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Introduction

Berenger’s Perfect Matched Layer (PML) {1] is highly effective as an absorbing boundary
condition (ABC) for the FDTD code. Several contributions highlighting its superior
performance in many different applications have been published in the last two years.
However, a careful choice of the shape of the conductivity to be used in the PML layers is
necessary in order to obtain the best performance. In fact, while the PML material is
theoretically reflection-less, in practice a numerical error depending on the grid cell-size
for propagating waves should be taken into account. It is shown that the overall
performance of the PML as ABC for the FDTD code depends on the reflection of the
waves reflecting from the backing metal plane and on a numerical error depending upon
the difference of the conductivity between two adjacent cells. An analytical expression to
describe this error has been derived, and an inversion theory approach has been used to
optimize the conductivity profile. Lastly, the effect of using PML in bioelectromagnetic
simulations is discussed.

Optimization of the PML
The PML boundary condition has been implemented in the FDTD code with a
conductivity profile given by
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with Gg a constant, i the cell number in the PML layer, and n the order of variation of the
conductivity. The performance of the PML boundary has been tested following the same
approach as described in [2]. Performance similar to that presented in [3] has been
obtained, with the PML ABC capable of giving errors that are three to four orders of
magnitude less than those obtained using the Mur 2™ order ABC [4]. Moreover, we have
found that the performances of the Retarded Time [S] ABC are comparable to those of
the Mur 2™ order. For our evaluation, we have considered an infinitesimal dipole placed
in the center of a 50x50x50 cells mesh, at a frequency of 835 MHz, with cell size
6=2mm. The simulations have been run for 120 time steps, and we have considered the
average of the local error along a line parallel to the boundary for several different cases
[6]. The overall error along this line has been found to be given by the sum of the
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theoretical reflection of the PML backed by a metal plane and the third order error
intrinsic in the approximation of the derivatives in the FDTD algorithm [6]. Therefore,
the error can be expressed by
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where Zj is the intrinsic impedance of vacuum, m the total number of PML layers used
for the absorbing boundaries, and o(x) is the continuous form of (1), i.e.,
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In (2), the error in the differential approximation has been integrated over the PML
thickness to obtain the overall effect of the boundary. The limits in the integral have been
chosen in order to take into account the stair-step approximation of the FDTD. It has been
found that (2) is reasonably accurate in predicting the best order n to be used in (1). The
average of the local error on the border line of the mesh plotted in Fig. 1a for the various
boundaries and different values of the order n for the conductivity (1.6 < n < 5.2) can
be compared to that in Fig.1b, obtained by using (2). Alternatively, it has been found to
give accurate results the discrete formulation of (2), that is
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The interesting feature of (2) and (4) is that it is possible to search for alternative profiles
of the conductivity by using an inverse theory approach. In particular, the Newton method
can be used by appropriately altering the shape of the conductivity in an iterative
algorithm. It is possible, therefore, to calculate from each iteration the Frechet derivative
of the error given by (2) with respect of a vector variation of the profile of the
conductivity in the PML. An alternate o(x) that minimizes the error given by (2) can then
be found in a few iterations of the Newton method. This algorithm has been successfully
applied, and performances better than, or comparable to, the best performance obtained
by using a parabolic-like conductivity profile given by (1) have been obtained.

Application to Bioelectromagnetic Simulations

Although the PML ABC has been shown to be more accurate than Mur or RT ABCs, few
results are available in the literature examining its use for realistic applications. In this
paper, the optimized PML boundary condition has been applied to some
bioelectromagnetic simulations in order to analyze the effect of having an extremely
accurate ABC for these cases. One interesting application is the calculation of the
radiation pattern and induced specific absorption rates (SARs) of mobile telephones in the
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presence of the human head. For these simulations, we have found that the PML ABC
gives results within 1% compared to those obtained by using Mur or RT ABCs. As an
example, Fig.2 shows a comparison of the radiation pattern of a 835MHz cellular
telephone in the presence of the human head comparing RT and PML as ABCs. As can be
seen, the two results are quite similar.

The PML has been used also for low-frequency applications. Fig.3, for example, shows
the electric field components in a 2/3 muscle equivalent sphere (6=0.35 S/m) illuminated
by a 20 MHz plane-wave (Ei,=! V/m), scaled to 60 Hz. In this case, PML provides
slightly better results that compare well with the analytical solution. The PML boundary
required very similar computational time and memory to the RT ABC for these
simulations, as only l-cell air space was required between the object and the PML
boundary, whereas 9 cells were used for the RT boundary

Conclusions

An optimization technique for the PML ABC has been presented. The analytical approach
to predict the theoretical reflection introduced by a PML backed by a metal plane has
been used to determine optimized profiles for the conductivity of the PML material. The
optimized PML has been used for several bioelectromagnetic applications, and only small
differences have been found to date between the results obtained by using this boundary
and traditional boundary conditions like RT or Mur.
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Fig.1. (a) Average of the local error along a line parallel to the boundaries as a function
of the order n; (b) the numerically computed curves for the estimation of the best order n
for the various PML boundaries
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Fig.2. Comparison of the radiation patterns of an 835MHz cellular telephone obtained
by using RT and PML boundary conditions
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Fig.3. Comparison of the electric fields induced in a 2/3 muscle equivalent sphere
illuminated by a 60Hz (scaled from 20MHz) plane wave of Ej,.=1 V/m for RT and PML

boundaries.
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