in the impedance network. Fig. 10
illustrates the resultant current density.
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TABLE II
MEMORY REQUIREMENTS(IN MEGABYTES) FOR A SIMULATION OF THE SKULL

CROSSSECTION IN FIG. 8

C. Memory Considerations

If our multiresolution meshing scheme is to be truly practical,
significant reductions in execution time must not require unrea-
sonable amounts of memory.

Table II summarizes the memory requirements for the head
slice simulation. It is not surprising that our multiresolution
mesh structure requires several times more memory than a
uniform mesh: A uniform mesh can usually be represented in
memory at a cost of only 1 byte/cell, while our multiresolution
mesh structure requires 40 bytes/unit cell and 64 bytes/nonunit
cell. However, this per-cell space penalty is muted the fact that
the linear system dominates the storage requirements.

Overall, use of the multiresolution mesh reduces memory re-
quirements by 61% for this example. We note that if we had
performed the simulation with complex impedances, the linear
system would occupy approximately 40% more memory, and
the space required for the multiresolution mesh structure (which
would not change) would become even less significant.

VI. EXTENSION TO THREE-DIMENSIONS

Extending the multiresolution meshing scheme to three di-
mensions is conceptually simple, but more complex to imple-
ment. A brief outline of the difference between the 3-D and 2-D
method is presented here.

In implementing the 3-D multiresolution gridding scheme,
we adhere to the same rules that we outlined in Section II for
the 2-D case. No significant hurdles are encountered in the tran-
sition. However, new complexities arise in deriving the lumped
impedances. For the 2-D case, the lumped impedance corre-
sponding to a region of a cell is related to the region’s length and
width. A lumped impedance representing a 3-D region, how-
ever, is related to the region’s length and cross-sectional area,
and the cross-sectional area of a 3-D region is less obvious
than the simple width of a 2-D region. For example, consider
a cell surrounded entirely by unit cells. The central
cell would have the maximum possible number of neighbors,
and would contribute to 48 different resistances, as illustrated in
Fig.11 (a). If that cell is halved along the– plane, we obtain
the cross section shown in Fig.11 (b). All area in the– plane
must be accounted for by the-oriented impedances, but there is
flexibility in the apportionment of that area among lumped im-
pedances at the corners versus those at edge midpoints. In our
3-D approach, the cross section is divided based on proximity
to cell corners and edge midpoints. In other words, if we draw
lines in the – plane that are equidistant from the two closest

-oriented resistors, we separate the area into the appropriate

(a)

(b)

Fig. 11. (a) Example of slicing in they–z plane to yield cross section.
(b) Cross section showing the spatial orientation ofx-directed resistors relative
to the physical body. Each resistor accounts for the immediately surrounding
area that is enclosed by the boundaries: R1 for A1, R2 for A2, and so on.

sections. For the case that a cell has the maximum number of
neighbors in a given plane, the cross section will be divided as
shown in Fig.11 (b). When a cell has other than the maximum
number of neighbors in a plane, different allocations of the cell’s
cross-sectional area will occur. These are not described here due
to space limitations, and they will be presented in detail in a fu-
ture publication.

When our 3-D multiresolution meshing scheme was applied
to a discretized portion of a human eye socket, the model was
reduced from 2 097 152 unit resolution cells to 1 053 123 mul-
tiresolution cells—a 50% reduction, with corresponding 50%
reduction in computational time.

VII. CONCLUSIONS ANDFINAL REMARKS

The impedance method is a conceptually simple numerical
method for the solution of quasi-static electromagnetic prob-
lems. It is applicable in particular to many common bioelec-
tromagnetic problems, but its use with high-resolution models
has been hampered by the time required to solve the resulting
system of equations. As a first step toward practical simulations,
we have implemented a multiresolution 2-D mesh generation
scheme for the impedance method. Our method is generally ca-
pable of reducing the number of equations to be solved by 50%
to 80%, without a prohibitive increase in the space required to
represent the discretized model. Where the computed results
have been verified against an analytical solution, the error in
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computed current density, although larger than that from a uni-
form mesh, remains small enough to provide useful data from
the simulation.

Further, the proposed method can be linked with SPICE, thus
extending the capabilities of the impedance method.

Extension of our multiresolution scheme to three dimensions
is conceptually straightforward and has yielded promising pre-
liminary results. Our success with the 2-D implementation sug-
gests that significant computational savings may be achievable
by applying a similar approach to 3-D problems.
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