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Fig. 2. Predicted and measured impedance of the annular-loaded shorted
microstrip patch ("r = 1:13; tan � = 0:001; d = 5:0 mm, R = 11:8 mm,
xp = 8:0 mm, yp = 0; xps = 9:3 mm, yps = 0; ro = 0:325 mm,
ros = 0:325 mm, a = 31:5 mm, b = 17:0 mm).

seen from these results very good agreement between experiment and
theory was achieved. The predicted and measured 10-dB return loss
bandwidths were 6.6% and 6.8%, respectively. It should be noted that
to fabricate the antenna, the shorted patch and ring conductors were
etched on 0.254-mm thickRogers 5880 Duroid, which was adhered
to one side of the foam with a brass plate affixed to the other to
provide a ground plane. The electrically thinDuroid layer was not
considered when designing the antenna and may be the contributing
factor to the minor frequency shift between the measured and analytic
results (approximately 1%) as well as the slight closure of the resonant
loop. The copolar and cross-polar patterns in the cardinal planes of
the shorted patch with a concentric ring were measured and the results
were very similar to a conventional microstrip patch antenna mounted
on foam. The measured 3-dB beamwidth in theE andH planes were
84� and 75�, respectively, compared to the predicted values of 86�

and 70�. The measuredH-lane cross-polarization level was always
more than 20-dB below the copolar level.

To put these results into perspective, it is useful to compare the
theoretical characteristics of the novel patch configuration to both the
conventional circular microstrip patch and a shorted patch fabricated
using the same substrate. Table I presents the impedance bandwidth,
gain, and physical size of the three antennas. As can be seen from
these results, the shorted patch with an annular ring has enhanced
bandwidth compared to the other patches and is smaller than the
conventional patch.

IV. CONCLUSION

An annular ring loaded probe-fed circular microstrip patch antenna
with a shorting pin has been analyzed, fabricated, and measured. The
performance of the antenna was accurately predicted using a rigorous
full-wave analysis. The novel parasitically coupled microstrip patch
with a single shorting pin is smaller in size and has greater bandwidth
than a conventional circular microstrip patch antenna examined on the

TABLE I
COMPARISON OF THECHARACTERISTICS OF ACONVENTIONAL

CIRCULAR MICROSTRIP PATCH, A SHORTED CIRCULAR

MICROSTRIP PATCH, AND THE PROPOSEDPRINTED ANTENNA

MOUNTED ON THE SAME SUBSTRATE (d = 5 mm, "r = 1:13)

same substrate. Thus, this printed antenna is suitable for applications
where limited antenna real estate is available and bandwidth is at a
premium.
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On the Optimal Design of the PML Absorbing
Boundary Condition for the FDTD Code

Gianluca Lazzi and Om P. Gandhi

Abstract—In this letter, an analytical method to predict and optimize
the performance of Berenger’s perfectly matched layer (PML) absorbing
boundary condition (ABC) for finite-difference time-domain (FDTD)
simulations is described. The shape of the conductivity in the PML layers
has to be chosen carefully to obtain the best performance for a given
number of layers. The relative error is shown to be the composite of
two distinct effects: the theoretical reflection coefficient given by the
PML layers backed by a metal plane and the second-order error in the
differential intrinsic in the FDTD formulation. A theoretical expression
to evaluate this error as a function of the number of PML layers and
the shape of the conductivity is given, and the result is compared to that
obtained for several FDTD test cases. The good agreement of the shapes
of the theoretical and numerically derived curves allows the use of the
theoretical formulation to optimize the PML region as a function of the
shape of the conductivity, resolution, and number of layers.

Index Terms—FDTD methods.

An independent version of the Berenger’s perfectly matched layer
(PML) boundary condition [1] was implemented in a finite-difference
time-domain (FDTD) code. The shape of the conductivity for the
PML layers was chosen similar to [1], but with values obtained from
the following formula

�i = �0
i
n+1

� (i� 1)n+1

n+ 1
(1)
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Fig. 1. The local error at the outer boundary of thez component of the
electric field for the test case presented in [1] and [2] obtained with the use of
three different boundary conditions: 16-layer PML, RT, and Mur second order.

where i is the cell number in the PML layer(i � 1) andn is the
order of variation of the shape of the conductivity.

First, to verify the accuracy of our PML boundary, the same test
case presented in [2] and [3] was considered. The local error obtained
in a vacuum space of 100� 50� 100 cubical cells terminated with
a 16-layer PML is compared with that obtained by the use of Mur
second-order boundary condition [4]. As a new feature, the local
error obtained with the retarded time (RT) boundary condition [5]
for the same test case is also considered. A pulse source centered in
the vacuum space for 100 time steps of simulation was considered
exactly as prescribed in [2]. Fig. 1 confirms the results presented
in [3]. Furthermore, it is shown that the RT absorbing boundary
condition (ABC) gives similar results to those obtained with Mur
second-order, both characterized by a local error considerably higher
than that for the 16-layer PML. The effects of varying the number
of PML layers, as well as the order of variation of the shape of the
conductivity, were investigated. For this test case, we considered the
use of four, six, eight, and sixteen layers of PML with various orders
n between 1.6 and 3.4. Even the thinnest PML boundary (four layers)
for a certain range ofn, gave results one order of magnitude more
accurate than those obtained with Mur and RT boundaries.

To better present the theory introduced in this paper, a Hertzian
dipole sinusoidally excited with electric field amplitude of 0.1 V/m
at a frequency of 835 MHz and placed in the center of a 50�

50 � 50 cells grid of resolution 2� 2 � 3 mm was considered.
Similar to the previous test case, a bigger mesh, i.e., such that the
boundaries cannot be reached by the field, was considered, and the
simulation run for 120 time steps, with�t = �=(2c0) where� = 2

mm and c0 is the speed of the light in vacuum. The average of
the local error on the border line of the mesh is plotted in Fig. 2(a)
for the various boundaries and different values of the ordern for
the conductivity(1:6 � n � 5:2). It is interesting to observe that
even though the grid resolution is extremely high, it is possible even
with a four-layer PML to improve the performance by more than
one order of magnitude relative to Mur and RT ABC’s. Furthermore,
as can be seen, depending on the number of layers used for the
PML, the best performance of the boundary can be achieved within
a small range ofn: both lower values and higher values forn gave
nonoptimal boundary performance. This can be explained observing
that the error can be considered to be the composite of two distinct
effects: the theoretical reflection coefficient given by the PML layers

(a)

(b)

Fig. 2. (a) Average of the local error of thez component of the electric field
at the outer boundary of a 50� 50 � 50 mesh considered for the Hertzian
dipole test case as a function of the ordern of variation of the shape of the
conductivity for all of the considered boundary conditions (PML, RT, Mur).
(b) The numerically computed curves for the estimation of the best ordern

for the various PML boundaries.

backed by a metal plane and the second-order error in the differential
intrinsic in the FDTD formulation. The first effect is dominant for
low values ofn, while the second one is dominant for high values
of n. To obtain a more convenient pseudoanalytical formulation, we
will consider the continuous form of (1)

�(x) = �0

x

�
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: (2)

where� is the cell size considered for the PML layers.
The theoretical reflection coefficient due to a PML layer with�

given by (2) is, therefore

R = e
�2Z �(x)dx (3)

with Z0 being the intrinsic impedance of vacuum andm the number
of PML layers.

With respect to [1, (34)], the limits of the integral are set,
respectively, to 0.5� and (m � 0:5) �, giving the possibility to
obtain, with (3), a reflection coefficient closer to that one would
obtain considering the stair-step approximation of the shape of the
conductivity in accordance with (1).

The error intrinsic in the FDTD formulation is instead proportional
to a factor(�=2)2=6 to the third derivative of the field. This error
should be integrated overx to obtain the overall contribution of the
PML layer

jEFDTDj =
(�=2)2

6

(m�0:5)�

0:5�

@3

@x3
e
�Z �(x)x

dx (4)

where, again, the integral limits are chosen for a better matching with
the stair-step approximation actually used in the FDTD.

For the composite error due to the presence of the PML boundary,
we can write therefore

E = R+ jEFDTDj: (5)

In Fig. 2(b), (5) is plotted as a function ofn for the various PML
thicknesses. As can be seen, the families of curves plotted in Fig. 2(b)
reproduce in the shape very well the curves obtained for the dipole
test case. Particularly, it should be noticed as the best value ofn for
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each PML boundary can be predicted extremely well with the use
of the theoretical curves. The ordinate axes of Fig. 2(a) and (b) are
different in values due to the fact that Fig. 2(a) gives a relative error
that, therefore, depends upon the intensity of the source, distance of
observed points from the source, and the monitored quantity (in this
case,Ez).

Furthermore, the error obtained by (4) is likely to be overestimated,
having considered a maximum source of error by means of the only
first term of the series that should be considered to evaluate the overall
error contribution of every single cell, and considering the error of
all the layers given simply by a sum of maximum errors. Moreover,
the theoretical effect is relative to a single-dimensional problem,
instead of the three-dimensional results presented in Fig. 2(a) that
are likely to have a better behavior allowing any of the reflected
waves the possibility to be absorbed by intervening PML layers.
The same analysis was also performed using, instead of the integral,
a more correct expression that should consider a series of discrete
contributions due to every single layer. In such a case, (3) and (4)
become

R = e
�2Z � � (6)

jEFDTDj =
(�=2)2
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i e
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and we obtained curves almost identical to those reported in Fig. 2(b).
Several other test cases were also tried, and a similar agreement

was always observed. The importance of this approach is extreme in

predicting the best order of variation for the shape of the conductivity
to design a PML layer to be used as the ABC in FDTD codes.
Moreover, as can be deduced from (3) and (4), the relative errors are
not functions of frequency, but only of the cell size and the number of
PML layers. Therefore, a class of universal curves could be derived
having as variables the ordern, the number of PML layers, and the
grid cell size.
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