
Concurrent Timing Optimization of

Latch-Based Digital Systems 1

Hong-Yean Hsieh, Wentai Liu, Ralph K. Cavin

Electronics Research Laboratory

Department of Electrical and Computer Engineering

North Carolina State University

Raleigh, NC 27695-7911

Abstract

Many design techniques have been proposed to optimize the performance of a digital system

implemented in a given technology. Each of these techniques can be advantageous in particular appli-

cations, and they are often applied individually to enhance performance. Previous results had shown

that signi�cant enhancement could be achieved when several optimizations were applied concurrently

to systems with edge-triggered ip-ops. However concurrent optimization framework does not exist

for systems with transparent latches. It motivates us to formulate the concurrent optimization as

a mixed integer linear programming for digital systems with transparent latches. This methodology

is applicable to optimize a broad range of digital systems originally designed under either single or

multi-phase clocking. In addition, we present a new optimization technique - resynchronization, which

allows the insertion of latches in the shortest paths and thus avoids race condition. As a result, our

framework is ready to include the resynchronization technique. Our formulation has been applied to

several design examples and is able to signi�cantly reduce the clock period.

1This research is partially supported by NSF grant MIP-92-12346



1 Introduction

Optimization for clock period is crucial in high performance digital systems. Various techniques for

clock period reduction have been proposed, including transistor sizing, logic resynthesis, intentional

clock skew [4], cycle stealing with transparent latches [6, 9, 11, 13], retiming [5], and wave pipelin-

ing [16, 17, 18, 19, 20]. Each of these techniques can be advantageous in particular applications, and

they are often applied individually to enhance performance. The work [2] presented a framework for

timing optimization by simultaneously applying retiming, intentional clock skew, and wave pipelining

for a system with edge-triggered ip-ops (registers). As a result, the concurrent application of op-

timization techniques achieves signi�cantly reduced clock period. In contrast, the characteristic of a

transparent latch is di�erent from that of a register. Mathematical constraints and thus framework of

concurrent optimization for latch-based designs do not exist. Accordingly this paper mainly focuses

on the concurrent optimization of designs with either single-phase or multi-phase transparent latches,

hereafter called latches.

Digital designs usually take advantage of the transparency property of latches to reduce the

clock period of a system by the technique of cycle stealing. A combinational block can borrow a portion

of cycle time from its neighboring one, thus e�ectively reducing the clock period. This implies that

there might be two \waves" of data presented in a combinational block that, in a sense, is a type of wave

pipelining. Also, as proposed by Fishburn [4], the insertion of intentional clock skew introduces another

type of wave pipelining in a combinational block. Due to more stringent synchronization requirement

for wave pipelining, previous works on wave pipelining are restricted to register based designs with few

exceptions [21, 22]. However, works in [21, 22] deal with a circular wave pipelined loop with latches

by using a special clocking scheme, called coincident clocking, and a set of prede�ned clock skews.

Our new formulation di�ers from the previous ones [21, 22] in three aspects: (1) a general system

including feedback loops and reconvergent fanout paths is handled; (2) clock skew is not prede�ned

but is optimized so that the clock period is minimal; and (3) the number of data waves in each

combination block depends on its capacity and the system in the optimization process, rather than

being prede�ned. In a sense, our formulation is the �rst one, to our knowledge, for wave pipelining in

a general system with latches.

Retiming equalizes propagation delays of di�erent stages of a system by relocating registers

or latches [5]. Further reduction of the clock period is possible by combining retiming with other
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techniques [1, 13, 14, 15]. Insertion of latches in the shortest paths could remove race conditions

and thus reduce the clock period. This new technique is called resynchronization. In this paper,

we present a mixed integer linear programming formulation in which concurrent optimization by (1)

intentional clock skew, (2) wave pipelining, and (3) either retiming or resynchronization is formulated

for latch-based designs.

Due to process and environmental variations, it is unavoidable that design parameters, such

as the longest and shortest propagation delays of a gate, intentional clock skews, etc., would deviate

from the speci�cations. In order to optimize the yield of a design, tolerance to these variations should

be maximized. The tolerance can be quantitatively measured by safety margin, �, by which the clock

occurrence is allowed to deviate from the design speci�cation time, t. As pointed out by work [2],

safety margin can be maximized by increasing the system clock period, prolonging the short paths,

and/or reducing the long paths of a design. However, for a design of which the clock period is valid only

for an interval, (i.e. it is bounded above), this amount can no longer increase when the system clock

period is beyond the interval. To avoid this, a system should be designed carefully and veri�cation

criteria must be developed. The criteria can be established in terms of the number of latches at each

edge.

This paper is organized as follows. Section 2 de�nes the terminologies used for retiming,

transparent latches, and wave pipelining. In Section 3, we discuss in detail the di�culty and complexity

incurred by feedback loops and reconvergent fanout paths when optimizing single or multi-phase

designs via wave pipelining. Section 4 provides a graph model for a pipelined system with �xed

locations of latches. When optimizing wave pipelined systems, LP constraints are formulated to

preserve these systems' functionality and temporality. In Section 5, these constraints are modi�ed to

accommodate the retiming process in the optimization formulation. In Section 6, the motivation of

resynchronization is discussed �rst and then the corresponding mixed integer formulation is presented.

In Section 7 the safety margin of a design is de�ned and its upperbound is derived. Section 8 establishes

the criteria to verify if the feasible clock period is unbounded above and then shows the necessary

conditions under which the safety margin will exempt from saturation as the clock period increases.

Experimental data for other circuits is provided in Section 9. Finally, directions for future research

are given.

For clarity, all the proofs will be put in the appendix.
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Figure 1: (a) A System View (b) A Circuit

2 Background

In this section, we �rst de�ne the proposed timing model and the variables used here. Then a brief

literature review for retiming, transparent latch, and wave pipelining is given.

2.1 Timing Model

The longest propagation delay, tmax(v), and the shortest propagation delay, tmin(v), are de�ned over

every gate or combinational block, which is referred to as a node v in this paper. These amounts

are assumed to be measured under worst case conditions. Although the timing model assumes the

constant longest and shortest propagation delays for all input-output pairs of an individual node, it

can be easily generalized to the case in which propagation delays for input-output pairs of a node are

not equal.

2.2 De�nitions of Variables

As shown in Fig. 1(a), a host machine applies data, di, to a pipelined system through external input

registers at time i � c, where c is the system cycle time, and extracts data from it through external

output registers. Unless stated explicitly, these external registers will not be shown in �gures. Data di

arrives at node v through di�erent paths. Calculated from the host, variables s(v) and b(v), the latest

and earliest arrival times respectively at the output of node v, are de�ned as follows:

s(v) = the longest path delay to the output of node v plus i � c

b(v) = the shortest path delay to the outputs of node v plus i � c

For a circuit shown in Fig. 1(b), node v is connected to node w through a latch. The time for

the latching and enabling edge (de�ned in Fig. 2(a)) to capture data di is denoted by l(v) and e(v)
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Figure 2: (a) A Typical Clock Phase (b) A Multiple Phase System (external input registers are shown

in the �gure.)

respectively. The latest departure time, D(v), of this latch is de�ned as the latest time of data di

available at node w. Similarly, the earliest departure time, d(v), is de�ned as the earliest time of data

di available at node w.

2.3 Retiming

Retiming is a technique which can improve circuit performance by relocation of latches or registers [5].

In a directed graph, node v represents a combinational block and a directed edge, e(u; v) or u
e
! v,

represents the connection between u and v. In this case, u is called a fan-in node of v, and v is a

fanout node of u. Edge e(u; v) is a fan-in edge of node v and a fanout edge of u. The weight, w(e), is

the number of latches associated with edge e(u; v). At node v, the retiming process moves an equal

number of latches, represented by an integer variable r(v), from every fanout edge to every fan-in

edge. After retiming, the number of latches with an edge u
e
! v is w(e)�r(u)+r(v). A valid retiming

process must preserve the property of nonnegative edge weight and is represented mathematically by

w(e)� r(u) + r(v) � 0 for all edges u
e
! v

2.4 Transparent Latch Models

Transparent latches provide advantages over registers in digital system designs. For example, the area

of a latch is generally smaller than that of a register. Also, cycle stealing is only possible with latches.

Refer to the example shown in Fig. 1(b) and assume that the propagation delay, setup time and hold

time of a latch are all equal to 0. Several models [6, 7, 8, 9, 11], shown in Table 1, have been proposed

to verify or optimize latch-based designs. The model shown in the second column is adopted by this

paper. Since SMO model results in a non-convex solution set, which in turn leads to the problem of
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Unger and Tan's Model Adopted Model SMO Model

D(v) = l(v) D(v) = max fe(v); s(v)g D(v) = max fe(v); s(v)g

d(v) = e(v) d(v) = e(v) d(v) = max fe(v); b(v)g

Table 1: Various Models for Latch-Based Designs

reachability and startability [10, 21], it will not be considered here.

2.5 Wave Pipelining in Latch-Based Designs

Wave pipelining is a timing methodology used in digital systems to achieve maximal rate operation [4,

16, 17, 18, 19, 20]. Using this technique, new data is applied to the inputs of a combinational block

before the previous result is clocked out, thus e�ectively pipelining the logic and maximizing the

utilization of the logic without inserting latches or registers.

Applying wave pipelining to latch-based designs imposes new constraints. For explanation,

constraints are referred to Fig. 1(b). In order to capture data di correctly, the latest arrival time,

s(v), at node v should be smaller than or equal to the latching time, l(v), minus the setup time of the

latch. This is also known as the zero clocking constraint [4]. In order to prevent the later data from

overriding the previous data, the earliest arrival time, b(v), at node v plus clock period, c, should be

greater than or equal to the sum of l(v) and the hold time of this latch. This is also known as the

double clocking constraint [4].

3 Calculation of Shift of Time Origin

In this section, issues related to wave pipelining in a system containing feedback loops and reconvergent

fanout paths are discussed. We �rst consider designs with single phase and then multi-phase clocking.

Although these issues are discussed with latch-based designs, they are also true for register based

designs.

As shown in Fig. 1(a), for a path p from the host to node v, temporality, '(v; p), is de�ned as

follows [12]:

De�nition 1 Temporality, '(v; p), is de�ned as the number of clock cycles for a data originating from

the host to reach node v along path p.

3.1 Single Phase Designs
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Original Formulas Relaxed Formulas

s(t) = max fs(p); s(q0)g+ tmax(t) s(t) � s(p) + tmax(t) and s(t) � s(q0) + tmax(t)

b(t) = min fb(p); b(q0)g+ tmin(t) b(t) � b(p) + tmin(t) and b(t) � b(q0) + tmin(t)

Table 2: Original and Relaxed Formulas

In this subsection, designs with a single phase clocking are investigated. Fig. 3(a) shows an example

in which there are n latches along the feedback loop. If no skew is allowed at these latches, data di�n

arrives at node 1 at the i-th cycle when it traverses the feedback loop once. Thus both di�n and di are

simultaneously available at node 1. If di�n interferes with either di+1 or di�1 (n 6= 1) after applying

wave pipelining, then the system might function incorrectly. In order to preserve the functionality

of a wave pipelined system, there should be n waves of data in the system. If the system supports

m �n waves of data (m is a positive integer), correct operation can be obtained if the system includes

an additional m � 1 multiplexer and 1 �m demultiplexer such that input/output data are carefully

scheduled via multiplexer/demultiplexer. In this paper, m is de�ned as the multiplexing degree of a

pipelined system. It is clear that with this new construct, di should be paired with di�m�n, instead of

di�n (if m > 1).

Fig. 3(b) shows the case of a system with two reconvergent fanout paths, which are de�ned as

two simple paths sharing both start and end nodes, and form a semi-loop in graph terminology. Thus

these two terms are used interchangeably in this paper. In our example, data arrives at node t by

traversing either p or q latches (excluding the external registers). Note that a feedback loop can be

regarded as a special case of semi-loop (i.e. p = n, q = 0). In a single phase pipelined system, di

arrives at node t via the top route after p cycles meanwhile di�(q�p) arrives at node t via the bottom

route. In the process of wave pipelining, this property should be taken into account.

When the value of q� p is 0, variables s(t) and b(t) at node t are derived from its fan-in nodes

respectively and shown in the �rst column of Table 2. The result is derived with an assumption that
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there are no latches at edges e(p; t) and e(q0; t). As shown in the second column of Table 2, it has been

proven that operators max and min can be replaced with operators � and � respectively such that

the solution set for c is neither expanded nor shrunk [8, 18]. If the value of q � p is not 0, a suitable

amount should be subtracted from variables s and b at the fan-in nodes of node t. This is discussed

in the next paragraph. There are two alternative routes taken by di. Constraint formulation based on

either of these two routes is plausible. Thus constraint formulation can be done by arbitrarily choosing

the alternatives.

If di reaches node t by the top route, constraints derived along the bottom one for node t, are

applicable if the values of variables s(q0) and b(q0) are reduced by the amount of (q � p)c �rst. This

e�ectively preserves the constraint that di should be paired with di�(q�p) at node t when m = 1. In

a pipelined system with a multiplexing degree m, the correct amount of reduction is m(q � p)c. The

amount of m(q� p) is then referred to as the shift of time origin for the bottom route. Similarly, if di

reaches node t by bottom route, the shift of time origin for the top route should be m(p� q).

For a single phase clocking design as shown in Fig. 3(b), temporality '(t; top path) is p+1 and

temporality '(t; bottom path) is q + 1. The shift of time origin can be de�ned as follows:

De�nition 2 With reconvergent fanout paths of u
p
! v and u

q
! v, the shift of time origin for path p

is m('(t; p)� '(t; q)) and for path q is m('(t; q)� '(t; p)), where m is the multiplexing degree.

In a general pipelined system, a spanning tree is identi�ed �rst. Then each of the remaining

edges, called chord, de�nes a semi-loop. The shift of time origin associated with each chord is then

calculated accordingly.

3.2 Multi-Phase Designs

In a design with n-phase clocking, di�erent phases �i are ordered in a prede�ned sequence such that

lg(1) � lg(2) � lg(3) � � � � lg(n � 1) � lg(n), where lg(i) represents the latching time of phase �i,

1 � i � n [8, 11]. It is worth pointing out that lg(i) is de�ned in a global reference frame such that

0 < lg(i) � c, and di�ers from the one de�ned in Section 2.2. When latch sx with phase �i feeds

directly to latch sy with phase �j , if lg(i) < lg(j), data departing from latch sx should be captured by

the immediately following latching edge at latch sy . Otherwise, it should be captured by the latching

edge in the next clock cycle. Here external registers are assumed to latch data at phase �1.

Assume that at most only one latch is at each edge. If there is no latch at edge e(u; v),
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the temporality, '(e(u; v); p), for an edge e(u; v) is de�ned as the number of clock cycles for a data

originating from the host to reach node u along path p. If there exists a latch at edge e(u; v), it

is de�ned as the number of clock cycles for a data along path p to the output of this latch. The

temporality of a node can then be de�ned recursively with the temporality of an edge. For node v

with its fan-in edge e(u; v) along path p, '(v; p) is de�ned as follows:

'(v; p) =

(
0 if v is a host

'(e(u; v); p) otherwise

Let �(e(u; v); p) denotes the clock phase of the last latch along path p to node u. If there exists a latch

at edge e(u; v), �(e(u; v); p) denotes the clock phase of the latch at edge e(u; v). If not, �(e(u; v); p)

will be set to n + 1. To meet the boundary condition, �(e(u; v); p) is initially set to n + 1. The

temporality of an edge, '(e(u; v); p), is de�ned as follows:

'(e(u; v); p) =

(
'(u; p) if lg(�(e(u; v); p))< lg(�(e(u; v); p))

'(u; p) + 1 otherwise

A four phase design example is shown in Fig. 2(b). Along the top path, the temporality of node

N7 is 2. In contrast, the temporality along the bottom path is 3. The temporality for each node and

edge is shown in the �gure. It should be noted that this de�nition assumed that external registers are

shown explicitly in the graph.

For a multi-phase design, if the latches that fan in to a node have the same phase, the shift of

time origin of reconvergent fanout paths can then be calculated without ambiguity by calculating the

temporality of each path.

4 Clock Optimization via Wave Pipelining of Latch-Based Designs

In this section, based on the graph model, we develop constraints required for wave pipelining in

latch-based pipelined systems.

4.1 Graph Model for Pipelined Systems

A pipelined system is modeled as a directed graph G = (V; Vfo1; Vfo2; Vl; Vpi; Vpo; E; w; tmax; tmin; os),

where

V set of functional nodes in the pipelined system

Vfo1 set of dummy fanout nodes (explained later)

Vfo2 set of dummy fanout nodes (explained later)
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Figure 4: (a) A RISC Design (b) The Graph Model (c) Revised Graph Model

Vl set of dummy loop nodes (explained later)

Vpi vertex set as a host which drives primary inputs

Vpo vertex set as a host which is driven by primary outputs

E set of directed edges

w edge weight (number of latches at each edge)

tmax(v) longest propagation delay at each node v of V [ Vfo1 [ Vfo2 [ Vpo

tmin(v) shortest propagation delay at each node v of V [ Vfo1 [ Vfo2 [ Vpo

os(v) shift of time origin at each node v of Vl if its multiplexing degree is 1

A functional node refers to either a gate or a complex module. Vertex sets of Vpi and Vpo depend

on the system under study. In a closed system such as Fig. 4(a), they are empty sets. Otherwise, all

primary inputs of a system are driven through external input registers by a host node, v 2 Vpi, while

all primary outputs are sent through external output registers to a host node, v 2 Vpo. All external

input registers are assumed to be clocked without skew among them, and so are external output

registers. Therefore, these external registers will not be shown in graph model, and for simplicity their

propagation delays are assumed to be 0. But the model can easily be extended to the case of di�erent

latching times for each external register. The example shown in Fig. 4(a) is a RISC microprocessor

design with single phase clocking scheme. Fig. 4(b) illustrates its graph model of the latch-based

design. The solid lines and nodes form a spanning tree and the dotted lines are chords. The register

at edge e(7; 3) shown in Fig. 4(a) is a register �le. By combining the formulation described in work [2],

it can be optimized as a register. But for simplicity, it is modeled by two latches in this paper. Three
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kinds of dummy nodes are created in the model. A dummy node vf1 2 Vfo1 is inserted in an edge

e(u; v) if there are more than one fanout edge for node u and w(e) � 1. This removes the restriction of

applying the same latching time to the latches at every fanout edge of node u. In this procedure, edge

weight w(e(u; vf1)) is set to 0 and w(e(vf1; v)) is w(e). If more than one latch is required to appear at

edge e(u; v) (e.g. edge e(7; 3)), another dummy node vf2 2 Vfo2 can be inserted to keep at most one

latch appearing at each edge. Edge weight w(e(u; vf2)) is then set to 1 and w(e(vf2; v)) is w(e)� 1.

For node v 2 Vfo1[ Vfo2[ Vpo, tmax(v) and tmin(v) are set to 0. As explained in the previous section,

a chord, e(u; v), de�nes a loop or semi-loop in a spanning tree. A dummy loop node vl 2 Vl is inserted

along the chord if the shift of time origin is not equal to 0. The shift of time origin for node vl with a

multiplexing degree of 1 is os(vl). In this insertion process, edge weight w(e(u; vl)) is set to zero and

w(e(vl; v)) is w(e).

4.2 Constraints for Wave Pipelining Latch-Based Designs

Constraints for valid wave pipelining in latch-based designs are presented in this section. These

constraints are classi�ed into the categories of pulse width, delay, synchronization, loop/semi-loop,

latching, initiation, and temporal equivalence.

Let ts and th denote the setup time and hold time of a latch. And tcl, tcs, and tdl denote the

longest propagation delay from clock input, shortest propagation delay from clock input, and longest

propagation delay from data input to the output of a latch. The minimum allowable pulse width is

denoted by wl. Variables s(v) and b(v) are the latest and earliest arrival times respectively at the

output of node v. For a node u connected to another node through a latch, e(u) represents the time

for the enabling edge of this latch. The width of the active period is represented by ch, and c is the

clock period. To simplify the design of a clock generator, all clocks use the same active period, ch.

pulse width constraints:

ch � wl (1)

c� ch � wl (2)

delay constraints:

s(u) + tmax(v) � s(v) for u
e
! v and v 2 V [ Vfo1 [ Vfo2 [ Vpo and w(e) = 0 (3)

b(v) � b(u) + tmin(v) for u
e
! v and v 2 V [ Vfo1 [ Vfo2 [ Vpo and w(e) = 0 (4)

synchronization constraints:

s(u) + tmax(v) + tdl � s(v) for u
e
! v and v 2 V [ Vfo2 [ Vpo and w(e) = 1 (5)
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e(u) + tmax(v) + tcl � s(v) for u
e
! v and v 2 V [ Vfo2 [ Vpo and w(e) = 1 (6)

b(v) � e(u) + tmin(v) + tcs for u
e
! v and v 2 V [ Vfo2 [ Vpo and w(e) = 1 (7)

loop/semi-loop constraints:

s(v) = s(u)�m � os(v) � c for u
e
! v and v 2 Vl (8)

b(v) = b(u)�m � os(v) � c for u
e
! v and v 2 Vl (9)

latching constraints:

s(u) � e(u) + ch � ts for u
e
! v and w(e) = 1 (10)

e(u) + ch + th � b(u) + c for u
e
! v and w(e) = 1 (11)

s(v) + ts + th � b(v) + c for v 2 Vpo (12)

initiation constraint:

b(v) � s(v) v 2 Vpi (13)

temporal equivalence constraint: optional

s(v) + ts � s(u) = (k � 1) �m � c u 2 Vpi and v 2 Vpo (14)

Pulse width constraints restrict the minimum allowable pulse width. Delay and synchronization

constraints de�ne the timing relationship between node v and its fan-in node u. This depends on if

there exists a latch in the edge e(u; v). Constraint (3) speci�es that if w(e) = 0, the latest arrival

time, s(v), must be greater than or equal to the sum of the latest arrival time, s(u), and the longest

propagation delay, tmax(v), of node v. If w(e) = 1, as shown in constraint (5), the latest arrival time,

s(v), should be greater than or equal to the sum of s(u), tmax(v), and the propagation delay, tdl, of

the latch. Due to the synchronization requirement, as shown in constraint (6), s(v), should also be

greater than or equal to the sum of the time for the enabling edge, e(u), tmax(v), and the propagation

delay, tcl, of the latch. Constraint (4) speci�es that if w(e) = 0, the earliest arrival time, b(v), must

be less than or equal to the sum of the earliest arrival time, b(u), and the shortest propagation delay,

tmin(v), of node v. Otherwise, b(v), must be less than or equal to the sum of e(u), tmin(v), and the

propagation delay, tcs, of the latch. Loop/semi-loop constraints incorporate the e�ects of semi-loops

and feedback loops. Constraints (10) and (11) prevent the setup time and hold time violation of a

latch respectively. Constraint (12) ensures that double clocking doesn't happen in the external output

registers whose latching time is s(v)+ ts where v 2 Vpo. If external temporal equivalence is preserved,

temporal equivalence constraint should be satis�ed where k is the temporality along the path in the

spanning tree from node u 2 Vpi to node v 2 Vpo [12].
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(a)
c = 6ns, c  = 1nsh

5/1 2/1 3/2 3/1

: latch

0.0 0.5 0.5

(b)
hc = 5ns, c  = 1.16ns

5/1 2/1 3/2 3/1
0.67 0.00 1.34

(c)
c = 5ns,  c  = 1.5nsh

5/1 2/1 3/2 3/1
0 4 2 2

Figure 5: Retiming of a Circular Loop: ts = th = 0:5ns (a) Before Retiming, wl = 1ns (b) After

Retiming, wl = 1ns (c) Resynchronization, wl = 1:5ns (number shown in a box near to a latch is

the skew for latching edge. Numbers shown inside a node represent longest and shortest propagation

delays.)

5 Clock Optimization via Retiming

In the previous section, an LP is formulated for clock period minimization if the locations of the latches

are �xed. Retiming reduces the clock period by means of re-positioning latches or registers. Inclusion

or modi�cation of constraints is needed in LP formulation to allow retiming and wave pipelining to be

applied to latch-based designs simultaneously. The optimization formulation becomes a mixed integer

LP problem.

5.1 Retiming Example

For a circular loop as shown in Fig. 5(a), the optimal clock period is 6ns if 3 waves of data are

propagating around the loop. For simplicity, the propagation delays of the latches are set to 0. By

moving one latch from the fanout edge of the second node to its fan-in edge as shown in Fig. 5(b), the

optimal clock period is reduced to 5ns. It can be seen that re-positioning latches can further reduce

the clock period.

5.2 Mixed Integer LP Formulation of Retiming

Since no advanced information about latches' positions is available after applying retiming, the graph

model must be modi�ed accordingly. For a node with multiple fanout edges, a dummy node is inserted

at each fanout edge. For example, Fig. 4(c) illustrates the modi�ed graph model for the system shown

in Fig. 4(a). In this example, at most only one latch will appear at each edge.

For an edge u
e
! v, retiming sets the number of latches at edge e to w(e)� r(u) + r(v), which

must be a nonnegative integer. These retiming constraints are expressed as follows:

w(e) = r(u)� r(v) for u
e
! v and v 2 Vfo1 [ Vl (15)

w(e) � r(u)� r(v) for u
e
! v and v 2 V [ Vfo2 [ Vpo (16)

12



w(e) � r(u)� r(v) + 1 for u
e
! v and v 2 V [ Vfo2 [ Vpo (17)

As described in Section 4.1, node v 2 Vfo1 is used to remove the restriction of applying the same

latching time to the latches on every fanout edge of node u, and node v 2 Vl is used to subtract the

amount of the shift of time origin with the chord. Therefore, by de�nition, the number of latches at

the fan-in edge of node v 2 Vfo1[Vl is set to 0 as shown in constraint (15). After retiming, constraints

(16) and (17) restrict the number of latches at an edge to either zero or one. For some special cases

such as w(e(7; 3)) in Fig. 4(a), the edge weight can be set accordingly.

Some constraints formulated in the proceeding section will be modi�ed by including these new

integer variables r(v). Thus, the constraint set becomes as follows:

delay constraints:

s(u) + tmax(v) � s(v) for u
e
! v and v 2 V [Vfo1[Vfo2[Vpo andw(e)=r(u)�r(v) (18)

b(v) � b(u) + tmin(v) for u
e
! v and v 2 V [Vfo1[Vfo2[Vpo andw(e)=r(u)�r(v) (19)

synchronization constraints:

s(u) + tmax(v) + tdl � s(v) for u
e
! v and v 2V [Vfo2[Vpo andw(e)=r(u)�r(v)+1(20)

e(u) + tmax(v) + tcl � s(v) for u
e
! v and v 2V [Vfo2[Vpo andw(e)=r(u)�r(v)+1(21)

b(v) � e(u) + tmin(v) + tcs for u
e
! v and v 2V [Vfo2[Vpo andw(e)=r(u)�r(v)+1(22)

latching constraints:

s(u) � e(u) + ch � ts for u
e
! v and w(e) = r(u)� r(v) + 1 (23)

e(u) + ch + th � b(u) + c for u
e
! v and w(e) = r(u)� r(v) + 1 (24)

Since the constraint set contains qualifying clauses, we are going to develop a transformation to

remove these clauses. In order to make the transformation to be a mixed integer LP, two constraints

are added to the delay constraint set, and then the qualifying clauses in constraints (23) and (24) are

removed. Lemma 1 shows the conditions that preserve the solution set of the clock period. Note that

variable e(u) appears only in the original constraint set when u
e
! v and w(e) = r(u)� r(v)+1. With

the additional constraints, e(u) is de�ned for each node u 2 V [ Vfo1 [ Vfo2 [ Vl.

delay constraints:

e(u) + tmax(v) � s(v) for u
e
! v and v 2V [Vfo1[Vfo2[Vpo andw(e)=r(u)�r(v) (25)

b(v) � e(u) + tmin(v) for u
e
! v and v 2V [Vfo1[Vfo2[Vpo andw(e)=r(u)�r(v) (26)
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latching constraints:

s(u) � e(u) + ch � ts u 2 V [ Vfo1 [ Vfo2 [ Vl (27)

e(u) + ch + th � b(u) + c u 2 V [ Vfo1 [ Vfo2 [ Vl (28)

Lemma 1 For the new constraint set as described above, if ch � ts and c�ch � th, the solution space

of clock period c is identical to the original one.

The other qualifying clauses can be removed by appropriate transformation described in the

following theorem.

Theorem 1 A pipelined system is de�ned by G. If G has a multiplexing degree of m, ch � ts,

c � ch � th, and ch + th � tcs, then G operates correctly at clock period c if and only if there exists

a feasible solution for the following mixed integer LP constraints, where R; T;X; ch are real variables

and r is an integer variable.

retiming constraints: same as constraints (15), (16), and (17)

pulse width constraints: same as stated in Section 4.2

delay constraints:

R(u)�R(v) + r(u)� r(v) � �
tmax(v)

c
for u

e
! v and v 2 V [ Vfo1 [ Vfo2 [ Vpo (29)

X(u)�R(v) + r(u)� r(v) � �
tmax(v)

c
for u

e
! v and v 2 V [ Vfo1 [ Vfo2 [ Vpo (30)

T (v)� T (u) � w(e) +
tmin(v)

c
for u

e
! v and v 2 V [ Vfo1 [ Vfo2 [ Vpo (31)

T (v)�X(u) � w(e) +
tmin(v)

c
for u

e
! v and v 2 V [ Vfo1 [ Vfo2 [ Vpo (32)

synchronization constraints:

R(u)� R(v) � �
tmax(v)

c
�
tdl

c
� w(e) + 1 for u

e
! v and v 2 V [ Vfo2 [ Vpo (33)

X(u)� R(v) � �
tmax(v)

c
�
tcl

c
� w(e) + 1 for u

e
! v and v 2 V [ Vfo2 [ Vpo (34)

T (v)�X(u)� r(u) + r(v) �
tmin(v)

c
+
tcs

c
for u

e
! v and v 2 V [ Vfo2 [ Vpo (35)

loop/semi-loop constraints:

R(v)�R(u) = �m � os(v) for u
e
! v and v 2 Vl (36)

T (v)� T (u) = �m � os(v) for u
e
! v and v 2 Vl (37)
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latching constraints:

R(u)�X(u)�
ch

c
� �

ts

c
for u 2 V [ Vfo1 [ Vfo2 [ Vl (38)

X(u)� T (u) +
ch

c
� �

th

c
+ 1 for u 2 V [ Vfo1 [ Vfo2 [ Vl (39)

R(v)� T (v) � �
ts

c
�
th

c
+ 1 for v 2 Vpo (40)

initiation constraint:

T (v)� R(v) � 0 v 2 Vpi (41)

temporal equivalence constraint: optional

R(v)�R(u) = �
ts

c
+ (k � 1) �m u 2 Vpi and v 2 Vpo (42)

Proof: These mixed integer LP constraints can be obtained by substituting c(R(v) + r(v)) for s(v),

c(T (v) + r(v)) for b(v), and c(X(v)+ r(v)) for e(v). The details will be given in appendix 2

The above theorem is only valid if ch � ts, c� ch � th, and ch+ th � tcs. Also, these conditions

are implied by wl � ts, wl � th, and wl + th � tcs, which are true for most practical designs.

6 Clock Optimization via Resynchronization

With the insertion of latches, the clock period can be reduced by (1) introducing pipelining along the

longest paths, or (2) providing synchronization on the shortest paths of a design. The �rst reason is the

basis for conventional pipelining in a combinational logic. The latter one is called resynchronization

and was not studied vigorously. As shown in this section, the optimal resynchronization is also a mixed

integer LP problem. Thus our framework allows concurrent optimizations including resynchronization.

6.1 Resynchronization Example

As shown in Fig. 3(a), there are n latches around the loop l and the shift of time origin around the

loop is denoted by os(l). Let Tmax(i) and Tmin(i) de�ne the longest and shortest propagation delays

of stage i, where 1 � i � n. For a circular loop, the following theorem can be established:

Theorem 2 For a circular loop l, if (n �m � os(l))c < n(ch + th � tcs) �
Pn

i=1 Tmin(i), then there

exists no feasible solution for the loop.
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From the above theorem, it is clear that when m = 1 and n = os(l), the width of the active

period , ch, must be smaller than or equal to tcs � th +
1
n

Pn
i=1 Tmin(i), which is independent of the

clock period. So if wl > tcs � th +
1
n

Pn
i=1 Tmin(i), then there exists no feasible solution. However,

such a situation can be remedied by resynchronization. As an example shown in Fig. 5(a), if wl is

increased to 1:5ns, due to hold time violation, no feasible solution can be obtained even by concurrent

application of intentional skew, wave pipelining, and retiming. However, by inserting a latch as shown

in Fig. 5(c), the optimal clock period becomes 5ns.

6.2 Mixed Integer LP Formulation of Resynchronization

For an edge u
e
! v, W (e(u; v)) denotes whether a latch exists along this edge. To allow more than one

latch at an edge, an additional node v 2 Vfo2 can be inserted along the edge. The LP constraints still

hold except that these qualifying clauses are now expressed with new variables W (e(u; v)). Again,

by an appropriate transformation, the optimization process can be formulated as a mixed integer LP

problem. In the optimization process, the total number of latches can be minimized.

Theorem 3 A pipelined system is de�ned by G. If G has a multiplexing degree of m, ch � ts,

c � ch � th, and ch + th � tcs, then G operates correctly at clock period c if and only if there exists

a feasible solution for the following mixed integer LP constraints, where R; T;X; ch are real variables

and W is a binary integer variable.

pulse width constraints: same as stated in Section 4.2

delay constraints:

R(u)� R(v) � �
tmax(v)

c
for u

e
! v and v 2 V [ Vfo1 [ Vfo2 [ Vpo (43)

X(u)� R(v) � �
tmax(v)

c
for u

e
! v and v 2 V [ Vfo1 [ Vfo2 [ Vpo (44)

T (v)� T (u)�W (e(u; v)) �
tmin(v)

c
for u

e
! v and v 2 V [ Vfo1 [ Vfo2 [ Vpo (45)

T (v)�X(u)�W (e(u; v)) �
tmin(v)

c
for u

e
! v and v 2 V [ Vfo1 [ Vfo2 [ Vpo (46)

synchronization constraints:

R(u)� R(v) +W (e(u; v)) � �
tmax(v)

c
�
tdl

c
+ 1 for u

e
! v and v 2 V [ Vfo2 [ Vpo (47)

X(u)�R(v) +W (e(u; v)) � �
tmax(v)

c
�
tcl

c
+ 1 for u

e
! v and v 2 V [ Vfo2 [ Vpo (48)

T (v)�X(u) �
tmin(v)

c
+
tcs

c
for u

e
! v and v 2 V [ Vfo2 [ Vpo (49)
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Constraints of loop/semi-loop, latching, initiation, and temporal equivalence are the same as stated
Theorem 1.

Proof: The substitution rules are cR(v) for s(v), cT (v) for b(v), and cX(v) for e(v). 2

7 Design Robustness

Due to process and environmental variations, design parameters would deviate from the speci�cations.

Tolerance to these variations can be quantitatively measured by safety margin, �, by which the clock

occurrence is allowed to deviate from the design speci�cation time, t. In other words, the system still

operates correctly as long as the clock is delivered in the interval of [t � �, t + �]. For a given clock

period c, this amount can be maximized by incorporating the variable � into the latching constraint

set as follows:

latching constraints:

s(u) + 2� � e(u) + ch � ts for u
e
! v and w(e) = 1 (50)

e(u) + ch + th + 2� � b(u) + c for u
e
! v and w(e) = 1 (51)

s(v) + ts + th + 4� � b(v) + c for v 2 Vpo (52)

Constraints (50) and (51) are used to provide the safety margin of � against the setup and hold

time violation of a latch. The latching time of the external output register now becomes s(u) + ts +

2�. The additional amount of 2� is needed to prevent zero clocking in the presence of process and

environmental variations. And constraint (52) prevents double clocking by the safety margin of �

Assume that there are n latches around the loop l as shown in Fig. 3(a), and the shift of time

origin around the loop is denoted by os(l). An upper bound of the safety margin can then be calculated

. Let Tmax(i) and Tmin(i) are de�ned as the longest and shortest path delays of each stage i where

1 � i � n.

Theorem 4 A circular loop l is operated at a clock period c and a multiplexing degree m. The safety

margin of � is limited by 1
2
(m�os(l)�c

n
�

P
n

i=1
Tmax(i)

n
+ ch� ts � tcl),

1
2
((1� m�os(l)

n
)c+

P
n

i=1
Tmin(i)

n
+ tcs �

ch � th), and minif
1
4(c� Tmax(i) + Tmin(i) + tcs � ts � th � tcl)g.

Theorem 4 tells that the upper bound for the safety margin can be raised by increasing the

system clock period, prolonging the short paths, and/or reducing the long paths of a design.
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8 Feasible Clock Period

For a given clock period c, the mixed integer LP constraints can be tested if c is a feasible solution.

In a single closed loop l whose shift of time origin is os(l), the longest path delay around the loop is

Tmax(l). Then the feasible clock period is bounded below by max8 l
Tmax(l)

m�os(l)
for a multiplexing degree

m [19]. This serves as a starting point for searching for an optimal clock period. But what is the

upper bound of the clock period?

8.1 Upper Bound of Clock Period

For the semi-loop as shown in Fig. 3(b) where m is the multiplexing degree, edge e(q0; t) is selected

as a chord, whose associated shift of time origin, denoted by os(q0), is assumed to be smaller than or

equal to 0. And there are p latches along the top path from host to node t (excluding the external

register). The following lemma can be established.

Lemma 2 If p < �m � os(q0)� 1, then the feasible clock period c is bounded above. Otherwise, if there

exists at least one feasible solution, the feasible clock period is unbounded above (�.e. upper bound is

in�nity).

Lemma 3 For a feedback loop as shown in Fig. 3(a), the shift of time origin of the loop is denoted

by os(l) and the number of latches around the loop is n. If n < m � os(l), the feasible clock period

is bounded above. On the other hand, if there exists a feasible solution, the feasible clock period is

unbounded above.

Note that if temporal equivalence constraint is required to be satis�ed, node v 2 Vpo and node

u 2 Vpi should be seen as a feedback loop.

Theorem 5 If, for every semi-loop of G, p � �m�os(q0)�1, for every feedback loop of G, n � m�os(l),

and there exists at least one feasible solution, the feasible clock period is unbounded above.

8.2 Safety Margin

As stated in Section 7, safety margin will saturate �nally if the feasible clock period is bounded above.

There are other situations that will lead to a saturated safety margin as described in the following

theorem.
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Theorem 6 If, for any semi-loop, p = �m � os(q0) � 1, or for any feedback loop, n = m � os(l), the

safety margin of G is bounded above by a constant value, which is independent of the clock period.

For a graph G and its spanning tree T , node v is called a joint node if node v has more than

one fan-in or fanout edge. Along path pi in G, two joint nodes are neighboring if there exists no other

joint node between them. Fig. 4(c) shows an example, in which nodes 2, 3, 4, 5, 6, 7 are joint nodes

and others are not. Nodes 2 and 3 are neighboring, while nodes 2 and 4 are not. For two joint nodes

u and v which are neighboring along a path pi, variable �(pi), which must be a nonnegative integer, is

associated with path pi. If every node and edge in path pi is also in path p, then pi is said to belong

to path p, denoted by pi 2 p.

Theorem 7 For a graph G and its spanning tree T , if the safety margin of G exempts from saturation

as the clock period is increased, the following three constraints (53), (54), and (55) will be satis�ed.

For each node vl 2 Vl, and the corresponding semi-loop u
p
! v and u

q
! v derived by T , if vl is in path

q, the following constraint is formed.

X
pi2p

�(pi)�
X
pi2q

�(pi) = �m � os(vl) (53)

For each node vl 2 Vl, and the corresponding feedback loop l derived by T , the following constraint is

formed. X
pi2l

�(pi) = m � os(vl) + 1 (54)

For two neighboring joint nodes u and v along path pi, the following constraint is formed.

X
e(ui;vi)2pi

W (e(ui; vi)) � �(pi) (55)

Proof: Variable �(pi) can be thought as the least number of latches at path pi to satisfy the require-

ment on the minimum number of latches at each edge as described in Theorems 5 and 6. 2

Further research is needed to prove that the constraints described in Theorem 7 are also su�-

cient conditions.

9 Design Examples

Our formulation has been applied to several design examples. The �rst two introduce wave pipelining

in latch-based designs. A binary search is employed to �nd the optimal clock period when retiming or
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Figure 6: Adder Design: (a) Edge-Triggered Design (b) Latch-Based Design ts = th = 1ns,wl = 3:5ns

wl 0.0 1.0 1.5 2.0 2.5 3.0 3.5

# of latches 7 7 11 11 12 12 12

Table 3: Minimal Number of Latches v.s. Minimal Allowable Pulse Width

resynchronization is applied. Once the constraint set is captured, a mixed integer linear programming

solver, LINDO, is used. For simplicity, the propagation delay of a latch or register is set to 0 in these

examples.

Example 1: This example is a ripple adder originally studied by Fishburn [4]. As shown in

Fig. 6(a), Fishburn reported an optimum clock period at 8:15ns by having clock skews in internal

registers and restricting zero skew in external registers. If each register is replaced by two latches, the

optimum clock period is reduced to 7:1ns as shown in Fig. 6(b). During the optimization process, the

temporal equivalence constraint is required to be satis�ed. And the longest and shortest propagation

delays between a pair of registers are respectively estimated as tmax(i; j) = 3:2 + 2:7(j � i) and

tmin(i; j) = 2:1 + 1:5(j � i), where j � i. At the clock period 7:1ns, the minimum number of latches

(i.e. the latches replaced registers IR and SR), versus minimum allowable pulse width wl is shown in

Table 3. It can be seen that as wl increases, the required minimum number of latches is also increased.

Example 2: This example consists of two circular loops in [22, 23]. The resulting design with

intentional skews is shown in Fig. 7 and in the fourth column of Table 4. The �rst three columns of

restricted single phase single phase coincident multi-phase non-zero skew

d1 18ns - 14ns 12ns

d2 - 14ns - 13ns

Table 4: Optimal Clock Period for Di�erent Clocking Schemes (d1: ICCD design, d2: ICCAD design.)
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(a)
c = 12ns, c  = 6nsh

: latch
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(b)
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Figure 7: Circular Loop Designs: (a)ICCD design: ts = 2ns, th = 1ns, wl = 5ns (b)ICCAD design:

ts = th = 2ns, wl = 5ns
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Figure 8: Retiming or Resynchronization of RISC: wl = 6:5ns (a) ts = th = 0:5ns (b) ts = th = 2:5ns

Table 4 are derived by works [22, 23]. Restricted single phase designs, as shown in the �rst column, use

the adopted model, while SMO model is used in single phase designs as shown in the second column.

Coincident multi-phase designs set the latching edge for each phase at the same time but di�erent

active period width for each phase. There are 5 waves of data around the loop in Fig. 7(a) and 4

waves of data in Fig. 7(b).

Example3: The �nal example is shown in Fig. 4(b). By retiming, the optimal clock period

is 24ns as shown in Fig. 8(a). While increasing both of the setup and hold times to 2:5ns, no

feasible solution can be obtained by using retiming. If at most two latches are allowed at each edge,

resynchronization can reduce the clock period to 21ns as shown in Fig. 8(b). Constraints (53), (54),

and (55) are incorporated into the constraint set when resynchronization.
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10 Conclusion

In this paper, we present a LP formulation for the latch-based designs such that timing optimization is

achieved by concurrently applying both intentional clock skew and wave pipelining. The formulation

becomes a mixed integer LP if retiming or resynchronization is included. By checking the number of

latches at each edge, the solution set of the clock period can be tested if it is unbounded above or

not. Constraints are then added to provide the minimum number of latches at each edge in order to

meet the criteria described in Theorem 7. Further research is needed to investigate whether the safety

margin will exempt from saturation as the clock period is increased if the constraints described in

Theorem 7 are satis�ed, and to unveil a more e�cient algorithm for solving this special type of mixed

integer LP problem.
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Appendix

Proof of Lemma 1: Because the new constraints are more stringent than the original ones, the

clock period found as a solution of the new ones must be a feasible clock period of the original ones.

The remaining question is that: if a feasible solution exists for the original formulation, can these

undecided variables e(u) be assigned such that these new constraints are satis�ed? It is worth noting

that if the values of all the undecided variables e(u) are assigned such that b(u) � e(u) � s(u),

constraints (25) and (26) can be satis�ed. For the following situation: w(e1) = r(u) � r(v) where

u
e1
! v, and w(e2) = r(v) � r(w) + 1 where v

e2
! w, consider three di�erent cases: e(v) > s(v),

e(v) < s(v)� s(u) + b(u), and s(v)� s(u) + b(u) � e(v) � s(v). If e(v) > s(v), the value of variable

e(u) is set to the value of s(u) and constraints (27) and (28) can be satis�ed when ch � ts. If

e(v) < s(v) � s(u) + b(u), the value of variable e(u) is set to the value of b(u) and constraints (27)

and (28) can be satis�ed when c� ch � th. For the case s(v)� s(u) + b(u) � e(v) � s(v), the value of

variable e(u) is set to the value of s(u) � s(v) + e(v), and constraints (27) and (28) can be satis�ed.

This illustration does not lose its generality. In this way, the value of all the undecided variables e(u)

can be assigned such that the new constraints are satis�ed. 2

Proof of Theorem 1: Due to similarities between all the constraints, we only prove constraints (29)

and (31). If constraints for the quali�ed LP formulation can be satis�ed by the values of the variables

s; b; e; r, and ch, then the corresponding constraints for the mixed integer linear formulation can be

satis�ed by the values of the variables R; T;X; r; and ch obtained by the given transformation rules.

Constraint (18) ) Constraint (29):

R(u)�R(v) + r(u)� r(v) +
tmax(v)

c

= s(u)

c
� r(u)� s(v)

c
+ r(v) + r(u)� r(v) + tmax(v)

c

= 1
c
(s(u)� s(v) + tmax(v)) � 0

The �nal inequality is valid and independent of w(e) = 0 or w(e) = 1.

Constraint (18) ( Constraint (29):

s(u)� s(v) + tmax(v)

= c(R(u) + r(u))� c(R(v) + r(v)) + tmax(v)

= c(R(u)�R(v) + r(u)� r(v) + tmax(v)

c
) � 0
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Constraint (19) ) Constraint (31):

T (v)� T (u)�
tmin(v)

c
� w(e)

=
b(v)

c
� r(v)�

b(u)

c
+ r(u)�

tmin(v)

c
� w(e)

= 1
c
(b(v)� b(u)� tmin(v))� (w(e)� r(u) + r(v))

When w(e) = r(u) � r(v), (i.e. there is no latch at edge e), expression b(v) � b(u) � tmin(v) is

smaller than or equal to 0. The above expression must therefore be smaller than or equal to 0. If

w(e) = r(u)� r(v) + 1, (i.e. there exists one latch at edge e), expression 1
c
(b(v)� b(u)� tmin(v)) is

smaller than or equal to 1 when ch + th � tcs. This can be shown as follows:

b(v)� b(u)� tmin(v)

� e(u) + tcs + tmin(v)� b(u)� tmin(v)

� e(u)� b(u) + tcs

� b(u) + c� ch � th � b(u) + tcs

� c� ch � th + tcs

The second inequality is derived from constraint (22) and the fourth one is from constraint (28).

Since expression b(v) � b(u) � tmin(v) is smaller than or equal to c when ch + th � tcs, expression

1
c
(b(v) � b(u) � tmin(v)) is smaller than or equal to 1. And �(w(e) � r(u) + r(v)) is equal to -1.

Expression T (v)� T (u)�
tmin(v)

c
� w(e) is consequently smaller than or equal to 0 and independent

of w(e) = 0 or 1.

Constraint (19) ( Constraint (31):

b(v)� b(u)� tmin(v)

= c(T (v) + r(v))� c(T (u) + r(u))� tmin(v)

= c(T (v)� T (u)� tmin(v)

c
� r(u) + r(v))

When w(e) = r(u)� r(v), the �nal expression becomes c(T (v)� T (u)� tmin(v)
c

� w(e)), which must

be smaller or equal to 0. 2

Proof of Theorem 2: The edge pointed from stage n to stage 1 is selected as a chord. Constraints

(7) and (11) for such a spanning tree can be formulated as follows:

b(i+ 1) � e(i) + Tmin(i+ 1) + tcs 1 � i � n � 1

e(i+ 1) + ch + th � b(i+ 1) + c 0 � i � n � 1
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Loop/semi-loop constraint and constraint (7) for the chord can be written together as follows.

b(1) � e(n) + Tmin(1) + tcs �m � os(l) � c

Summation of the above constraints will lead to the necessary condition for a feasible solution: (n �

m � os(l))c � n(ch + th � tcs)�
Pn

i=1 Tmin(i). 2

Proof of Theorem 3: It can be proven similarly as Theorem 1. 2

Proof of Theorem 4: The edge pointed from stage n to stage 1 is selected as a chord. Constraints

(6) and (50) for such a spanning tree can be formulated as follows:

e(i) + Tmax(i+ 1) + tcl � s(i+ 1) 1 � i � n� 1

s(i) + 2� � e(i) + ch � ts 1 � i � n

Loop/semi-loop constraints and constraint (6) for the chord can be written together as follows:

e(n)�m � os(l) � c+ Tmax(1) + tcl � s(1)

Summing all these inequalities leads to the �rst bound value.

Constraints (7) and (51) for the spanning tree can be written as follows:

b(i+ 1) � e(i) + Tmin(i+ 1) + tcs 1 � i � n � 1

e(i) + ch + th + 2� � b(i) + c 1 � i � n

Loop/semi-loop constraints and constraint (7) for the chord can be formed together as follows.

b(1) � e(n)�m � os(l) � c+ Tmin(1) + tcs

Again summation of the left and right sides of these inequalities gives the second bound value.

For each stage i, summation of constraints (6), (7), (50), and (51) can give the �nal bound

value. 2.

Proof of Lemma 2: Node 0 denotes the host. Constraints (4) and (11) for node 1 can be expressed

as follows:

b(1) � b(0) + tmin(1)

e(1) + ch + th � b(1) + c
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Constraints (7) and (11) for the other nodes along the top path can be formulated as follows:

b(i) � e(i� 1) + tmin(i) + tcs 2 � i � p

e(i) + ch + th � b(i) + c 2 � i � p

For node t, constraints formed along edge e(p; t) can be written similarly.

b(t) � e(p) + tmin(t) + tcs

e(t) + ch + th � b(t) + c

Constraints (3) and (10) for node 10 can be expressed as follows:

s(10) � s(0) + tmax(1
0)

e(10) + ch � ts � s(10)

Constraints (6) and (10) for the other nodes along the bottom path can be formulated similarly.

s(i0) � e((i� 1)0) + tmax(i
0) + tcl 2 � i � q

e(i0) + ch � ts � s(i0) 2 � i � q

Constraint (6), constraint (10), and loop/semi-loop constraints for node t along edge e(q0; t) can be

written together as follows:

s(t) � e(q0) + tmax(t) + tcl �m � os(q0)

e(t) + ch � ts � s(t)

By multiplying the constraints formed along the bottom path with -1 and summing the constraints

formed along the top path and initial constraint, the following constraint can be obtained. Let Tmax

denotes the sum of
Pq

i=1 tmax(i
0) and tmax(t). And Tmin denotes the sum of

Pp
i=1 tmin(i) and tmin(t).

(�m � os(q0)� (p+ 1))c � Tmin � Tmax + p � tcs � (p+ 1)(ch + th)� q � tcl + (q + 1)(ch � ts)

Note that the value of the right side of this inequality is constant. As c approaches in�nity, this

inequality will not hold if p < �m � os(q0)� 1, which makes the feasible clock period bounded above.

Assume that a feasible solution exists for c = cf . If p � �m � os(q0) � 1, a feasible solution

is constructed below for the clock period of 2 � cf . Similarly, the clock period of 4 � cf , 8 � cf , etc.,
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can be proven feasible. So it is unbounded above. Consider �rst the case p � �m � os(q0): Choose

any �m � os(q0) latches from the latches along the top path, and mark them from 1 to �m � os(q0)

sequentially. For the i-th marked latch and the latches between the i-th and (i+1)-th marked latches,

the time for the enabling edge is increased by the amount of i � cf . For the nodes between the i-th

and (i+1)-th marked latches, the values of their variables s and b are also increased by the amount of

i � cf . For the nodes after the (�m � os(q0))-th marked latch, the values of variables s, b, and e are all

increased by the amount of �m � os(q0) � cf . The values of the other nodes' variables are not changed.

The solution obtained will be a feasible one. For the case that p = �m � os(q0)� 1, the latch which is

at the fanout edge of node t is selected as the (�m � os(q0))-th marked latch. Except that the value of

variable s(t) should be increased by the amount of �m � os(q0) � cf , the construction method described

above can lead to a feasible solution for c = 2cf . 2

Proof of Lemma 3: Due to similarity with the proof of Lemma 2, it is omitted here. 2

Proof of Theorem 5: For a given spanning tree, the number of marked latches are selected accord-

ingly. The construction method as described in the proof of Lemma 2 can be used to obtain a feasible

solution. 2

Proof of Theorem 6: As shown in the Theorem 4, the second bound value will be a constant if

n = �m � os(l). So the safety margin will saturate �nally. Similarly, if p = �m � os(q0) � 1 for any

semi-loop, it can be shown that there also exists a constant bound value, which is independent of clock

period. 2
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