
ADVANCED DEVICE MODELING USING AUTOMATIC DIFFER-
ENTIATION IN A MIXED DOMAIN CIRCUIT SIMULATOR

M. B. STEER, N. M. KRIPLANI, W. JANG
NORTH CAROLINA STATE UNIVERSITY, U.S.A
A. MANTOOTH
UNIVERSITY OF ARKANSAS, U.S.A

KEYWORDS: automatic differentiation, EKV model, transient circuit
simulation

ABSTRACT: The advent of automatic differentiation, the adoption of object-oriented implementation paradigms, and
compiler-support for function overloading enables relatively straightforward implementation of device models with typi-
cally 10% of the code required for standard device implementations. In this paper implementation of the EKV model in
the f REEDATM circuit simulator is reported. f REEDATM is capable of transient, wavelet, harmonic balance, large-signal
transient noise, DC and AC analyses of circuits using a single device model implementation. Automatic differentiation
enables the calculation of device derivatives with analytic accuracy but without errors common in manual development
of device derivatives. f REEDATM achieves unconditional convergence through the use of parameterized state variables
that obviates the end for local convergence control or homotopy techniques. A dynamic range in transient simulation
exceeding 160 dB has been achieved.

INTRODUCTION
The f REEDATM circuit simulator has been a long-term
project that represents a fundamental new capability in
circuit simulation [1–8]. Many new paradigms have been
tested and incorporated. As f REEDATM is open source
software with a GNU Public License (or GPL) it can
serve as a vehicle to embed circuit simulation research
in a general purpose simulator framework. The commit-
ment to GPL has enabled mathematical advances coded
in GPL software to be exploited. A commitment to us-
ing the C++ programming language and rigorous adher-
ence to object-orientation has enabled advances by a rel-
atively small group of developers. This paper focuses on
the capabilities of f REEDATM in providing convenient
implementation of the EPFL-EKV MOSFET model. The
EPFL-EKV MOSFET model is a scalable and compact
simulation model built on fundamental physical proper-
ties of the MOS structure [9,10]. Compared to most other
device models for circuit simulators, the EKV MOSFET
model is well documented [9]. Because of this it was rel-
atively easy to implement the model in f REEDATM .

SIMULATOR STRUCTURE
Circuits can be described using graph theory. Graphs
graphically describe the connectivity of a circuit and over
time the tradeoff of many concepts has led to several sys-
tematic approaches to circuit topology. We will be very
explicit about the use of the terms node and terminal in
the discussion that follows. Terminal is also the preferred
term in VHDL. We describe two ways of looking at cir-
cuits and call these the Circuit View (used in Spice) and
the Network View (used in f REEDATM). These views
differ in the ways we assign nodes and edges to terminals
and elements. In the Circuit View nodes are always ter-
minals and, also, edges denote elements. In the Network

V2

2I

L1 2

k

L

l

V

j

i

1

1I M

Fig. 1. A transformer represented as a two-port.

View both terminals and elements are nodes and edges
describe connectivity and have no other attributes. When
the term node is used it must be assumed that we could
be talking about a terminal or an element. The network
view is used in f REEDATM and greatly facilitates the
incorporation of multi-terminal, multi-physics elements.
Circuit theory has evolved to include a common reference
terminal to which all voltages in a circuit are referred.
However it is generally not feasible to define nodal volt-
ages, or a single reference point, in a spatially distributed
system. An example of where classical circuit concepts
break down is seen with respect to using the transformer
shown in Fig. 1. In Spice a circuit with a transformer
element would be handled by either shorting the two ref-
erence terminals together or else using large resistance to
connect the terminals to ensure a connected graph. Prob-
lems can be seen in handling the cascode transformer cir-
cuit of Fig. 2. Fig. 2(a) is a disconnected graph which
is rendered a connected graph in Fig. 2(b) by shorting
the two reference terminals of each transformer. This
connection would clearly give erroneous results. In the
f REEDATM paradigm a local reference terminal intro-
duced in addition to the global reference terminal (which
is also a local reference terminal) so that the disconnected
graph can be correctly handled without introducing addi-
tional circuit elements or connections.

International Conference

MIXED DESIGN

MIXDES 2006
Gdynia, POLAND

22 - 24 June 2006

136 Copyright � 2006 by Department of Microelectronics & Computer Science, Technical University of Lodz

DC

AC
R

R

1:1
R R

E

E

1:11

2

3

4

5

6

(a)

DC

AC
RR

R

E

E

R

1:1

1:1

1

2

3

4

5

6

(b)

DC

AC
R

R

RR

E

E
1:1

1:11

2

3

4

5

6

(c)

Fig. 2. Representations of interconnected two-ports: (a) two
transformers in cascode; (b) the circuit with shorted lower

windings of each transformer; and (c) circuit with one global
reference terminal and an additional local reference terminal.

(a) (b) (c)

Fig. 3. Reference terminals: (a) conventional global reference
terminal; (b) local reference terminal; and (c) element

reference terminal.

1

2

3

1

2

3 3

1

2

4

(a) (b) (c)

Fig. 4. Graph representations of a three-terminal element: (a)
a mosfet transistor as a three-terminal element; (b) circuit

graph of the three-terminal element; and (c) network graph of
the three-terminal element.

f REEDATM supports three types of reference terminals,
see Fig. 3. The global reference, Fig. 3(a), is the ground
of conventional circuit theory. The LRT, Fig. 3(b), is a
generalization of ground with different segments of a cir-
cuit locally referenced to LRT. The global ground is just
a special case of an LRT. Circuit elements also have their
own reference, see Fig. 3(c), and this looks like an LRT
until the circuit element is connected. The number of sep-
arate parts of a circuit is the number of LRTs. However all
of the reference, global and local, have exactly the same
significance: they are all local reference terminals.
f REEDATM uses a network graph view of a circuit rather
than the conventional circuit graph. The two views are
contrasted in Fig. 4 for a three-terminal element. From
the perspective of relating to the physical behavior of
multi-terminal elements, the network graph is convenient
as edges do not have properties, nodes do, and nodes can
have elaborate properties.
The f REEDATM analysis process treats every element
the same way and develops the circuit equations at the
top of the analysis hierarchy. This model is not used
in Spice as it requires element-by-element local conver-
gence control. The circuit equations are created element-
by-element. One of the effects of this is that each element
in Spice is in fact largely hand-crafted and there is little
modeling uniformity. One important concept that enables
the f REEDATM approach is parameterization in which
strong nonlinearities of say i = f(v) are replaced by two
separate moderately nonlinear functions: i = f(x) and
v = f(x), but still i = f(v). Now the iterative solver
works on x. Parameterization requires a different error
formulation composed of KCL and KVL-like errors, or
fortuitously, an energy norm error. This enables circuits
with little current to be solved robustly.
Key concepts behind f REEDATM are:

1. The use of local reference terminals rather than a
single global ground.

2. The incorporation of mixed domains, such as ther-
mal and mechanical models, into a seamless global
simulator.

3. Rapid implementation of new device models.

4. Unified device modeling. Models that can be coded
once and be used in many different types of simu-
lation analyses.

5. Simulator architecture that enables best-practice nu-
merical approaches to be utilized.

6. Object-oriented modeling and programming prac-
tice.

7. Uncompromising commitment to accuracy through-
out the simulator.

137

1 2

3 4

1 2

3 3
3 4

5

1

3

2

(a) (b) (c)

Fig. 5. Representation of a transmission line: (a) four terminal
element; (b) as a two-port; and (c) network graph

representation.

1

i
2

i
2

i1

i

3 4

21
1

3

2

(a) (b)

Fig. 6. Two ports: (a) with a local reference terminals (LRTs);
and (b) with a global reference terminal (GRT).

Another example of using the local reference terminal
concept is in modeling of spatially distributed circuit, the
simplest of which is a transmission line. The transmission
line is a two-port, four-terminal element as shown in Fig.
5(a). A transmission line, as with any two port, has the
special property that the currents entering the terminals of
a port sum to zero. With a two-terminal port the currents
are opposite and equal. With a transmission line this is a
consequence of energy minimization when two conduc-
tors of the transmission line are in close proximity. This
property is enforced in the circuit graph representation,
Fig. 5(b) with each port represented by a single edge.
Thus the currents at the terminals of a port are forced to
be opposite and equal. This balancing does not naturally
occur with the network graph of Fig. 5(c). Instead the
concept of local reference groups (LRGs) is used. Each
LRG has a single local reference terminal (LRT) and one
or more other terminals. Kirchhoff’s current law applies
to the LRT. Thus there is a fundamental difference be-
tween the two port representation with LRTs, Fig. 6(a),
and the (incorrect) representation of a two port with a
global reference terminal (GRT), Fig. 6(b). Using the
conventional formulation of the nodal admittance matrix,
specific relations between the terminal voltages of two
LRGs are erroneously imposed. In fact the voltages of
different LRTs must be allowed to float with respect to

Element

Circuit GraphNode

Diode2Port

ResistorTerminalData

ElementData

Transistor

Terminal
<<type>>

<<type>>

Fig. 7. Universal Markup Language (UML) diagram of an
object-oriented implementation of the network graph.

each other and the general KCL condition applies to in-
dividual LRGs and not to the whole circuit.
With a single (but incorrect) GRT, KCL applied to the
reference terminal results in one equation, i.e. from Fig.
6(b):

i1 + i3 + i2 + i4 = 0. (1)

However with the LRTs, KCL applied to the reference
terminals results in two equations, i.e. from Fig. 6(a):

i1 + i3 = 0,

i2 + i4 = 0. (2)

These are subtly different constraints, but can result in
fundamentally different behaviors of circuits. While we
see that it is necessary to use the LRTs and LRGs with
the network graph, the concepts can equally be used with
circuit graphs.
In object-oriented (OO) thinking (and OO programming),
the network view is a much more convenient way of rep-
resenting and thinking about a circuit. The circuit graph
is quite satisfactory for two-terminal elements, an edge
has two-terminals, but it is not as convenient for repre-
senting multi-terminal elements. It is difficult to expand
the simulator to handle additional elements and very diffi-
cult to make structural changes, say add another analysis
type to the those envisioned when the simulator was de-
signed. In the Network View the Network Graph can be
represented quite easily as can be seen in the UML dia-
gram for a network graph shown in Fig. 7. This UML di-
agram is implemented in f REEDATM . The architecture
of f REEDATM is described by many UMLs and their
development took one year before one line of code was
written.
Rigorous adherence to precise topology and accuracy has
resulted in transient simulation in f REEDATM having
a very high dynamic range. One of the key develop-
ments was improving the estimation of the truncation er-
ror in moving from time-point to time-point. The conven-
tional approach is to compare the nonlinear solution at a
time-point to a forward Euler (straight-line) extrapolation
from the solution at the previous time-point. This clearly
does a poor job of estimating the error when the signal is
changing in anything other than a straight line. The net
effect is that time points are much too close and there is
accumulated numerical error. The f REEDATM approach
is to use two different iterative solutions, here backward
Euler and Trapezoidal and compare them to get a better
estimate of error. Here a two-tone test was used in which
one of the tones was held constant and the other varied.
The fidelity of the third-order intermod was used as a cri-
terion. f REEDATM achieves a dynamic range exceeding
160 dB in transient circuit simulation. Better than what
can be achieved in harmonic balance analysis.

138

EKV MODEL IMPLEMENTATION

The implementation of the EKV model is an example of
how the features of f REEDATM come together to make
model develop quite simple. In the Appendix the full
code (almost) of the EKV model is presented. This is
dramatically simpler than in a Spice-like implementation.
The code includes a class setting up the element infor-
mation (Ekv:einfo), a constructor (Ekv::Ekv) and an ini-
tialization routine (Ekv::init). There is no specific cod-
ing of derivatives. The manual derivation of the formu-
las to calculate the derivatives and the coding of these
derivatives is an error prone step and a major hurdle to
model implementation in traditional circuit simulators.
The derivatives are calculated using automatic differen-
tiation which is implemented at the top of the simulator
hierarchy. There are two evaluation routines: eval1 and
eval1. The precise way these are used and which deriva-
tives are calculated depends on the analysis type being
used. Function overloading enables the single model code
to be used in any of a large number of analyses. Alto-
gether f REEDATM has 32 analysis types and the model
code has never had to be rewritten for new analysis types.
Even with a recent major change on the libraries used
by f REEDATM , consolidating the number of libraries
used from 8 to 3, no change to the model code has been
required. In transient analysis using associated discrete
modeling eval1 is called and then eval2 at each time/newton
iteration. The routine eval1 has as its input the state
variables, the x’s. The output of the evaluation routine
are the voltages at the terminals, z[3]-z[5], the DC cur-
rents at the terminals, z[0]-z[2], and the charges y1[0]-
y1[2]. The routine eval2 has as its input the voltages,
z[3]-z[5], and the time derivatives of the charges dy1[0]–
dy1[2] (dy1 = dy1/dt). These derivative are calculated
in the transient analysis routine using automatic differen-
tiation. This f REEDATM code is straightforward and can
be automatically generated using the ParagonTM model
generation computer program using a hardware descrip-
tion language input script [11].
The output of the model is fully compliant with the doc-
umentation. As an example the netlist of an inverter with
a 1 GHz pulse source is shown in Figure 8. Running this
yielded the output shown in Figure 9.

CONCLUSION

f REEDATM is open source software with a GNU Pub-
lic License (or GPL) and it is hoped that it will serve as
a vehicle to enable circuit simulation research to ne in-

.tran2 tstop=10e-9 tstep=10e-12
ekv: m1 30 20 10 10 l=1e-6 w=20e-6
+ type=-1
ekv: m2 30 20 0 0 l=1e-6 w=20e-6
vpulse:vgate 20 0 v1=0 v2=3
+ pw=0.5e-9 per=1e-9
vsource:vs 10 0 vdc = 3.0
.out plot term 20 vt in "pulse.in"
.out plot term 30 vt in "pulse.out"
.end

Fig. 8. Inverter netlist in native fREEDATM format using the
EKV2.6 model.

Fig. 9. Output of the EKV inverter simulation.

corporated in a general purpose simulator. It should be
the simulator of choice with a large body of supported
models. f REEDATM is written in the C++ programming
language and the structure rigorously adheres to object-
oriented principals.

THE AUTHORS

Michael Steer, Nikhil Kriplani and Wonhoon Jang are
with the Department of Electrical and Computer Engi-
neering, North Carolina State University, Raleigh, North
Carolina 27695, U.S.A
Alan Mantooth is with the Department of Electrical and
Computer Engineering, University of Arkansas, Fayet-
teville, Arkansas 72701, U.S.A.
E-Mail: m.b.steer@ieee.org

ACKNOWLEDGEMENT

This work was supported by the U.S. Army Research Of-
fice as a Multi-disciplinary University Research Initia-
tive on Standoff Inverse Analysis and Manipulation of
Electronic Systems under grant number W911NF-05-1-
0337. We gratefully acknowledge discussions with C. E.
Christofferson and S. Luniya

REFERENCES

[1] S. Luniya, M. B. Steer and C. Christoffersen, “High
Dynamic Range Transient Simulation of Microwave
Circuits,” IEEE Radio and Wireless Conference, p.
487, 19–22 Sep. 2004.

139

[2] N. M. Kriplani, A. Victor and M. B. Steer, “Time-
domain modelling of phase noise in an oscillator,” 36
th European Microwave Conference, Sept. 2006, In
Press.

[3] C. E. Christoffersen, U. A. Mughal, and M. B. Steer,
”Object oriented microwave circuit simulation,” Int.
J. on RF and Microwave Computer Aided Engineer-
ing, Vol. 10, Issue 3, May/June 2000, pp. 164–182.

[4] C. E. Christoffersen and M. B. Steer, “Implementa-
tion of the local reference node concept for spatially
distributed circuits,” Int. J. on RF and Microwave
Computer Aided Engineering, Vol. 9, No. 5, Sept.
1999, pp. 376–384.

[5] M. B. Steer, J. F. Harvey, J. W. Mink, M. N. Abdulla,
C. E. Christoffersen, H. M. Gutierrez, P. L. Heron, C.
W. Hicks, A. I. Khalil, U. A. Mughal, S. Nakazawa,
T. W. Nuteson, J. Patwardhan, S. G. Skaggs, M. A.
Summers, S. Wang, and A. B. Yakovlev, “Global
modeling of spatially distributed microwave and
millimeter-wave systems,” IEEE Trans. Microwave
Theory Techniques, June 1999, pp. 830–839.

[6] S. Luniya, M. B. Steer and C. E. Christoffersen,
“High dynamic range transient simulation of mi-
crowave circuits,” IEEE Radio and Wireless Conf.
(RAWCON), Sept. 2004.

[7] F. P. Hart, N. Kriplani, S. R. Luniya, C. E. Christof-
fersen and M. B. Steer, “Streamlined Circuit and De-
vice Model Development with fREEDA and ADOL-
C,” in Automatic Differentiation: Applications, The-
ory, and Implementations, edited by H. M. Bücker,
G. F. Corliss, P. Hovland, U. Naumann and B. Nor-
ris, Series: Lecture Notes in Computational Science
and Engineering, Vol. 50, Springer, New York, NY,
2005.

[8] J. Ding, D. Linton and M. B. Steer, “Compact
Electro-thermal Modelling and Simulation of InP
HBT based on the Local Reference Concept,” 36 th
European Microwave Conference, Sept. 2006.

[9] M. Bucher, C. Lallement, C. Enz, F. Theodoloz
and F. Krummenacher, “The EPFL-EKV MOSFET
Model Equation for Simulation,” Technical Report,
Electronics Laboratories, Swiss Federal Institute of
Technology(EPFL), Lausanne, Switzerland, Model
Version 2.6, June 1997.

[10] C. C. Enz, F. Krummenacher and E. A. Vittoz,
“An Analytical MOS Transistor Model Valid in All
Region of Operation and Dedicated to Low-Voltage
and Low Current Applications,” J. Analog Integrated
Circuits and Signal Processing, Vol. 8, pp. 83–114,
1995.

[11] A. S. Kashyap, C. Vemulapally and H. A. Man-
tooth, “VHDL - AMS modeling of silicon carbide
power semiconductor devices,” Proceedings 2004
IEEE Workshop on Computers in Power Electronics,
Aug. 2004, pp. 50–54.

APPENDIX: EKV MODEL CODE
Complete code of the EPFL-EKV MOSFET model (ver-
sion 2.6) implementing both the n and p type devices.

#include "../network/CircuitManager.h"
#include "../network/Element.h"
#include "../network/NAdolcElement.h"
#include "Ekv.h"
#include "../analysis/TimeDomainSV.h"

// Static members
const unsigned Ekv::n_par = 44;

// Element information
ItemInfo Ekv::einfo = {

"ekv",
"EPFL EKV MOSFET model",
"Wonhoon Jang",
DEFAULT_ADDRESS"elements/Ekv.html" };

// Parameter information
ParmInfo Ekv::pinfo[] = {

{"type", "N-channel or P-channel MOS", TR_DOUBLE, false},
// Device input variables

{"l", "Gate length (m)", TR_DOUBLE, false},
{"w", "Gate width (m)", TR_DOUBLE, false},
{"np", "Parallel multiple device number", TR_DOUBLE, false},
{"ns", "Serial multiple device number", TR_DOUBLE, false},

.

. (PARAMETERS DELETED FOR BREVITY)

.
{"tmp", "Model simulation temperature (K)", TR_DOUBLE, false},

};

Ekv::Ekv(const string& iname)
: NAdolcElement(&einfo, pinfo, n_par, iname)

{
// Set default parameter values
paramvalue[0] = &(type = NMOS);
paramvalue[1] = &(l = 1e-6);
.
. PARAMETERS DELETED FOR TEH SAKE OF BREVITY
.
paramvalue[43] = &(tmp = 300.15);

// Set the number of terminals
setNumTerms(4);

// Set flags
setFlags(NONLINEAR | ONE_REF | TR_TIME_DOMAIN);

// Set number of states
setNumberOfStates(3);

// Set number of levels, sets the number of derivatives to take.
// In this model, the voltage derivatives are not used, but the
// charge values are calculated from the current node voltages and
// then the derivative of the charge is used to determine the
// AC current. Thus, starting with the first level of the input
// voltages, this model needs two tape levels to generate the output
// current AC + DC.
setNlevels(2);

}

void Ekv::init() throw(string&)
{

// Set Constants
epsilonox = scale*34.5e-12;
epsilonsi = scale*104.5e-12;
q=1.602e-19;
k=1.3807e-23;
Tref=300.15;
vtT = (k*tmp)/q; // Thermal voltage
vtTnom = (k*tnom)/q;
vtTref = (k*Tref)/q;
egT = 1.16-0.000702*tmp*tmp/(tmp+1108); // Energy gap
egTnom = 1.16-0.000702*tnom*tnom/(tnom+1108);
egTref = 1.16-0.000702*Tref*Tref/(Tref+1108);
niT = 1.45e16*(tmp/Tref)*exp(egTref/(2*vtTref)-egT/(2*vtT));
niTnom = 1.45e16*(tnom/Tref)*exp(egTref/(2*vtTref)-egTnom/(2*vtTnom));

// For P-channel devices
if(type == -1){

tcv = type * tcv;
vto = type * vto; }

// Calculate any missing parameters from user-defined settings
// COX
if(cox == 0.0){

if (tox > 0.0)
cox = epsilonox / tox;

else cox = 0.7e-3; }
// GAMMA
if(gamma == 0.0){

if (nsub > 0.0)
gamma = sqrt(2.0 * epsilonsi * nsub * 1e6) / cox;

else gamma = 1; }
// PHI
if(phi == 0.0){

if (nsub > 0.0)
phi = 2.0 * vtTnom * log(nsub * 1e6 / niTnom);

else phi = 0.7; }
// VTO
if(vto == 0.0){

if(vfb != -2003)
vto = vfb + phi + gamma * sqrt(phi);

else vto = 0.5; }
// KP
if(kp == 0.0){

if(uo > 0.0)
kp = uo * cox * 1e-4 /*(mˆ2/cmˆ2)*/;

else kp = 5.0e-5; }
// UCRIT
if(ucrit == 0.0){

if((vmax > 0) && (uo > 0))
ucrit = vmax / (uo * 1e-4);

140

else ucrit = 2.0e6; }
// EO
if(eo == 0.0){

if(theta >=0)
eo = 0.0;

else eo = 1e12; }

// Intrinsic parameters temperature dependence
vtoT=vto-tcv*(tmp-tnom);
kpT=kp*pow(tmp/tnom,bex);
ucritT=ucrit*pow(tmp/tnom,ucex);
phiT=phi*tmp/tnom-3*vtT*log(tmp/tnom)-egTnom*tmp/tnom+egT;
ibbT=ibb*(1+ibbt*(tmp-tnom));

// create tape
IntVector var(3);
var[0] = 0;
var[1] = 1;
var[2] = 2;
IntVector novar;
DoubleVector nodelay;
createTape1(var, novar, nodelay, 3, 6);
createTape2(0,6);

}

void Ekv::eval1(adoublev& x, adoublev& xt, adoublev& y1, adoublev& z1)
{
// x[0]: vds x[1]: vgs x[2]: vbs
// x[3]: dvds/dt x[4]: dvgs/dt x[5]: dvbs/dt
// z1[3]: vdb , z2[3]: id
// z1[4]: vgb , z2[4]: ig
// z1[5]: vsb , z2[5]: is
double weff = w + dw;
double leff = l + dl;
double vtoa = vtoT + avto / sqrt(np * weff * ns * leff);
double kpa = kpT * (1 + akp / sqrt(np * weff * ns * leff));
double gammaa = gamma + agamma / sqrt(np * weff * ns * leff);
double cEps = 4 * pow(22e-3,2);
double cA = 0.028;
double xi = cA * (10 * leff / lk -1);
double deltavRSCE = 2 * qo / (cox * pow(1 + 0.5 * (xi + sqrt(xi*xi + cEps)),2));
double vc = ucritT * ns * leff;
double lc = sqrt(epsilonsi * xj / cox);
double lmin = ns * leff / 10;
if(type == 1)

eta = 0.5;
else eta = 0.3333333333333;
double qbo = gammaa * sqrt(phiT);
double qox = 0;
double C_ox = cox * np * weff * ns * leff;

//All the active variables for ADOL-C "adoubles" must be initialiazed here
adouble vgprime, vpo1, vpo, vsprime, vdprime, gammao, gammaprime, vp1, vp;
adouble n, i_f, vdss, vdssprime, deltav, vds, vip, deltal, lprime, leq;
adouble irprime, ir, betao, betaoprime, beta, is, ids, vib; //vpprime;
adouble idb1, idb, id, nq, xf, xr, qd, qs, qi, qb1, qb, qg, QI, QB, QD;
adouble QS, QG;

// Effective gate voltage in cluding reverse short channel effect
vgprime = type*x[1] - vtoa - deltavRSCE + phiT + gammaa * sqrt(phiT);

// Effective substrate factor including charge-sharing for short and narrow
// channels
// Pinch-off voltage for narrow-channel effect
vpo1 = vgprime - phiT - gammaa * (sqrt(vgprime + gammaa*gammaa / 4) - gammaa
/ 2);
condassign(vpo, vgprime, vpo1, -phiT);

// Effective substrate factor accounting for charge-sharing
vsprime=0.5*(type*x[2]+phiT+sqrt(pow(type*x[2]+phiT,2) + 16 * vtT*vtT));
vdprime=0.5*(type*x[0]+phiT+sqrt(pow(type*x[0]+phiT,2) + 16 * vtT*vtT));

// Pinch-off voltage including short- and narrow-channel effect
gammao = gammaa - epsilonsi * (leta * (sqrt(vsprime) + sqrt(vdprime))
/ leff - 3 * weta * sqrt(vpo + phiT) / weff) / cox;
gammaprime = 0.5 * (gammao + sqrt(gammao*gammao + 0.1 * vtT));
vp1 = vgprime - phiT - gammaprime * (sqrt(vgprime+pow(gammaprime / 2,2)) -
gammaprime / 2);
condassign(vp, vgprime, vp1, -phiT);

// Slop factor
n = 1 + gammaa / (2 * sqrt(vp + phiT + 4 * vtT));

// Forward normalized current
i_f=log(1+exp((vp-type*x[2])/(2*vtT)))*log(1+exp((vp-type*x[2])/(2*vtT)));

// Velocity saturation voltage
vdss = vc * (sqrt(0.25 + vtT * sqrt(i_f) / vc) - 0.5);

// Drain-to-source saturation voltage for reverse normalized current
vdssprime = vc * (sqrt(0.25 + vtT * (sqrt(i_f) - 0.75 * log(i_f))/vc) - 0.5) +
vtT * (log(vc / (2 * vtT)) - 0.6);

// Channel-length modulation
deltav = 4 * vtT * sqrt(lambda * (sqrt(i_f) - vdss / vtT) + 1 /64);
vds = (type*x[0] - type*x[2]) / 2;
vip = sqrt(vdss*vdss + deltav*deltav) - sqrt(pow(vds - vdss,2) + deltav*deltav);
deltal = lambda * lc * log(1 + (vds - vip) / (lc * ucritT));

// Equivalent channel length including channel-length moculation and velocity
// saturation
lprime = ns * leff - deltal + (vds + vip) / ucritT;
leq = 0.5 * (lprime + sqrt(lprime*lprime + lmin*lmin));

// Reverse normalized current
irprime = log(1 + exp(((vp - vds - type*x[2] - sqrt(vdssprime*vdssprime +
deltav*deltav) + sqrt((vds-vdssprime)*(vds-vdssprime) + deltav*deltav)) /
vtT)/ 2))*log(1 + exp(((vp - vds - type*x[2] - sqrt(vdssprime*vdssprime +
deltav*deltav) + sqrt((vds-vdssprime)*(vds-vdssprime) + deltav*deltav)) / vtT)/ 2));

// Reverse normalized currect for mobility model, intrinsic
//charges/capacitances, thermal noise model and NQS time-constant
ir=log(1+exp((vp-type*x[0])/(2*vtT)))*log(1+exp((vp-type*x[0])/(2*vtT)));

// Transconductance factor and mobility reduction due to vertical field
betao = kpa * np * weff / leq;
betaoprime = betao * (1 + cox * qbo / (eo * epsilonsi));

// Simple mobility reduction model
//vpprime = 0.5 * (vp + sqrt(vp*vp + 2* vtT*vtT));

//beta = betao / (1 + theta * vpprime);

// Quasi-static model equations
// Dynamic model for the intrinsic node charges
nq = 1 + gammaa / (2 * sqrt(vp + phiT +1e-6));

// Normalized intrinsic node charges
xf = sqrt(0.25 + i_f);
xr = sqrt(0.25 + ir);
qd = -nq * (4 * (3 * xr*xr*xr + 6 * xr*xr * xf + 4 * xr * xf*xf + 2 * xf*xf*xf)

/ (15 * pow(xf + xr,2)) - 0.5);
qs = -nq * (4 * (3 * xf*xf*xf + 6 * xf*xf * xr + 4 * xf * xr*xr + 2 * xr*xr*xr)

/ (15 * pow(xf + xr,2)) - 0.5);
qi = qs + qd;
qb1 = -gammaa * sqrt(vp + phiT + 1e-6) / vtT - (nq - 1) * qi / nq;
condassign(qb, vgprime, qb1, -vgprime / vtT);
qg = -qi - qox - qb;

// Rigorous mobility reduction model
beta = betaoprime / (1 + cox * vtT * fabs(qb + eta*qi) / (eo * epsilonsi));

// Specific current
is = 2 * n * beta * vtT*vtT;

// Drain-to-source current
ids = type*is * (i_f - irprime);

// Impact ionization current
vib = type*x[0] - type*x[2] - 2 * ibn * vdss;
idb1 = ids * iba * vib * exp(-ibbT * lc / vib) / ibbT;
condassign(idb, vib, idb1, 0);
id = ids + idb;

// Total charges
QI = C_ox * vtT * qi;
QB = C_ox * vtT * qb;
QD = C_ox * vtT * qd;
QS = C_ox * vtT * qs;
QG = C_ox * vtT * qg;

y1[0] = type*QD;
y1[1] = type*QG;
y1[2] = type*QS;

// Assign DC currents
z1[0] = id; //DC Drain current
z1[1] = 0.0; //DC Gate current
z1[2] = -id; //DC Source current

// Assign known output voltages
z1[3] = x[0]; // vdb
z1[4] = x[1]; // vgb
z1[5] = x[2]; // vsb

}

void Ekv::eval2(adoublev& dy1, adoublev& z1, adoublev& y2, adoublev& z2)
{

z2[0] = z1[3]; //Vdb
z2[1] = z1[4]; //Vgb
z2[2] = z1[5]; //Vsb

z2[3] = z1[0] + dy1[0]; //Drain current Drain charge derivative
z2[4] = z1[1] + dy1[1]; //Gate current, gate charge derivative
z2[5] = z1[2] - dy1[2]; //Source current, source charge derivative

}

141

