
Abstract

LO, HUNGYING. Electromagnetic Field Calculation for a High-Frequency Wave

in a Lossy Transmission Line. (Under the direction of Frank Kau�man)

The objective of this research is to calculate electromagnetic �eld distribution on the

cross section of a lossy transmission line in a Multi-Chip Module(MCM) for predicting

the performance of a high-frequency wave propagation in the module. Our approach

is to use the hybrid edge/nodal Vector Finite Element Method (VFEM) and apply

the 3-component Measured Equation of Invariance (MEI) boundary condition to the

calculation. By using the hybrid edge/nodal VFEM the relation between propaga-

tion constant and the �eld distribution on the cross section of the transmission line is

obtained, and by using 3-component MEI boundary the �eld distribution of an open

transmission line is calculated with the limited computer resources. The propagation

constant of a lossy transmission line with coated conductor strip is also calculated.

This 3-component MEI boundary condition simulates the �eld propagation on the

arti�cial boundary for the electromagnetic �eld excited from the surface charge, from

the current distribution in the axial direction, and from the current distribution on

the transverse plane of the transmission line. Numerical experiments are performed

to test the numerical calculation with 3-component MEI boundary condition by com-

paring calculated transmission loss with the measured data. At high frequency, the

calculated results are about 10% lower than the measured data. That's because the
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ground loss is not included in the calculation.
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Chapter 1

Introduction

With the rapid improvements in integrated circuit (IC) technologies, the intercon-

nections between the ICs are increasingly limiting the performance of VLSI systems.

The IC-packaging technologies are also moving from the printed circuit board to the

multi-chip module (MCM). The MCM technologies reduce the wire routing length

between ICs and increases the complexity of interconnection. The new IC-packaging

technologies can improve VLSI system performance, but they are still in need of

Computer-Aided Design(CAD) tools to evaluate the best structure of the transmis-

sion line in the MCM. In order to calculate the parameters more accurately for CAD

tools, we need to calculate the wave propagation in the transmission line in the MCM

in terms of the electromagnetic �eld at high operating frequency and consider con-

ductor loss and dielectric loss as important factors for the propagation performance.

All of the acronyms used in this work are de�ned in Appendix A.
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1.1 Motivation for This Study

In order to accommodate the complexity of interconnection and manufacturing tech-

nique, the width of the connecting wire is almost the same as the thickness of the wire

as shown in Figure 1.1. The cross-section area of the wire is so small that we cannot

Y-signal Layer

X-signal Layer

2-D Cross Section

Ground PlaneGround PlaneGround PlaneGround Plane

Ground Plane

IC

C4

Figure 1.1: The cross section of a multi-chip module

neglect the conductor loss especially for high clock-rate operation. The high speed

system needs accurate models to predict system performance and to generate system

design rules for the wire routing. Due to the lack of accurate models to optimize the

operating performance, the CAD tools on the market for designing the package only

apply the limitations of manufacturing technologies and low-frequency circuit models

to the rule generation. The manufacturing technologies set up the minimum distance

between two connecting wires and the width of the connecting wire to reduce the

chance of short circuit or open circuit. The quasi-static assumption and the calcula-

tion neglecting the conductor surface charge[37] will not be accurate for high-speed
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signals with lossy conductors because their assumptions are based on low operating

frequency and low conductor loss. To the best of our knowledge, there is no existing

accurate model for the lossy transmission lines within a MCM that enables us to

develop design rules and to monitor the signal performance in the MCM.

For the dynamic models, the inductance per unit length, capacitance per unit

length, transmission loss, and the characteristic impedance can be calculated from

the 3-dimensional electric �eld distribution on the cross section of the transmission

line. We calculate the electromagnetic �eld distribution for a wave in a transmission

line by using the hybrid edge/nodal Vector Finite Element Method (VFEM) with a

modi�ed 3-component Measured Equation of Invariance (MEI) boundary condition

and predict the lossy propagation constant.

1.2 Original Contributions

� The Measured Equation of Invariance (MEI) boundary condition is modi�ed

and applied to hybrid edge/nodal VFEM.

� The three components of the electric �eld vector on the cross section of the

lossy strip conductor of the transmission line are calculated.

� The electromagnetic �eld distribution, which is a function of the frequency, in

the dielectric of a lossy transmission line is calculated.

� The current distribution in the strip conductor of a lossy transmission line is

calculated.

� The transmission loss for a transmission line in an MCM is obtained by calcu-
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lating the complex propagation constant of the lowest propagation mode.

1.3 Dissertation Overview

A new approach for calculating the electromagnetic �eld on the cross section of

stripline using the hybrid edge/nodal VFEM with a modi�ed MEI boundary con-

dition is described in this dissertation.

Since the cross section of the interconnection conductor inside the MCM is very

small and the propagating frequency can be several Giga Hertz (GHz), the loss from

the conductor cannot be neglected. Therefore, the edge/nodal VFEM, which is based

on dynamic assumption1, is used to calculate the �eld distribution inside the conduc-

tor.

The MEI boundary condition has only been used for scalar �eld calculations or

2-dimensional vector �eld distributions due to a scattering source. We extended the

MEI boundary condition to a 3-component vector �eld calculation for the propagation

modes in a realistic thin-�lm transmission line. The wire thickness is treated as a

design parameter, and the conductor loss is an important factor to determine the

electromagnetic �eld distribution.

Chapter 2 reviews the previous work on numerical methods and the boundary

conditions for calculating the electromagnetic wave propagation in a transmission line.

Various numerical methods are discussed as well as the boundary conditions. The

relative merits and shortcomings of these numericalmethods and boundary conditions

are based on the geometry of the transmission lines.

1Dynamic assumption is described in section 2.1.2
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Chapter 3 describes how the vector Helmholtz equation is used in the hybrid

edge/nodal VFEM. The detailed derivation of the eigenvalue matrix equation used

for the propagation constant is given. The original contributions begin in Chapter

4 which presents the 3-component MEI boundary condition for vector �eld distribu-

tion calculations. The construction of of the matrix equation required for the hybrid

edge/nodal VFEM with the 3-component MEI boundary condition is discussed in

Chapter 5. Chapter 6 contains the calculation results for di�erent geometries of

transmission lines and compares them with the measured data. The summary and

possible future research topics are described in Chapter 7. The computer code devel-

oped during this study is outlined in Appendix C.
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Chapter 2

Literature Review

The characteristics of wave propagation along a transmission line are evaluated by

the electromagnetic �eld distribution over the cross section of the transmission line.

Since the propagation characteristics of the signal are very important for designing

a multi-chip module (MCM), many e�orts have been spent on the calculation. No

analytical method has been used to calculate the electromagnetic �eld distribution on

the cross section of a lossy transmission in an MCM, but numerical methods are used

to calculate the approximated �eld distribution. The accuracy of the calculation de-

pends on the assumptions for approximation and the numerical methods used for the

calculation. The assumptions for approximation can simplify the problem, but make

the calculation applicable only for cases in which the assumptions are not violated.

Depending on the calculated structure and the style of output data, the choice of

numerical methods plays an important role for computing e�ciency and the accuracy

of the computed results. For open structures, an arti�cial boundary condition is often

needed for numerical methods to truncate the in�nite space.

In this chapter, the assumptions for approximation, the numerical methods, and
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the boundary conditions will be reviewed and discussed.

2.1 Assumptions

The electromagnetic �eld for a propagating wave in a transmission line usually are

calculated by making quasi-static assumption or dynamic assumption.

2.1.1 Quasi-Static Assumption

The quasi-static assumption neglects the conductor loss by assuming pure TEM prop-

agation in the transmission line, and the distribution of electromagnetic �elds is only

in dielectric. The calculation of the electric charge on the surface of the conductor is

independent from the calculation of the electric current distribution on the conduc-

tor surface, and vice versa. The per-length capacitance[11, 31, 33] or the per-length

inductance[24] can be calculated independently by the geometry of the transmission

line. Therefore, it is easier to extract the discontinuity e�ect using the quasi-static

assumption. In 1987, Wang, Harrington, and Mautz[35, 36] used the quasi-static

assumption to calculate excess capacitance and inductance of a simpli�ed cylindrical

via which connects two cylindrical striplines. They assumed that the operating fre-

quency is close to zero and the conductor is a perfect conductor. The propagation

modes are assumed to be pure TEM, which is only true for low frequency wave and

zero conductor loss. As frequency increases, the electrical dimensions of the struc-

ture being analyzed grow larger. The dimensions of the structure are expressed in

wavelength. The increase in the electrical dimension of the structure decreases the

accuracy of the quasi-static assumption.
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2.1.2 Dynamic Assumption

The dynamic assumption is based on the 3-dimensional vector Helmholtz's equation

using the medium properties of the materials from which transmission line is made.

The electromagnetic �eld propagation is based on the wave equation speci�ed by

the material properties. The propagation modes exist when the electromagnetic �eld

distribution satis�es both Helmholtz's equation and the boundary condition. The

calculation of the propagation modes for a lossy transmission line in an MCM should

be treated as non-TEM wave propagation by using dynamic assumption because the

electric �eld in the axial direction is not negligible for the small cross-section area of

the strip conductor.

2.2 Numerical Methods

Many numerical methods have been developed to analyze the electromagnetic �eld

distribution on the strip line. However, each method is designed for the analysis of

a particular type of problem. The calculations of wave propagation in a microstrip

transmission line are generally by two classes of methods: time domain, and frequency

domain.

2.2.1 Finite-Di�erenceMethod and Transmission Line Matrix Method in

Time Domain

In order to understand how the wave propagates in a transmission line, the Finite-

Di�erence Time-Domain (FD-TD) method and Transmission Line Matrix (TLM)

method can be used to trace how the wave propagates outside the conductor. By
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applying an approximate condition that the wavelength, �, is much larger than the

grid dimension l [29], the fundamental formula for both methods are obtained from

Maxwell's equations:

5�E = ��@H
@t

(2.1)

5�H = �E + �
@E

@t
(2.2)

The solution to these equations is the �eld distribution in space under a certain time

instant. The input sources are time-sampled analog signals.

The wavelength in the conductor is much smaller than the wavelength in the di-

electric area. Therefore, these two time domain methods can only be used to calculate

electromagnetic �eld distribution in the dielectric area, and the conductor is treated

as a perfect conductor in which no electromagnetic �eld exists[18, 30, 39]. In order

to obtain the frequency-domain data for CAD tools[13, 38], some authors performed

Fourier Transform on the steady-state electromagnetic �eld distribution calculated

by applying sinusoid excitation sources continuously. The computation time needed

for the electromagnetic �eld propagation changing from a transient state to a steady

state makes the electromagnetic �eld calculation very costly. Therefore, these time-

domain methods are more often used to graphically illustrate the �eld propagation

than to obtain data for designing an MCM.

2.2.2 Finite Element Method

The calculation in the frequency domain will generate the data directly to be used

by CAD tools and without the limit of the grid dimension, which can be larger than

the wavelength for the electromagnetic �eld distribution in a lossy conductor. Finite

elementmethod (in frequency domain) is the most versatile method[17] for calculating
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the �eld distribution in the irregular shape dielectric and conductors compared to

other numerical methods (�nite di�erence method, TLM method, etc.). Since the

cross section of an interconnection path inside the MCM is small and the propagating

frequency can be several Giga Hertz(GHz), the loss from the conductor cannot be

neglected. Because the transmission loss is mainly from the conductor, VFEM is a

good choice to calculate the electromagnetic �eld distribution on the cross section of

a lossy transmission line.

In 1992, Koshiba and Inoue[14] proposed a VFEM with hybrid edge/nodal el-

ements to calculate the electric �eld on the cross section of a lossy strip line in an

MCM. Their method rigorously evaluates propagation characteristics of a lossy trans-

mission line, but they used a perfect conductor as the outer boundary condition of

the VFEM calculated volume for an open structure. Many layers of elements are re-

quired between the conductor surface and the perfect conductor boundary condition

for reducing the error caused by the truncation of the �eld distribution on the perfect-

conductor boundary condition. Because of limited computer memory, the published

papers showed only the transmission loss of the transmission line without showing

the �eld distribution in the conductor. If a better boundary condition can be applied

to the calculation by VFEM, the �eld distribution can be calculated more accurately

for wave propagation in a transmission line.

2.3 Boundary Conditions

Due to the limits of computer memory, the �nite element method cannot be used to

calculate the �eld distribution in an open area unless we put an arti�cial boundary

condition to limit the calculated area. The published boundary conditions are in
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two categories: local boundary conditions, and global boundary conditions. The

choice of the boundary conditions for numerical calculation a�ects the accuracy of the

calculated results and a�ects the amount of resources (computing time and hardware

memory) needed for the calculation.

2.3.1 Global Boundary Conditions

The global boundary conditions either make the outer-boundary elements fully cou-

pled by using a series of matrix calculations for keeping the electromagnetic wave out-

going on the boundary[32] or generate external layers of elements, which are full cou-

pled with inner elements, to have the electromagnetic wave continuously distributed

to the boundary and out to in�nite space[19]. The advantage of global conditions is

that the boundary can be placed very close to the conductor surface, then the size of

grid matrix for inner elements will be small. There are two main disadvantages for

global conditions. First, the calculation for the coupling matrix between inner ele-

ments and outer elements is almost the amount of calculation for solving the whole

matrix equation. Second, the grid matrix will be much denser than the the grid

matrix by using local boundary conditions.

2.3.2 Local Boundary Conditions

The local boundary conditions consist of local operators or �nite di�erence equations

to absorb the outgoing electromagnetic wave on the boundary or to simulate the

in�nite space for the wave excited from the conductor surface. These boundary

elements are not coupling with the inner elements. Several layers of elements are

needed to bu�er between the conductor surface and the boundary elements in order
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to reduce the incident angle on the arti�cial boundary for the electromagnetic �eld

induced from the current distribution on the conductor surface[27, 28]. In 1994, Mei et

al.[20] proposed a rigorous local method, the Measured Equation of Invariance (MEI)

method, to model the boundary condition of an open structure for �nite element

method or �nite di�erence method. It is based on the concept that the local �nite

di�erence equations can be written at boundary nodes with the geometry information

being incorporated into the equations. The MEI method allows one to place the

FEM boundary very close to the conductor surface; thereby more computer memory

is available to calculate the �eld distribution inside the lossy conductor.

2.4 Summary

In order to calculate the electromagnetic �eld distribution accurately with limited

computer resources, it is very important to choose an e�cient numerical method with

a suitable boundary condition to truncate the in�nite space. The loss from the strip

conductor in an MCM causes the electric �eld to be induced in the axial direction.

Therefore, the �eld distribution for a wave propagation along a transmission line in an

MCM needs to be calculated by making dynamic assumption due to the conducting

loss. The hybrid edge/nodal VFEM is designed to handle the lossy microstrip in an

MCM, but the perfect conductor boundary condition which just assigns zero �eld on

the boundary was used for this numerical method. Although the global boundary

conditions can couple the �nite element method well, the eigenvalue equation in the

hybrid edge/nodal VFEM is not compatible with the global boundary conditions. The

MEI boundary condition can be placed very close to the conductor without a�ecting

the accuracy, but prior to this work it was used only for calculating 2-dimensional

12



scattering of a TE or TM waves. The goal of this work is to calculate the transmission

loss of a high speed transmission line by using 3-component MEI boundary condition

for the the hybrid edge/nodal VFEM.
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Chapter 3

Field Calculation by Hybrid

Edge/Nodal VFEM

By using the VFEM with edges and nodes in each mesh cell, the complex propagation

constant can be calculated along with the distribution of the electromagnetic �eld on

the transverse plane and in the axial direction. The hybrid edge/nodal VFEM is

a rigorous method in calculating the propagation modes for a lossy transmission

line, but the method is lacking a proper boundary condition to reduce a calculated

area for electromagnetic �eld distribution. Using a perfect conductor wall as the

boundary condition[3] requires the calculated area large enough to cover the ground

plate. Because of limited computer memory, the boundary condition is forced to be

placed close to the conductor surface, and the partition for the cross section of the

conductor strip is very coarse. Therefore, the hybrid edge/nodal VFEM with perfect

conductor wall as its boundary condition cannot accurately calculate the current

distribution in the loss conductor and predict the transmission loss.

In order to explain more clearly how the hybrid edge/nodal VFEM can be used
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to calculate the propagation modes of a lossy transmission line, we will describe the

method without the boundary condition in this chapter. Because we want to see how

the current is distributed in the conductor, the electric �eld distribution is used as

the variable for the Helmholtz's equation to be solved by using the hybrid edge/nodal

VFEM.

3.1 Formula

In a source-free lossy medium, the homogeneous vector Helmholtz's equation for the

electric �eld is

5�
�
5� ~E

�
� k2c

~E = 0 (3.1)

where the wave number kc is a complex number for the conducting region,

kc = !
p
�c�c

= !
q
�r�0�̂r�0 (3.2)

where �r is the relative permeability of the region of interest, �̂r is the complex relative

permittivity of the region of interest, �0 and �0 are the permeability and permittivity

in free space. Substituting Equation (3.2) into Equation (3.1), we get the vector

Helmholtz's equation

5�
�
5� ~E

�
� k20�r �̂r

~E = 0 (3.3)

where k0 is the wave number in free space, and it equals to !
p
�0�0.

For a conductor, the electric �eld and the magnetic �eld are related according to

the time-harmonic Maxwell's equation,
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r� ~H = ~J + j!�0 ~E

= � ~E + j!�0 ~E

= (� + j!�0) ~E

= j!(1 � j
�

!�0
)�0 ~E (3.4)

where ~J is the density of the conduction current, � is the conductivity of the conduc-

tor, and ! is the radian frequency. In order to simplify Equation (3.4), we de�ne the

complex relative permittivity of a conductor as

�̂r = 1 � j
�

!�0
(3.5)

and for a lossy dielectric it can be written as

�̂r = �r (1 � j tan �) (3.6)

where �r is the relative permittivity of the dielectric, and tan � is the loss tangent. For

a lossless dielectric, the loss tangent is zero. The VFEM functional of the Helmholtz's

equation on the 2-dimensional cross section is given by

F =
Z Z




h
(5� (5� ~E)� k20�r�̂r

~E) � ~E�

i
dxdy

=
Z Z




h�
5� ~E

�
�
�
5� ~E

�
� � k20�r�̂r

~E � ~E�

i
dxdy; (3.7)

where 
 is the calculated area on the cross-section plane, and the superscript � means

the complex conjugate.

In order to apply VFEM to the �eld calculation, we assign a number of hybrid

edge/nodal triangular cells to cover the cross section of the strip conductor in the
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MEI Boundary

Conductor

2

3

2

Ez

Ez

Ez

Et

Et

Et
♦

♦

♦
1

1

3

VFEM Cell

Ground

Ground

X-signal layer

Y-signal layer

Figure 3.1: The 2-dimensional cross section of a stripline with triangular cells for

VFEM calculation

bottom left corner of Figure 1.1, and the partition is illustrated in Figure 3.1. The

edge elements, fEtg, of the VFEM cell on the right-hand side of Figure 3.1 are

~Et1,
~Et2, and

~Et3. The node elements, fEzg, of the cell are ~Ez1 ,
~Ez2, and

~Ez3 . The

distribution of the electric �eld in the x, y, and z directions for the enclosed area of
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each cell is determined by the �eld strength of the edge/node elements in the cell as

E =

2
6666664

Ex

Ey

Ez

3
7777775
=

2
6666664

fUgTfEtge
fV gTfEtge
jfNgTfEzge

3
7777775

(3.8)

where fUg and fV g are the shape-function sets for the edge elements, fNg is the

shape-function set for the node elements, T is the transpose operator for the vector,

and j is the square root of �1. The factor j is used to time the shape function of

node elements, because the �eld in the axial direction is orthogonal to the �eld in the

transverse direction.

3.2 Propagation Constant

We take 
 as the complex propagation constant. The derivative of the shape functions

in the axial direction for each small cell in Figure 3.1 is 
 times the shape function.

The real part of the complex propagation constant is the attenuation constant. The

transmission loss (dB/mm) is related to the attenuation constant �(m�1) by

Transmission Loss(dB/mm) = � log10 e
�2�

= 2� log10 e
1

= 8:69 � 10�4�(m�1) (3.9)

Therefore, the transmission loss (dB/mm) equals the attenuation constant, �(m�1),

times 8:69 � 10�4.
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3.2.1 Helmholtz's Equation

In order to derive the Helmholtz's equation in terms of the complex propagation

constant and the shape function, we take the curl of ~E given by Equation (3.8),

5� ~E = 5�
�
fUgTfEtge; fV gTfEtge; jfNgTfEzge

�

=

 
jfEzgTe

@fNg
@y

� fEtgTe
@fV g
@z

; fEtgTe
@fUg
@z

� jfEzgTe
@fNg
@x

;

fEtgTe
@fV g
@x

� fEtgTe
@fUg
@y

!

=

 
jfEzgTe

@fNg
@y

+ j
fEtgTe fV g;�j
fEtgTe fUg � jfEzgTe
@fNg
@x

;

fEtgTe
@fV g
@x

� fEtgTe
@fUg
@y

!
(3.10)

and represent E � E� in terms of shape functions as

E � E� = fUgTfUg fEtgTfEtg� + fV gTfV g fEtgTfEtg� + fNgTfNg fEzgTfEzg�

(3.11)

where the superscript � means the complex conjugate of the vector.

Substituting Equation (3.10) and Equation (3.11) into Equation (3.7), we get the

functional of the Helmholtz's equation in terms of shape functions and edge/nodal

elements as

F =
Z Z



�
2

h�
fUgTfUg+ fV gTfV g

�
fEtgTfEtg�

�

�
fUgTfNxg+ fUgTfNxg

�
fEtgTfEzg�

�

�
fUgTfNxg+ fUgTfNxg

�
fEzgTfEtg�

+(Uy � Vx)
T
(Vx � Uy) fEtgTfEtg�

�k20�r~�r
�
fUgTfUg+ fV gTfV g

�
fEtgTfEtg�

�k20�r~�rfNgTfNg fEzgTfEzg�
i
dxdy (3.12)
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In order to get the electric �eld distribution on the �nite element edges, we sub-

stitute Equation (3.8) into (3.7), and minimize the VFEM functional by

@F

@Ei

= 0; i = 1; 2; 3; � � � ; N (3.13)

where N is the total number of edges. This results in the following matrix equation:

2
664 [Ktt]� 
2 [Mtt]

�
 [Kzt]

�
 [Ktz]

[Kzz ]

3
775
2
664 fEtg
fEzg

3
775 =

2
664 f0g
f0g

3
775 (3.14)

with

[Ktt] =
X
e

Z Z
e

h
�̂rk

2
0fUgTfUg+ �̂rk

2
0fV gTfV g

i
dxdy

+
X
e

Z Z
e

h�
fUygT � fVxgT

�
(fVxg � fUyg)

i
dxdy (3.15)

[Ktz] =
X
e

Z Z
e

h
fUgTfNxg+ fV gTfNyg

i
dxdy = [Kzt] (3.16)

[Kzz ] =
X
e

Z Z
e

h
�̂rk

2
0fNgTfNg � fNxgTfNxg � fNygTfNyg

i
dxdy (3.17)

[Mtt] =
X
e

Z Z
e

h
fUgTfUg + fV gTfV g

i
dxdy (3.18)

where fUyg � @fUg=@y; fVxg � @fV g=@x; fNxg � @fNg=@x; and fNyg � @fNg=@y:

3.2.2 Eigenvalue Problem

Separating the electric �eld strength into transverse and axial components in Equa-

tion (3.14), we get the following matrix equations:

� [Ktt] fEtg+ 
 [Ktz] fEzg+ 
2 [Mtt] fEtg = f0g (3.19)


 [Kzt]fEtg � [Kzz ] fEzg = f0g (3.20)
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Eliminating the axial component from these two matrix equations, we get the follow-

ing equation which is solved for 
.

[Ktt] fEtg � 
2
�
[Ktz] [Kzz ]

�1
[Kzt] + [Mtt]

�
fEtg = f0g (3.21)

In order to �nd out the propagation mode of Equation (3.21), we rewrite it as

AfEtg � �BfEtg = f0g (3.22)

with

A = [Ktt]

B = [Ktz ] [Kzz ]
�1 [Kzt] + [Mtt]

� = 
2:

where 
 is the complex propagation constant. Let BfEtg = y, then fEtg = B�1y.

Substituting BfEtg by y, and fEtg by B�1y in Equation (3.22), we get

AB�1y � �y = f0g (3.23)

Assigning M = AB�1, we get an eigenvalue equation

My = �y: (3.24)

Since the matrixM is not sparse, we have no choice but to use a dense-matrix solver

(QR decomposition) for calculating the complex eigenvalue. The solutions for the

eigenvalues, � = 
2, in the eigenvalue equation represent the propagation modes.

By substituting the eigenvalue of the dominant propagation mode back into Equa-

tion (3.21), we calculate the transverse electric �eld distribution on the cross section

of the stripline. The electric �eld distribution in the axial direction is calculated by

substituting the eigenvalue of the dominant propagation mode and the transverse

electric �eld distribution, fEtg, into Equation (3.20).
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Chapter 4

The Three-Component MEI Boundary

Condition

4.1 Introduction

The MEI boundary condition is a local boundary condition for both the �nite element

method and �nite di�erence method. This boundary condition was originally used

for 2-dimensional scattering of a transverse electric wave or a transverse magnetic

wave[20, 8]. In this dissertation, the theory of theMEI boundary condition is extended

to the boundary condition for the hybrid edge/nodal VFEM for calculating the electric

�eld distribution of a propagating wave in a transmission line in an MCM.

The MEI boundary condition is based on a linear �nite di�erence equation for

determining the electric �eld distribution on the boundary element. Because the MEI

boundary condition incorporates the conductor geometry into the �nite di�erence

equation, the boundary condition can be placed very close to the conductor surface

without sacri�cing accuracy. The small calculated area for the numerical method
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with MEI boundary condition will reduce the size of the matrix equation for the

calculation. Therefore, the current density distribution on the cross section contour

of the conductor can be calculated with limited computer resources.

On the arti�cial boundary, the �eld in transverse direction can be calculated

independently from the �eld in the axial direction by using the 3-component MEI

boundary condition. If we apply a global boundary condition to the matrix equations

for hybrid edge/nodal VFEM calculation, the dependency between the transverse ele-

ments and the axial elements will make the calculation of the eigenvalue very di�cult.

Therefore, the global boundary conditions are not suitable for the edge/nodal VFEM

calculation.

4.2 Theory of MEI Boundary Condition

The MEI boundary condition uses a �nite di�erence equation to describe how the elec-

tromagnetic �eld distribution on a boundary element relates to the �eld distribution

on the neighboring elements. The �nite di�erence equation is given as:

n�1X
i=0

ai�i = 0 (4.1)

where i = 0 corresponds to the boundary element and i=1,i=2,...,i=n-1 correspond to

the neighboring elements. Let a0 =-1, and the coe�cients a1,...,an�1 are determined

by applying n � 1 distributions (called metrons)[20] of surface current density on

the conductor. The �eld distribution on the boundary element is determined by

Equation (4.1) instead of by the mesh equation from the numerical method. The

theory of MEI boundary condition is based on three postulates:

Postulate 1 The coe�cients of Equation (4.1) are location dependent.
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Postulate 2 The coe�cients of Equation (4.1) are geometry speci�c.

Postulate 3 The coe�cients of Equation (4.1) are approximately invariant with ex-

citation.

Postulates 1 and 2 explain why we can use MEI boundary to replace the whole outer

space. Postulate 3 enables us to replace the outer boundary of FDM/FEM mesh cells

by MEI cells as shown in Figure 4.1.

4.3 MEI Boundary Condition for the Electric Field in the

Axial Direction

In order to calculate the �eld distribution on the boundary nodes of the FEM mesh,

eight-node cells are used as shown in Figure 4.1. The axial component of the electric

�eld outside the conductor is related to the electric current density in the conductor

by the following relation

~E = j! ~A (4.2)

with

~A =
�0

4�

Z
S
G(~rj~r0)J(~r0) d~r0 (4.3)

where S is the cross section of the conductor, �0 is the free space permeability, and

G(~rj~r0) is the Green's function.

The direction of the electric �eld on each node is perpendicular to the cross-section

plane of the strip conductor, and the electric �eld on the nodes of a boundary cell is

related to the axial component of the current density distribution in the conductor. By

using a �nite di�erence equation to represent the relationship of the �eld distribution
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on the nodes in a MEI cell, the �eld distribution on the boundary node is determined

by the �eld distribution on its neighboring nodes.

ϕ1 ϕ2

ϕ3 ϕ4 ϕ5

ϕ0

• • •
•••

ϕ6 ϕ7

••

Figure 4.1: The boundary cells for nodal �eld calculation
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4.3.1 The Finite Di�erence Equation

For the eight-node MEI cells shown in Figure 4.1, the axial component of electric �eld

on node 0, E0, is determined by the following �nite di�erence equation,

a1E1 + a2E2 + a3E3 + a4E4 + a5E5 + a6E6 + a7E7 = E0; (4.4)

where a1,...,a7 are the coe�cients of the �nite di�erence equation, and the values must

be calculated for each MEI cell. The variables E0,...,E7 are the axial components of

electric �eld on the nodes in a MEI cell, and their values are calculated by the axial

component of current density distribution in the conductor. By using the Equivalence

Principle[12], the e�ect of the current density distribution inside the conductor can be

replaced by a current density distribution on the conductor surface. For an assigned

current density distribution (metron k) on the surface of the conductor, the axial

component of electric �eld distribution on node i is

Ek
i (~r) =

I
C
G(~rj~r0)Jk

z (~r
0) d~r0; (4.5)

where C is the contour of the conductor, Jk
z (~r

0) is the surface current density of

metron k at point ~r0 on the surface of the conductor, and G(~rj~r0) is the Green's

function. For the in�nite transmission line, the Green's function is the Hankel function

of zero order and second kind[8].

Seven metrons are needed to derive the coe�cients a1,...,a7 in Equation (4.4). The

electric �eld distribution on node 0,node 1,...,node 7 is calculated by Equation (4.5)

for each assigned metron. After substituting the electric �eld on the nodes in Equa-

tion (4.4) by applying seven di�erent metrons,metron 0,...,metron 6 on the conductor

surface, we get the following 7 equations:
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metron 0) a1E
0
1 + a2E

0
2 + a3E

0
3 + a4E

0
4 + a5E

0
5 + a6E

0
6 + a7E

0
7 = E0

0

metron 1) a1E
1
1 + a2E

1
2 + a3E

1
3 + a4E

1
4 + a5E

1
5 + a6E

1
6 + a7E

1
7 = E1

0

metron 2) a1E
2
1 + a2E

2
2 + a3E

2
2 + a4E

2
4 + a5E

2
5 + a6E

2
6 + a7E

2
7 = E2

0

metron 3) a1E
3
1 + a2E

3
2 + a3E

3
3 + a4E

3
4 + a5E

3
5 + a6E

3
6 + a7E

3
7 = E3

0

metron 4) a1E
4
1 + a2E

4
2 + a3E

4
3 + a4E

4
4 + a5E

4
5 + a6E

4
6 + a7E

4
7 = E4

0

metron 5) a1E
5
1 + a2E

5
2 + a3E

5
3 + a4E

5
4 + a5E

5
5 + a6E

5
6 + a7E

5
7 = E5

0

metron 6) a1E
6
1 + a2E

6
2 + a3E

6
3 + a4E

6
4 + a5E

6
5 + a6E

6
6 + a7E

6
7 = E6

0

where Ej
i , calculated by Equation (4.5), is the electric �eld intensity on node i due

to metron j. These equations can be rewritten as a matrix form,

2
66666666666666666666664

E1
1 E1

2 E1
3 E1

4 E1
5 E1

6 E1
7

E2
1 E2

2 E2
3 E2

4 E2
5 E2

6 E2
7

E3
1 E3

2 E3
3 E3

4 E3
5 E3

6 E3
7

E4
1 E4

2 E4
3 E4

4 E4
5 E4

6 E4
7

E5
1 E5

2 E5
3 E5

4 E5
5 E5

6 E5
7

E6
1 E6

2 E6
3 E6

4 E6
5 E6

6 E6
7

E7
1 E7

2 E7
3 E7

4 E7
5 E7

6 E7
7

3
77777777777777777777775

2
66666666666666666666664

a1

a2

a3

a4

a5

a6

a7

3
77777777777777777777775

=

2
66666666666666666666664

E1
0

E2
0

E3
0

E4
0

E5
0

E6
0

E7
0

3
77777777777777777777775

: (4.6)

The coe�cients a1,...,a7 can be determined by solving Equation (4.6). Therefore,

the electric �eld distribution on node 0 is determined by Equation (4.4), and this

boundary condition is used to truncate the in�nite space outside the calculated area.
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4.3.2 Metrons

In order to solve the coe�cients, a1 to a7, in Equation (4.4), seven di�erent metrons

of current density distribution on the conductor surface are needed. We de�ne the

length of the cross-section contour of the conductor strip as L and the point on the

cross-section contour of the strip is l as shown in Figure 4.2. Because the metron

and the space derivative of the metron need to be continuous functions[23], the seven

distributions of surface current density in the axial direction are assigned as sinusoidal

distributions:

Jk
z (l) =

8>><
>>:

cos 2k�l
L
; k = 0; 1; 2; 3

sin 2(k�3)�l

L
; k = 4; 5; 6

(4.7)

l =
L

4

l =
L

2

l =
3

4
L

l = 0

Figure 4.2: The position l on the periphery of the strip conductor
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The axial current density on the conductor surface can be approximated by a

summation of Fourier series:

Js =
3X

k=0

bk cos
2k�l

L
+

6X
k=4

bk sin
2(k � 3)�l

L

=
6X

k=0

bkJ
k
z (l) (4.8)

The residuals of the MEI boundary equations for the the current distribution of

the sinusoidal components in Equation (4.8) are zero because we use these terms to

evaluate the �nite di�erence equation for the boundary condition. Using additional

terms does not improve the accuracy as it does with some numerical methods such

as the method of moments. This is because of Postulates 2 in Section 4.2. The use of

the geometry speci�c Green's function for the metrons to calculate the coe�cients of

the �nite di�erence equation makes the use of addition terms unnecessary. MEI and

et al.[20] have shown that the residuals of the boundary equations are almost zero for

additional terms in the summation of Equation (4.8).

4.4 MEI Boundary Condition for Transverse Electric Field

On the transverse plane, the electric �eld inside the conductor is dependent only

upon the transverse current density in the conductor, but the electric �eld outside the

conductor is dependent upon both the surface charge density on the conductor and the

surface current density on the transverse plane. On the surface of the conductor, the

direction of the electric �eld vector due to the surface charge density is perpendicular

to the conductor surface, and the electric �eld due to the surface current density

is parallel to the conductor surface. The edge elements of the numerical mesh in
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the dielectric are used to de�ne the two orthogonal �eld components: the electric

�eld perpendicular to the arti�cial boundary, and the electric �eld parallel to the

arti�cial boundary. Because the MEI boundary is placed very close to the conductor

surface, the boundary condition for the electric �eld due to the surface charge density

is modeled using the MEI cells with perpendicular-edge elements, and the boundary

condition for the electric �eld due to the surface current density on the transverse

plane is modeled using MEI cells with parallel-edge elements as shown in Figure 4.3.

E1E1

Perpendicular-Edge MEI Cell
Parallel-Edge MEI Cell

E2 E0 E6 E7

E3 E4 E5

E2 E0 E6 E7

E4E3 E5

Artificial Boundary

Conductor

→
→

→→

→→→→

→

→→ → →

→→→

Figure 4.3: The boundary cells for edge �eld calculation
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4.4.1 MEI Cells of Perpendicular-Edge Elements

For a perpendicular-edge MEI cell in Figure 4.3, the electric �eld ~E0 on the perpendicular-

edge element 0 is determined by the following �nite di�erence equation,

a1 ~E1 + a2 ~E2 + a3 ~E3 + a4 ~E4 + a5 ~E5 + a6 ~E6 + a7 ~E7 = ~E0; (4.9)

where the coe�cients, a1; :::; a7 are calculated by applying 7 metrons on the surface of

the conductor. The metrons of the surface charge density on the cross-section contour

of the conductor in Figure 4.2 are assigned as

Qk
s(l) =

8>><
>>:

cos 2k�l

L
; k = 0; 1; 2; 3

sin 2(k�3)�l

L
; k = 4; 5; 6

(4.10)

where k is the metron number.

The electric �eld intensity on perpendicular-edge element i in Figure 4.3 is due to

the surface charge metron k as:

~Ek
i (~r) =

h
rV k

i (~r)
i
� ŝi

= r
�

1

4��r�0

I
C
G(~rj~r0)Qk

s(~r
0) d~r0

�
� ŝi; (4.11)

where V k
i (~r) is the electric potential on the perpendicular-edge element i, Qk

s(r
0)

is the electric charge density on the conductor surface for metron k, �r is relative

permittivity, �0 is the permittivity in free space, and ŝi is an unit vector on edge i,

whose direction is toward the arti�cial boundary.

After seven metrons in Equation (4.10) are applied to the �nite di�erence equation

(4.9) for a perpendicular-edge MEI cell, the coe�cients of the MEI cells can be solved

as described in section 4.3. By the same argument for eight-node MEI cells, the

electric �eld on the perpendicular-edge element 0 is determined by the �nite di�erence

31



equation (4.9) for the perpendicular-edge boundary condition. By the same token,

the electric �eld on each perpendicular-edge element on the arti�cial boundary is

determined by the �nite di�erence equation calculated from the MEI cell of this

boundary element instead of the mesh equation from FEM.

4.4.2 MEI Cells of Parallel-Edge Elements

For the parallel-edge MEI cells in Figure 4.3, the parallel-edge element 0 is determined

by the following �nite di�erence equation,

a1 ~E1 + a2 ~E2 + a3 ~E3 + a4 ~E4 + a5 ~E5 + a6 ~E6 + a7 ~E7 = ~E0; (4.12)

where the coe�cients, a1; :::; a7 are calculated by applying 7 metrons of transverse

current density on the surface of the conductor. The metrons of the surface current

density on the cross section of the conductor in Figure 4.2 are assigned as

Jk
s (l) =

8>><
>>:

cos 2k�l
L
; k = 0; 1; 2; 3

sin 2(k�3)�l

L
; k = 4; 5; 6

(4.13)

where k is the metron number.

The electric �eld intensity on the parallel-edge element i from a metron is calcu-

lated by

~Ek
i (~r) =

I
C
G(~rj~r0) ~Jk

s (~r
0) � ŝi d~r0; (4.14)

where ŝi is the unit vector on edge i, whose direction is counterclockwise and parallel

to the arti�cial boundary, and ~Jk
s (~r

0) is the conductor surface current density on the

transverse plane for metron k.

After seven metrons in Equation (4.13) are applied to the �nite di�erence equa-

tion of the parallel-edge MEI cell, the coe�cients of the MEI cells can be solved as
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described in section 4.3. Therefore, the electric �eld intensity on the parallel-edge

element 0 is determined by the Equation (4.12) for the parallel-edge boundary con-

dition. By the same token, the electric �eld on each parallel-edge element on the

boundary is determined by the �nite di�erence equation calculated from the MEI cell

of this boundary element instead of the mesh equation from FEM.
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Chapter 5

Hybrid Edge/Nodal VFEM with

Three-Component MEI Boundary

Condition

In order to reduce the number of the calculated elements in the dielectric to save

computer memory and time, we apply the 3-component MEI boundary condition[20]

for the �eld distribution on the outer VFEM elements. The local �nite di�erence

equation is used at the boundary elements in the matrix equation. For the propagation

modes in the transmission line, the concept of MEI boundary condition makes the

calculation more e�cient and accurate.

In this chapter, the construction of the matrix equations used in the hybrid

edge/nodal VFEM is described in detail. How the 3-component MEI boundary con-

dition being used for the eigenvalue equation is also explained.
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5.1 The Matrix Construction for a Small Cell

The calculated area consists of small cells for the hybrid edge/nodal VFEM calcula-

tion. The electric �eld inside each small cell is represented by a shape-function matrix

times the electric �eld on the nodes and edges. The construction of the matrices in

Equation (3.13) is the summation of the shape-function matrices for all the small cells

by the relation of the vector Helmholtz's equation. The �rst step to construct the

matrices is to calculate the shape functions and the derivatives of the shape functions

of the elements in a small triangular cell.

2

Ez

Ez

Ez

Et

Et
•

1
1

2

Et3

3

•

•

l1

l3
l2

Figure 5.1: The electric �eld on the edges and nodes of a small triangular cell

For a small cell as shown in Figure 5.1, the electric �eld on the nodes is Ez1 ,Ez2,Ez3,

and the electric �eld on the edges is Et1 ,Et2,Et3. Because the electric �eld on the

nodes is in the axial direction and the electric �eld on the edge is on the transverse

plane, the shape functions for the electric �eld on the edges are independent from the

shape functions for the electric �eld on the nodes. For a point (x,y) inside the small
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triangular cells, the electrical �eld in the axial direction is represent by:

Ez = a+ bx+ cy (5.1)

where a, b, and c are the coe�cients of the linear equation. In order to simplify the

mathematical calculation for the linear equations, Equation (5.1) is rewritten as the

matrix form

Ez = [1 x y]

2
6666664

a

b

c

3
7777775

(5.2)

Because a, b, and c are unknown, we replace them by the �eld intensities on the

three corner nodes of the small triangular cell and the variables of location axes for

these three corner nodes. After we substitute the electric �eld, Ez1 ,Ez2,Ez3 , on the

corner nodes, P1(x1; y1), P2(x2; y2), P3(x3; y3), into Equation (5.2), we get the matrix

equation: 2
6666664

Ez1

Ez2

Ez3

3
7777775
=

2
6666664

1 x1 y1

1 x2 y2

1 x3 y3

3
7777775

2
6666664

a

b

c

3
7777775

(5.3)

Solve for the coe�cient a, b, and c, Equation (5.3) becomes

2
6666664

a

b

c

3
7777775
=

2
6666664

1 x1 y1

1 x2 y2

1 x3 y3

3
7777775

�1 26666664

Ez1

Ez2

Ez3

3
7777775

(5.4)

In order to describe the electric �eld in the axial direction inside the small triangular

cell in terms of Ez1, Ez2 , and Ez3 , we substitute Equation (5.4) into Equation (5.2)
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and get

Ez = [1 x y]

2
6666664

1 x1 y1

1 x2 y2

1 x3 y3

3
7777775

�1 2
6666664

Ez1

Ez2

Ez3

3
7777775

(5.5)

After solving the inverse matrix in Equation (5.5), the electric �eld in the axial

direction inside the small triangular cell is

Ez =
1

2Ae

[1 x y]

2
6666664

x2y3 � x3y2 x1y3 � x3y1 x1y2 � x2y1

y3 � y2 y3 � y1 y2 � y1

x3 � x2 x3 � x1 x2 � x1

3
7777775

2
6666664

Ez1

Ez2

Ez3

3
7777775

=
1

2Ae

[x2y3 � x3y2 + (y3 � y2) x+ (x3 � x2) y]Ez1

+
1

2Ae

[x1y3 � x3y1 + (y3 � y1) x+ (x3 � x1) y]Ez2

+
1

2Ae

[x1y2 � x2y1 + (y2 � y1) x+ (x2 � x1) y]Ez3 (5.6)

where Ae is the area of the small triangular cell. From Equation (5.6), the shape

functions for the electric �eld in the axial direction on the node elements of the small

triangular cells are

fNg =

8>>>>>><
>>>>>>:

1

2Ae

[x2y3 � x3y2 + (y3 � y2)x+ (x3 � x2) y]

1

2Ae

[x1y3 � x3y1 + (y3 � y1)x+ (x3 � x1) y]

1

2Ae

[x1y2 � x2y1 + (y2 � y1)x+ (x2 � x1) y]

9>>>>>>=
>>>>>>;

(5.7)

The partial derivatives in X direction and in Y direction for the shape functions in

Equation (5.7) are

fNxg =

8>>>>>><
>>>>>>:

1

2Ae

(y3 � y2)

1

2Ae

(y3 � y1)

1
2Ae

(y2 � y1)

9>>>>>>=
>>>>>>;

(5.8)
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and

fNyg =

8>>>>>><
>>>>>>:

1
2Ae

(x3 � x2)

1
2Ae

(x3 � x1)

1

2Ae

(x2 � x1)

9>>>>>>=
>>>>>>;

(5.9)

By the same token, the shape functions for the X-component �eld on the edge elements

of the small triangular cell are

fUg =

8>>>>>><
>>>>>>:

1

2Ae

l1 (y3 � y)

1

2Ae

l2 (y1 � y)

1

2Ae

l3 (y2 � y)

9>>>>>>=
>>>>>>;

(5.10)

where l1 is the length of edge 1, l2 is the length of edge 2, and l3 is the length of

edge 3 as shown in Figure 5.1. The shape functions for the Y-component �eld on the

edge elements of the small triangular cell are

fV g =

8>>>>>><
>>>>>>:

1

2Ae

l1 (x� x3)

1

2Ae

l2 (x� x1)

1

2Ae

l3 (x� x2)

9>>>>>>=
>>>>>>;

(5.11)

The partial derivatives in Y direction of shape functions fUg are

fUyg =

8>>>>>><
>>>>>>:

� 1

2Ae

l1

� 1

2Ae

l2

� 1

2Ae

l3

9>>>>>>=
>>>>>>;

(5.12)

and the partial derivatives in X direction of shape functions fV g are

fVxg =

8>>>>>><
>>>>>>:

1

2Ae

l1

1

2Ae

l2

1
2Ae

l3

9>>>>>>=
>>>>>>;

(5.13)
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After we substitute the shape functions, fUg, fV g, fNg, and the partial derivatives

of the shape functions, fUyg, fVxg, fNxg, fNyg into the integrals in Equation (3.13)

for a small triangular cell, we get[15]

�Z Z
e
fUgfUgTdx dy

�
ij

=

"Z Z
e

1

4A2
e

lilj
�
ym(i+2;3) � y

� �
ym(j+2;3) � y

�
dx dy

#
ij

=
1

4Ae

lilj
h
ym(i+2;3)ym(j+2;3) � yc

�
ym(i+2;3) + ym(j+2;3)

�

+
1

12

�
y21 + y22 + y23 + 9y2c

��
(5.14)

�Z Z
e
fV gfV gTdx dy

�
ij

=

"Z Z
e

1

4A2
e

lilj
�
xm(i+2;3) � x

� �
xm(j+2;3) � x

�
dx dy

#
ij

=
1

4Ae

lilj
h
xm(i+2;3)xm(j+2;2) � xc

�
xm(i+2;3) + xm(j+2;3)

�

+
1

12

�
x21 + x22 + x23 + 9x2c

��
(5.15)�Z Z

e
fUygfUygTdx dy

�
ij

=

�Z Z
e
fVxgfVxgTdx dy

�
ij

=

"Z Z
e

1

4A2
e

lilj

#
ij

=
1

4Ae

lilj (5.16)�Z Z
e
fUygfVxgTdx dy

�
ij

=

�Z Z
e
fVxgfUygTdx dy

�
ij

= �
"Z Z

e

1

4A2
e

lilj

#
ij

= � 1

4Ae

lilj (5.17)

�Z Z
e
fUgfNxgTdx dy

�
ij

=

"Z Z
e

1

4A2
e

li
�
ym(j+2;3) � ym(j+1;3)

� �
ym(i+2;3) � y

�
dx dy

#
ij

=
1

4Ae

li
�
ym(j+1;3) � ym(j+2;3)

� �
ym(i+2;3) � yc

�
(5.18)
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�Z Z
e
fV gfNygTdx dy

�
ij

=

"Z Z
e

1

4A2
e

li
�
xm(j+2;3) � xm(j+1;3)

� �
x� xm(i+2;3)

�
dx dy

#
ij

=
1

4Ae

li
�
xm(j+1;3) � xm(j+2;3)

� �
xc � xm(i+2;3)

�
(5.19)

�Z Z
e
fNgfNgTdx dy

�
ij

=

8>><
>>:

Ae

6
; for i= j

Ae

12
; for i 6= j

(5.20)

�Z Z
e
fNxgfNxgTdx dy

�
ij

=

"Z Z
e

1

4A2
e

�
ym(i+2;3) � ym(i+1;3)

� �
ym(j+2;3) � ym(j+1;3)

�#
ij

dx dy

=
1

4Ae

�
ym(i+2;3) � ym(i+1;3)

� �
ym(j+2;3) � ym(j+1;3)

�
(5.21)

�Z Z
e
fNygfNygTdx dy

�
ij

=

"Z Z
e

1

4A2
e

�
xm(i+2;3) � xm(i+1;3)

� �
xm(j+2;3) � xm(j+1;3)

�#
ij

dx dy

=
1

4Ae

�
xm(i+2;3) � xm(i+1;3)

� �
xm(j+2;3) � xm(j+1;3)

�
(5.22)

with

xc =
x1 + x2 + x3

3
(5.23)

yc =
y1 + y2 + y3

3
(5.24)

m(i; k) = mod(i� 1; k) + 1 (5.25)

where the subscripts i; j are used to indicates the component at i row and j column

in the matrix, and mod(i; k) equals to the remainder of ( i
k
).

40



The matrices in Equations (3.15) to (3.18) are the summation of the shape func-

tions and the derivatives of the shape functions of the elements for all the small

triangular cells. With Equations (5.14) to (5.22), we substitute the integrated results

into the elements in Equations (3.15) to (3.18) for all the small triangular cells, then

the eigenvalue equation is constructed.

5.2 Vector MEI Boundary Condition for the Elements in

the Axial Direction

The boundary condition for the axial elements is to determine the �eld intensities

of the elements on the arti�cial boundary by the MEI boundary equations instead

of the hybrid edge/nodal VFEM mesh equations. In order to truncate the in�nite

open space, the MEI boundary equations are used to replace the node elements on

the boundary in the axial direction in Equation (3.20), and we get


 [K 0

zt] fEtg � [K 0

zz ] fEzg = f0g: (5.26)

The ith row of matrix [K 0

zt] and [K 0

zz ] in Equation (5.26) contain the coe�cients

of a linear equation for deciding the electric �eld distribution of the ith element.

In order to make the boundary elements in Equation (5.26) become independent of

the propagation constant, the rows of the boundary elements in the axial direction

are assigned to zeros for matrix [K 0

zt]. The rows of the boundary elements in the

axial direction are replaced by the �nite di�erence equations from the MEI boundary

condition for matrix [K 0

zz ]. The electric �eld distribution on the boundary nodes

is, therefore, determined by the �nite di�erence equations which are calculated for

truncating the in�nite space by an arti�cial boundary { MEI boundary condition.
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5.3 Vector MEI Boundary Condition for the Elements in

Transverse Direction

In order to truncate the open space for the hybrid edge/nodal VFEM calculation,

we apply the MEI boundary condition for the edge elements on the boundary in

Equation (3.21) and get

[K 0

tt] fEtg � 
2
�
[Ktz] [Kzz ]

�1
[Kzt] + [Mtt]

�0

fEtg = 0: (5.27)

We call matrix equation (5.27) HTMEI equation with HTMEI standing for Hybrid

edge/nodal FEM with the Three-component MEI Boundary Condition. The rows of

the boundary elements in matrix ([Ktz][Kzz ]
�1[Kzt] + [Mtt])

0

of Equation (5.27) are

assigned to zeros for making the boundary condition independent of the propagation

constant, 
. The rows of the boundary elements in matrix [Ktt] are replaced by

the �nite di�erence equations from the MEI boundary condition. By solving the

eigenvalues of Equation (5.27) as described in Chapter 3, we can get the propagation

constants for di�erent propagation modes of the transmission line.
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Chapter 6

Transmission Loss and Electric Current

Distribution in the Conductor

In order to estimate the transmission loss and the electric �eld distribution in the

conductor more accurately, the hybrid edge/nodal VFEM with the 3-component MEI

boundary condition is used to calculate the electric �eld distribution on the cross

section of the transmission line. The boundary condition truncates the in�nite space

by a layer of boundary elements. The calculated results by using edge/nodal VFEM

with the 3-component MEI boundary condition are close to the measured data at

the frequences below 1 GHz. At high frequency (> 1 GHz), the conduction current

density concentrates in the area close to the conductor surface due to skin e�ect.

Because the surface roughness of the conductor and the transmission loss from the

ground are not included in the calculation, the measured data are higher than the

calculated results at high frequency. The calculated results can be used to choose the

best structure for the transmission line to be used in the MCM without the cost of

making samples, and for reducing the turn around time for improving performance.
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6.1 The Triplate Strip Line

X

Y

0

10 µm

100 µm

W

h

h

t

Gnd

Gnd

0

εr

Figure 6.1: The cross section of a triplate line

The hybrid edge/nodal VFEM with the 3-component MEI boundary condition is

used to calculate the transmission loss of a triplate strip. The cross section of the

line is illustrated in Figure 6.1. In order to compare the calculation results with the

experimental data published by Taguchi et al.[34], the distance between two grounds,

2h + t, is set to be 910�m, the thickness of the conducting strip, t, 10�m, and the

width of the strip, w, 200�m. For the dielectric, the relative dielectric constant, �r, is

set to be 7:55, and the loss tangent, tan �, is 0:005. The conductivity, �, of the copper

(Reduction from CuO) is 2:5�107S/m[34]. The structure parameters of triplate strip

line are summarized in Table 6.1.

The transmission loss is a function of frequency as shown in Figure 6.2. The

theoretical values are simulated by HP85150 Microwave Design System (MDS). The

results calculated by the hybrid edge/nodal VFEM with the 3-component MEI bound-

ary condition are close to the theoretical values which do not include the loss from
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Table 6.1: The structure parameters for the triplate transmission line

Width of the strip 200 (�m)

Thickness of the strip 10 (�m)

Height of the strip 450 (�m)

Distance between two ground plates 910 (�m)

Conductivity of the strip 2:5� 107 (S/m)

Relative dielectric constant 7.55

Loss tangent of dielectric 0.005

Theoretical data     

MEI BC               

Perfect conducting BC

Measured results     
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Figure 6.2: Calculated and measured transmission loss vs frequency
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Figure 6.3: The perfect conductor boundary condition on the cross section of the

triplate line

the ground, but the results calculated by the edge/nodal VFEM with a wall of per-

fect conductor[3] as its boundary condition are larger than the theoretical results and

measured data. The perfect conductor boundary condition used in [3] is shown in

Figure 6.3. The measured data are higher than our calculated results, because our

calculated results do not include the loss from ground plane. The 3-component MEI

boundary condition makes the �eld distribution in the dielectric close to the real

situation, and improves the accuracy of the calculation.

In order to know how the current density distribution on the cross section of

the conductor a�ects the transmission loss, we plot the current density distributions

on the cross section of the conductor for di�erent frequencies. For 2 GHz, 4 GHz,

and 6 GHz, the current density distributions in the strip conductor are shown in

Figure 6.4, Figure 6.5, and Figure 6.6. At high frequency, the current density dis-

tribution concentrates on the area close to the conductor surface, and the e�ective

cross-section area for conduction current is smaller than the e�ective cross-section

area at low frequency. Therefore, the transmission loss is larger for higher frequency
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wave propagation.
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Figure 6.4: The current density distribution on the cross section of the center strip

of the triplate geometry at 2 GHz
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Figure 6.5: The current density distribution on the cross section of the center strip

of the triplate geometry at 4 GHz
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Figure 6.6: The current density distribution on the cross section of the center strip

of the triplate geometry at 6 GHz
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6.2 The Transmission Line in an MCM

There are several technologies of MCM manufacturing which vary in the dimensions

of the transmission line structure and the materials used. We compare our calculation

results with the measured data for the interconnection in an MCM manufactured by

Silicon Graphic Incorporated (SGI). The cross section of the transmission line in the

MCM is shown in Figure 6.7.

W =  5 mil 

h = 4 mil

h = 15.4 mil

t = 1.4 mil

Gnd

Gnd

ε  = 4.3r

Figure 6.7: The cross section of a transmission line in a MCM

The width of the conductor is 5 mil, and the thickness of the conductor is 1.4 mil.

The height of the conductor is 15.4 mil, and the distance between the two grounds

is 20.8 mil. The dielectric is lossless, and the relative dielectric constant is 4.3. The

conductor is copper with conductivity 5:7�107S/m. The structure parameters of the
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transmission line in an MCM manufactured by SGI are summarized in Table 6.2.

Table 6.2: The structure parameters for the transmission line in an MCM manufac-

tured by SGI

Width of the strip 5 (mil)

Thickness of the strip 1.4 (mil)

Height of the strip 15.4 (mil)

Distance between two ground plates 20.8 (mil)

Conductivity of the strip 5:7� 107 (S/m)

Relative dielectric constant 4.3

Loss tangent of dielectric 0.00

We calculate the transmission loss by using the hybrid edge/nodal FEM with the

3-component MEI boundary condition and compare the calculated results with the

measured data. The calculated results are almost the same as the measured data

except for the transmission loss at high frequency as shown in Figure 6.8. As the

wave frequency goes higher (close to one GHz), the calculated results is smaller than

the measured data. The numerical calculation is based on the assumption that the

ground is lossless; therefore, the calculated transmission loss should be smaller than

the measured data at high frequency. The transmission loss from the ground will also

increase as the frequency increases.
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Figure 6.8: The transmission loss vs frequency for the transmission line in an MCM

6.3 The Coated Interconnection Used in an MCM

The MCMmanufacturers usually use copper as the conducting metal due to its low

resistivity which provides the MCM technologies a distinct performance advantage

at low cost. Polyimide is chosen as the dielectric material in the MCM package

for its low dielectric loss. In order to eliminate the reaction between copper and

polyimide[2, 16], a di�usion barrier layer between copper and polyimide is often added

by the manufacturers. There are two barrier layers reported[1]: a thin �lm of inorganic

dielectric and a thin �lm of metal. We used the structures published by Adema et

al.[1] to calculate the propagation losses of the microstrip transmission lines and
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compare the calculated results with the measured data. The structures in Adema et

al.[1] are: the microstrip clad with inorganic dielectric and the microstrip coated with

chromium.

6.3.1 The Microstrip Clad with Inorganic Dielectric

13 µm

5 µm

4 µm

Copper

Inorgonic Dielectric Layer

Figure 6.9: The transmission line with a thin-�lm inorganic dielectric.

For the microstrip structure shown in Figure 6.9, the strip conductor is buried in

the polyimide dielectric with a ground plane under it and the space above strip

conductor is �lled with polyimide. The strip conductor is copper clad with a thin

�lm of inorganic dielectric. The dimensions of the structure are shown in Figure 6.9.

The thickness of the thin-�lm inorganic dielectric is much smaller than the thickness of

the conductor. Because the transmission loss from the strip conductor is much larger

than the loss from the inorganic dielectric, the electric properties of the inorganic

dielectric are assumed the same as the electronic properties of polyimide to simplify

the numerical calculation. The loss tangent of inorganic dielectric is assumed to be
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zero, and the relative dielectric constant, �r, is 3.0, which is the same as the relative

dielectric constant of polyimide for the transmission loss calculation. The conductivity

of copper for the strip conductor is 5:8 � 107S/m. The structure parameters of the

clad microstrip conductor are summarized in Table 6.3.

Table 6.3: The structure parameters for the clad microstrip

Width of the strip 13 (�m)

Thickness of the strip 4 (�m)

Height of the strip 5 (�m)

Conductivity of the strip 5:8� 107 (S/m)

Relative dielectric constant 3.0

Loss tangent of dielectric 0.00

The transmission loss of the inorganic dielectric clad microstrip is a function of

frequency as shown in Figure 6.10. The calculated transmission loss is smaller than

the measured data because the transmission loss from the ground and the cladding di-

electric is not included for the numerical calculation. At low frequency, the skin depth

of the conductor is larger than the thickness of the conductor, the major transmission

loss comes from the strip conductor. Therefore, the di�erence of the transmission

loss between the calculated results and the measured data is smaller at a lower wave

frequency.
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Figure 6.10: The transmission loss vs frequency for the microstrip coated with a

thin-�lm inorganic

6.3.2 The Microstrip Coated with Chromium

By using a Balzers BAK 760 electron-beam evaporator[1], the strip conductor is con-

structed of Cr/Cu/Cr with the thickness of 100�A/4�m/100�A as shown in Figure 6.11.

The thickness and width of the copper conductor in Figure 6.11 are the same as the

copper conductor in Figure 6.9 for comparing the transmission loss between these

two microstrips. The conductivity of the copper is 5:8� 107S/m, but the conductiv-

ity of chromium is only 7:75 � 106S/m. The structure parameters of the microstrip

conductor coated with chromium are summarized in Table 6.4.
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Figure 6.11: The transmission line coated with a thin-�lm chromium.

Table 6.4: The structure parameters for the Chromium coated microstrip

Width of the strip 13 (�m)

Thickness of the strip 4 (�m)

Height of the strip 5 (�m)

Thickness of chromium layer 100 (�A)

Conductivity of the copper 5:8 � 107 (S/m)

Conductivity of the chromium 7:75 � 106 (S/m)

Relative dielectric constant 3.0

Loss tangent of dielectric 0.00

As shown in Figure 6.12, the calculated transmission loss is still lower than the

measured data, and the di�erence between the calculated results and the measured

data in Figure 6.12 is smaller than the di�erence in Figure 6.10. That's because

the loss tangent of the clad inorganic dielectric in Figure 6.9 is larger than the loss

tangent of polyimide.

57



measured  
calculated

0 2 4 6 8 10 12

x 10
9

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18
Cr/Cu/Cr Thin−Film Transmission Lines

Frequency (Hz)

Tr
an

sm
iss

io
n 

Lo
ss

 (d
B/

m
m

)

Figure 6.12: The transmission loss of a transmission line coated with chromium.

In order to choose the best transmission line structure for the system performance,

we compare Figure 6.12 with Figure 6.10. The skin e�ect is not signi�cant on the cross

section of the conductor at low frequency, the di�erence between the transmission loss

of the Cr/Cu/Cr microstrip and the transmission loss of the inorganic dielectric clad

microstrip is small. As the frequency increases, the current density is higher in the

area close to the bottom of the strip conductor. Because the resistivity of chromium is

higher than the resistivity of copper, the transmission loss of the Cr/Cu/Cr microstrip

is higher than the transmission loss of the inorganic dielectric clad microstrip for wave

propagation at high frequency.

58



Chapter 7

Summary and Future Directions

In this chapter, we summarize the modeling for calculating the electromagnetic �eld

distribution, discuss the calculated results of the �eld distribution, and suggest future

research topics.

7.1 Summary

In this dissertation, we developed the 3-component MEI boundary condition for the

hybrid edge/nodal VFEM. This 3-component MEI boundary condition is applied to

the matrix equation (3.21) formed by the 3-dimensional vector Helmholtz's equation

in the transmission line, then a HTMEI (Equation 5.27) is formulated. By calculating

the eigenvector of the lowest-mode eigenvalue of the HTMEI equation, we obtained

the �eld distribution on the transverse plane. The square roots of the eigenvalues

are the complex propagation constants. The real part of the propagation constant is

the attenuation constant and the relation between the transmission loss and attenu-

ation constant is shown in Equation (3.9). The excitation source for generating the
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propagating wave is assumed far away from the calculated area.

The boundary condition for the hybrid edge/nodal FEM is an approximate method

for the �eld distribution calculation. The approximation is due to the limited com-

puter resources. The in�nite space with the e�ect of the ground plate(s) is truncated

by the 3-component MEI cells for the boundary condition. The boundary condition is

not only used to simulate the wave propagation in the open area, but also applied to

hybrid edge/nodal FEM to calculate all the possible propagation modes. The �nite

di�erence equation of the MEI boundary condition is used to de�ne the boundary

elements for the calculation.

The transmission loss consists of the loss from the strip conductor, the loss from the

dielectric, the loss from the conductor surface roughness, and the loss from the ground.

The calculated transmission loss of this dissertation includes the loss from the strip

conductor and the loss from the dielectric. The trend of the calculated transmission

loss is consistent with the trend of the measured transmission loss. The calculated

transmission loss is 5% to 10% less than the measured transmission loss in general.

The relatively small di�erence between the calculated and measured transmission

losses suggests that the transmission loss is dominated by the loss from the strip

conductor, and the loss from the dielectric.

7.2 Discussion of Calculated Results

In this study, the transmission loss is derived from the attenuation constant. The

attenuation constant is the real part of the complex propagation constant, which is

the square root of the lowest-mode eigenvalue of the HTMEI equation. The HTMEI
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equation is constructed by using the hybrid edge/nodal FEM with the 3-component

MEI boundary condition. Since the 3-component MEI boundary condition is calcu-

lated by using perfect conductor as the ground plane(s), the calculated transmission

loss obtained by solving the HTMEI equation does not include the transmission loss

from the ground plate(s).

As the frequency increases, the transmission loss from the ground increases too.

If the frequency is higher than 20 GHz, the transmission loss from the ground should

be included in the calculation. The induced current density distribution in the lossy

ground must be obtained in order to calculate the transmission loss from the ground.

Using quasi-static assumption, we can calculate the current density distribution by

the Method of Moment with the propagation current in the strip conductor as the

current source. After the current density distribution in both the strip conductor

and in the ground have been calculated, we can calculate the per-length resistance

and per-length inductance. The per-length capacitance can be calculated by using a

quasi-static assumption since the transverse current density is much smaller than the

current density in axial direction inside the conductor. With the lossy ground, the

complex propagation constant of the transmission line is


 =
q
(R+ j!L)(G + j!C) (7.1)

where R, L, G, and C denotes the per-length resistance, inductance, conductance,

and capacitance respectively. The per-length conductance is proportional to the loss

tangent of the dielectric, and it's very small compared to j!C for the dielectric used

in MCMs.
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7.3 Future Research

In this research, we applied the 3-component MEI boundary condition to the hy-

brid edge/nodal FEM. The calculated results are better than the hybrid edge/nodal

FEM with a perfect conductor as its boundary condition (see Figure 6.3). Possible

extensions are as follows:

1. Calculate the current density distribution in the lossy ground | By using

quasi-static assumption and the Method of Moments with the current density

distribution in the strip conductor as the current source, we can calculate the

induced current density distribution in the ground by

�5 V = j! ~A+ � ~J

= 0 (7.2)

and

~A =
�

4�

Z
V

~Je�jkR

R
dv (7.3)

where � is the resistivity of the ground, ~J is the current density distribution

in the conductor, k is the wave number, and ~A is the vector potential in-

duced from the current density distribution in the conductor. If the dimension

of the transmission-line cross section is much smaller than the wavelength,

the conduction current in the transmission line and ground far away from

the calculated cross section can be neglected due to the e�ect of the ground.

The distance are measured in term of wavelength. Equation (7.3) can be

approximated[37] by

~A =
�

4�

Z
V

~J

R
dv (7.4)
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After we substitute Equation (7.4) into Equation (7.2) and solve it by the

Method of Moments, the current density distribution in ground can be calcu-

lated.

MEI   boundary

Absorbing Boundary Condition

Strip Conductor

Absorbing Boundary Condition 
with the Fixed Field Distribution as 
Excitation Source

Ground

Ground

Height of the Strip conductor

Figure 7.1: A discontinuity connecting two transmission lines

2. Use the �eld distribution on the cross section of the transmission line as the

boundary condition on one end of a discontinuity to calculate the �eld distri-

bution in the vicinity of the discontinuity | For a discontinuity connecting

two transmission lines, the �eld distribution on the cross section of an in�-

nite transmission line can be used as an excitation source to calculate the
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scattered �eld distribution in the vicinity of the discontinuity. The arti�cial

boundary other than the cross section of the transmission line is covered by

the 3-component MEI boundary condition as shown in Figure 7.1. The cross

section of the transmission line on two ends of the discontinuity are covered by

absorbing boundary condition. Since the higher order modes of the scattered

wave will decay to zero after certain distance, the distance between the absorb-

ing boundary condition and the discontinuity needs to be at least 5 times the

height of the strip conductor[35] in order to get an accurate �eld distribution

in the vicinity of the discontinuity.

3. Modify the Green's function with the e�ect of the lossy ground to calculate

the 3-component MEI boundary condition | If the thickness of the ground

plate is much larger than the skin depth in ground, we can use the Green's

function with the e�ect of the loss ground[10] to calculate the 3-component

MEI boundary condition. The complex propagation constants calculated by

the hybrid edge/nodal VFEM with the new 3-component MEI boundary con-

dition are the propagation constant for the lossy transmission line with lossy

ground. Therefore, the calculated transmission loss will include also the loss

from the ground.
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Appendices

Appendix A: Acronyms

IC Integrated Circuit

MCM Multi-Chip Module

VLSI Very Large Scale Integrated circuit

CAD Computer-Aided Design

TEM Transverse Electro Magnetic

VFEM Vector Finite Element Method

MEI Measured Equation of Invariance

GHz GigaHertz

FD-TD Finite-Di�erence Time-Domain

TLM Transmission Line Matrix

MDS Microwave Design System

SGI Silicon Graphic Incorporated

HTMEI Hybrid edge/nodal FEM with the Three-Component MEI Boundary Condition
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Appendix B: Flow Chart of the Computer Program

The block diagram of the computer code is shown in Figure B.1. The function for

each block is explained below:

� The structure parameters for the transmission line| The structure parameters

are stored in data �les that contain the dimensions of the transmission line

structure and the characteristics of the materials used in the transmission line.

� Construct the matrix equation of vector Helmholtz's equation by using the

hybrid edge/nodal FEM | From the structure parameters of the transmission

line, we calculated the relations between any two elements in a small trian-

gular cell, then constructed the matrix equation by assembling all the small

triangular cells. The formulae are described in Section 5.1.

� Sinusoidal-shape metrons | We used sinusoidal-shape metrons for the compo-

nents of Fourier series which are used to approximate the current and charge

distributions on the surface of the conductor. The theory is described in Sec-

tion 4.3.2.

� Calculate the 3-component MEI cells for the boundary condition | From the

metrons we calculate the 3-component MEI cells, which are linear equations

for the relation of the boundary element and its neighboring elements. The

theory, and formulae are described in Chapter 4.

� Apply 3-component MEI boundary condition on the outer elements of the ma-

trix equation | We applied the 3-component MEI boundary condition on the

boundary elements of the numerical mesh, which is constructed by assembling
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all the small triangular cells, by replacing the MEI boundary equations for the

rows of boundary element in the matrix equation. Section 5.2 and 5.3 describe

the theory in more detail.

� HTMEI matrix equation | We call the matrix equation with 3-component

MEI boundary condition the HTMEI matrix equation, which is de�ned in

Section 5.3.

� Solve the eigenvalues of HTMEI matrix equation | By rearranging the HT-

MEI matrix equation, we form an eigenvalue equation. The eigenvalue of the

HTMEI matrix equation is the square of the complex propagation constant.

The real part of the complex propagation constant is related to attenuation

constant of the transmission line by Equation (3.9). The formulae and calcu-

lations are described in Section 3.2.2.

� Transmission loss of the transmission line | The eigenvalues of the HTMEI

matrix equation are squares of the propagation constants of the various modes.

The real part of the complex propagation constant is the attenuation constant.

The transmission loss of the transmission can be calculated from the attenua-

tion constant by using Equation (3.9).

� The electric �eld distribution on the cross section of the transmission line |

The eigenvector of the HTMEI matrix equation is the magnitude of electric

�eld intensity on the elements of the matrix equation. The electric �eld distri-

bution on the cross section of the transmission line is described by the electric

�eld intensity on the elements.
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for the transmission line

Sinusoidal-shape metrons

Construct the matrix equation of
vector Helmholtz's equation  by 
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cells for the boundary condition.
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boundary condition on the 
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matrix equation.

HTMEI matrix equation

Solve the eigenvalues of
HTMEI matrix equation. 

Transmission loss of 
the transmission line

The electric field distribution 
on the cross section of the 
transmission line

Eigenvalues Eigenvectors

Figure B.1: The 
ow chart of the computer code
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Appendix C: Main Program of the Field Calculation

C*******************************************************************
C Main program for "The field calculation by using the hybrid
C edge/nodal VFEM with 3-component MEI boundary condition"
C*******************************************************************
C************* *********
C************* Field Distribution on the cross section of a*********
C************* Microstrip. (Using Hankel Function as *********
C************* its Green's Function) *********
C************* *********
C************* *********
C************* Apply the Mei mesh and replace FE mesh *********
C************* both in XYZ directions. *********
C************* *********
C*******************************************************************
C
C Unit number assignment for input/output data:
C 1 (INPUT) = Fortran Input File number for Z-Mei Cells
C 11 (INPUT) = Fortran Input File number for XY-Mei Cells
C 2 (INPUT) = Fortran Input File number for Edges on Elements
C 3 (Input) = Fortran Input File number for Nodes on Elements
C 13 (Input) = Fortran Input File number for mu on Elements
C 23 (Input) = Fortran Input File number for epsilon on Elements
C 4 (INPUT) = Fortran Input File number for node Location
C 14 (INPUT) = Fortran Input File number for 2 end points of Edge
C 5 (INPUT) = Fortran Input File number for Structure Geometry
C 15 (INPUT) = Fortran Input File number for existed Eigenvalue Ga
C 6 (OUTPT) = Fortran Outut File number for simulation result
C 7 (OUTPT) = Fortran Outut File number for Structure echo
C 71 (OUTPT) = Fortran Outut File number for Matlab Plot
C 72 (OUTPT) = Fortran Outut File number for Matlab Plot
C IERR = Error Flag, zero if all is well
C
C Definition for the constant in the program:
C Nodes = Number of Nodes Used in Problem
C Lines = Number of Lines Used in Problem
C Nelmts = Number of Element in Model for grid nodes
C Nelmt2s = Number of Element in Model for lines
C Nmeis = Number of Z-Mei Cell in Model
C Nmei2s = Number of XY-Mei Cell in Model
C X, Y = Nodal Coordinates
C Xedge,Yedge = Edge Coordinate
C ceps = The permitivity of elements
C urs = The permeability of elements
C Potent = Nodal and Line Potential Array
C NVTX = List of Nodes for Each Element
C NETX = List of Lines for Each Element
C NVMEI = List of Nodes for Each Z-MEI cell
C NVMEI2 = List of Edges for Each XY-MEI cell
C Cphi = The 6 E-field on edges due to 6 metrones
C Cmei = The MEI solution for each MEI node(edge)
C
C
C======================================================================
C GLOBAL DECLARATION -- SAME IN ALL PROGRAM SEGMENT
C======================================================================

Parameter(maxnod=509,maxlin=1412,maxelm=928,maxmei=128)
complex cpotent, cs, mts,cphi,cmei,ceps
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complex tel,sel
common /params/ ierr,nxy
common /problm/ nodes, nelmts, nmeis, ncons, x(maxnod), y(maxnod),
1 xedge(maxlin),yedge(maxlin),lines,nelmt2s,
1 ceps(maxelm),nmei2s, nvmei2(8,maxmei),
1 urs(maxelm), iedge1(maxlin), iedge2(maxlin),
2 nvtx(3,maxelm), nvmei(8,maxmei), netx(3,maxelm)
common /matrix/ cs(maxnod+maxlin,maxnod+maxlin),
1 mts(maxlin,maxlin)
common /workng/ sel(3,3), tel(3,3), intg(8),
1 cphi(8,maxnod), cmei(8,maxmei),
2 cphi2(8,maxlin), cmei2(8,maxmei)

C======================================================================
real wr(maxlin),wi(maxlin)
complex lambda,bx(maxlin,maxlin),exy(maxlin)
complex tp2(maxnod,maxnod), tp3(maxnod,maxlin)

c integer indx(maxnod)
C
C Identify and open input/output files

open(unit=1,iostat=inrr,file='meifile',status='old',
1 access='sequential',form='formatted')
open(unit=11,iostat=inrr,file='mei2file',status='old',

1 access='sequential',form='formatted')
open(unit=21,iostat=inrr,file='pecnfile',status='old',

1 access='sequential',form='formatted')
open(unit=2,iostat=inrr,file='elem2file',status='old',

1 access='sequential',form='formatted')
open(unit=13,iostat=inrr,file='ufile',status='old',

1 access='sequential',form='formatted')
open(unit=23,iostat=inrr,file='epsfile',status='old',

1 access='sequential',form='formatted')
open(unit=3,iostat=inrr,file='elemfile',status='old',

1 access='sequential',form='formatted')
open(unit=4,iostat=inrr,file='nodefile',status='old',

1 access='sequential',form='formatted')
open(unit=14,iostat=inrr,file='edgefile',status='old',

1 access='sequential',form='formatted')
open(unit=5,iostat=inrr,file='input',status='old',

1 access='sequential',form='formatted')
open(unit=15,iostat=inrr,file='inputeigen',status='old',

1 access='sequential',form='formatted')
open(unit=6,iostat=inrr,file='output',status='unknown',

1 access='sequential',form='formatted')
open(unit=7,iostat=inrr,file='echo',status='unknown',

1 access='sequential',form='formatted')
open(unit=71,iostat=inrr,file='exy.m',status='unknown',

1 access='sequential',form='formatted')
open(unit=72,iostat=inrr,file='exy2.m',status='unknown',

1 access='sequential',form='formatted')
read(5,119) h,t,h12,w,rf

119 format(e10.4,/e10.4,/e10.4,/e10.4,/e10.4)
read(5,129) er,ur,rcu

129 format(f6.1,/f6.1,/e10.4)
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write(7,208) h,t,h12,w,rf,er,ur,rcu
208 format(//1x,' Check if the input data are correct:'

! /1x,10x,'h=',e11.4,3x,'t=',e11.4,'h12=',e11.4,
! /1x,10x,'w=',e11.4,3x,'f=',e11.4,
! /1x,10x,'er=',e11.4,3x,'ur=',e11.4,
! /1x,10x,'rcu=',e11.4)

C
C-------- Input the structure dimensions -----------
C
c f=(1e9)*2
C RK is the wavenumber in air
C

er=7.55
RK=20.944*2.0

C------------------------------------------------------------
C Fetch Data for the edges, nodes location and material
C properities
C------------------------------------------------------------

call meshin(RK,lambda,er)
C
C------------------------------------------------------------
C Initial the Matrix Equation before calculation
C------------------------------------------------------------

call matinit(nodes+lines,nodes+lines,lines)
C
C************************************************************
C------------------------------------------------------------
C Assemble Global Matrix Cell by Cell
C------------------------------------------------------------
C************************************************************

do 40 i=1,nelmt2s
ie=i

C
C------------------------------------------------------------
C Constructs Element Matrices in part I of [Ktt]
C (Equation 3.15)
C------------------------------------------------------------

call ktt1atr(ie,RK)
C
C------------------------------------------------------------
C Embed part I of [Ktt] into Global Matrix CS
C------------------------------------------------------------

call ktt1bd(ie)
40 continue

C
do 42 i=1,nelmt2s

ie=i
C
C------------------------------------------------------------
C Constructs Element Matrices in part II of [Ktt]
C (Equation 3.15)
C------------------------------------------------------------

call ktt2atr(ie,RK)
C
C------------------------------------------------------------
C Embed part II of [Ktt] into Global Matrix CS
C------------------------------------------------------------

call ktt2bd(ie)
42 continue

C
do 44 i=1,nelmts

ie=i
C
C------------------------------------------------------------
C Constructs Element Matrices in [Ktz] (Equation 3.16)
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C------------------------------------------------------------
call ktzatr(ie,RK)

C
C------------------------------------------------------------
C Embed [Ktz] into Global Matrix CS
C------------------------------------------------------------

call ktzbd(ie)
44 continue

C
do 46 i=1,nelmts

ie=i
C
C------------------------------------------------------------
C Constructs Element Matrices in [Kzz] (Equation 3.17)
C------------------------------------------------------------

call kzzatr(ie,RK)
C
C------------------------------------------------------------
C Embed [Kzz] into Global Matrix CS
C------------------------------------------------------------

call kzzbd(ie)
46 continue

C
do 48 i=1,nelmt2s

C Construct Elements S and T matrix
ie=i

C
C------------------------------------------------------------
C Constructs Element Matrices in [Mtt] (Equation 3.13)
C------------------------------------------------------------

call mttatr(ie,RK)
C
C------------------------------------------------------------
C Embed [Mtt] into Global Matrix CS
C------------------------------------------------------------

call mttbd(ie)
48 continue

C************************************************************
C------------------------------------------------------------
C End of Assembling Global Matrix Cell by Cell
C------------------------------------------------------------
C************************************************************
C
C
C------------------------------------------------------------
C Apply the Mei Boundary on the node elements
C------------------------------------------------------------

call metrone(RK,er,w,t,h,h12,kiter)
C
C------------------------------------------------------------
C Apply the MEI Boundary to the edge elements
C------------------------------------------------------------

call metroneedge(RK,er,w,t,h,h12,kiter)
C
C------------------------------------------------------------
C From the eigenvalue matrix equation with
C 3-component MEI boundary condition
C------------------------------------------------------------

call Form(bx,tp2,tp3)
C
C------------------------------------------------------------
C Solve the Eigenvalue and Eigenvector by using
C QR decomposition
C------------------------------------------------------------

call eigen(wr,wi,lambda,bx,exy,tp2,tp3)
C
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C------------------------------------------------------------
C Output the eignevalu and eigenvector of the
C Lowest propagation mode
C------------------------------------------------------------

do 205 i=1,lines
write(6,207)i,wr(i),wi(i),sqrt(cmplx(wr(i),wi(i)))

207 format('eigenvalue(',i4,')=',e11.4,2x,e11.4,4x,
! 'gamma= ',e11.4,2x,e11.4)

205 continue
write(7,208) h,t,h12,w,rf,er,ur,rcu
stop
end
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