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Absfracf-The output power spectrum of a modulated carrier 
applied to a nonlinear wireless circuit is analyzed using the 
statistical properties of the signal and a complex power series 
behavioral model of the nonlinear circuit. Nonlinear analysis of 
signals with known statistical moment properties results in 
reduced order expressions for the output power spectrum in 
terms of the autocorrelation function of the input signal and the 
power series coefticients. Comparisons are presented for several 
limiting amplifier models and between measured versus 
predicted adjacent channel power rejection (ACPR) values for a 
microwave amplifier. 

I. INTRODUCTION 
Modem wireless communication systems utilize digital 

modulation techniques employing complex coding schemes to 
maximize the channel throughput for the available capacity. 
Design of wireless circuits relies on characterization of the 
channel distortion based on sinusoidal two-tone modulation 
which does not accurately represent the amplitude 
fluctuations of the modulation. However, time-domain or 
mixed time-frequency domain simulation of nonlinear circuits 
is costly in terms of simulation time required to verify 
performance over extreme operating conditions. An 
altemative approach is to use a behavioral model of the 
circuit combined with spectral analysis of the output of the 
model. The output power spectrum can be derived by 
moment calculations if the statistical moment properties of 
the signal are known. Gaussian signals have well known 
statistical properties and are closely related to noise problems 
in wireless circuits and are also associated with CDMA 
systems when several users or code channels are utilized at 
the same time. 

This paper presents a statistical analysis of the output 
autocorrelation function and power spectrum when the input 
to a nonlinear circuit is either a real or complex Gaussian 
random process. The analysis is based on a modulated carrier 
passed through a complex power series behavioral model of a 
wireless nonlinear circuit. The output power spectrum is 
obtained from the Fourier transformation of the output 
autocorrelation function. Spectral, ACPR, and gain 
compression analysis results are compared for five limiter 
amplifier models. The statistical formulation results in 
simpler expressions for the output autocorrelation function 
and power spectrum containing significantly fewer spectral 
components than the general time-average autoconelation 
formulation. Finally, the complex gain characteristic of a 
CDMA amplifier is measured and modeled as a complex 

power series. The model is used to calculate the output 
power spectrum when a complex Gaussian input signal is 
applied to the circuit. Measured and predicted ACPR results 
are compared and shown to be in excellent agreement. 

11. LIMITER AMPLIFIER MODELS 

The hyperbolic tangent function is a convenient nonlinear 
limiting function that also represents the large-signal response 
of a bipolar or heterojunction bipolar transistor differential 
pair amplifier 

where g is the linear gain and L is the limit value of the output 
signal. One drawback of the hyperbolic tangent function is 
that the “sharpness” of the transition from the linear to the 
limiting characteristic of the model is fixed in relation to the 
gain and cannot be adjusted without introducing additional 
parameters. 

A popular behavioral limiter model which permits 
independent control of gain, limiting value, and the sharpness 
of the transition characteristic is the Cann model [I] given by 

where g is the linear gain, L is the limit value of the output 
signal, and s controls the sharpness of the transition from 
linear to limiting. 

A plot of the large signal carrier transfer characteristic of 
the hyperbolic tangent and Cann limiter models are shown in 
Fig. 1. The camer transfer characteristic is the large-signal 
transfer function mapping a sinusoidal input to the first 
harmonic of the output. The first harmonic response is 
essentially the first coefficient of a Fourier series expansion 
which limits to 4 L l z  as can be seen in the plots from Fig. 1. 

Each of the large signal carrier transfer characteristic 
curves were fitted to a power series using a least mean 
squared fit to the data. The output signal is obtained by using 
a binomial expansion of the power series model and a 
modulated carrier, described by a complex envelope 
representation, and can be shown to be [2] 
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Fig. I Carrier transfer characteristic for limiter models. 

111. STATISTICAL ANALYSIS OF SPECTRAL REGROWTH 

A bridging principle between the time and statistical 
domains is equivalence of statistical and time averaged 
moments for signals that are ergodic in regards to the 
autocorrelation function. Ergodicity refers to a property 
where the ensemble averages of random process converge to 
the time average of any realization of the process, in the limit, 
as f goes to infinity, i.e. 

1 '  %(r)  = E [ i ( t ) i ' ( t  + r ) ]  = lim- j i ( f ) I ' ( t +  r )d t ,  (4) 
r-- 2T .T 

Moments for random processes can be formulated from 
known properties of the process, but evaluation of the 
moments from the statistical description may be 
mathematically difficult. In those cases, the moments are 
evaluated by substituting time average autocorrelation 
functions for the statistical moments. There is a net reduction 
in complexity when the moment formulation leads to fewer 
autocorrelation terms than the general time average 
autocorrelation function formulation. 

A .  Transformafion of a Real Gaussian Process 
First consider the case where a carrier frequency is 

modulated by a real random process, x ( t ) ,  

(5) 
1 1 

w(f) = -x(t)eJYe' +-x(t)e-'"' 
2 2 

where 0, =2nL and S, is the carrier frequency. The 
modulated carrier is applied to the input of a nonlinear circuit 
represented by the complex power series model from (3) 

The output autocorrelation function is found by taking the 
expectation of the output signal 

The expectation can only be evaluated if the moments of the 
random variable are known. For the case of a zero mean real 
Gaussian process the moments are given by [3] 

E[x,x* ... xs] = 

(8) 
0 , s odd 1 { E [ x , x ,  lE[x,x,l.. .E[x5. ,xx I} , s even . 

oil W" 

The output autocorrelation function is obtained by 
calculating each of the expectations in (7) using (8) then 
collecting terms of like powers. After computing several of 
the moments and collecting like power terms, it can be shown 
that the autocorrelation function terms follow the following 
pattem 

The output autocomelation function expression for a carrier 
modulated by a real Gaussian random process passed through 
a bandpass nonlinearity is the sum of nonlinear 
autocorrelation terms. Thus the output autocorrelation 
function is a sum of (N-1)/2 terms for an Nth odd order power 
series where each autocorrelation term is weighted by a sum 
of DC powers from other nonlinear terms of equal and higher 
order. The output autocorrelation function is a closed-form 
expression in terms of autoconelation of the input signal and 
the sum of the input power weighted by the power series 
coefficients. The output power spectrum is the Fourier 
transform of the autocorrelation function 

N-I 

where 

and F {  RF(r)} is the Fourier transform of RF(r). Use 

of the moment theorem yielded a closed form expression for 
the output spectrum with (N-1)/2 unique spectral terms. 

B. Transformation of a Complex Gaussian Process 
The problem is more complicated when extended to the 
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case where a carrier is modulated by a complex random 
process. For this case, the output autocorrelation function is 
formulated by taking the expectation of the output of the 
nonlinear amplifier with a modulated carrier applied to the 
input from (3) 

Thus the power series expansion and resulting cross terms in 
the autocorrelation function yield the following expression 
for the expectation term 

Evaluation of the expectation function is more complicated 
for this case due to the complex conjugate terms generated by 
the envelope of the carrier. Expanding &(r)  results in 

many algebraically intensive moment manipulations 
involving x(t) and y(t). Fortunately, a previous result for the 
moments of complex Gaussian random variables [4] can be 
used to calculate each of the terms in this expression, namely 

where K is a permutation of the set of integers 
{l,Z ,..., s ,..., t},and { i , , i = l , 2  ,..., s ,..., t }  denotesasetof 

complex independent Gaussian random variables. 
The output autocorrelation function is obtained by 

calculating each of the expectations in (13) using (14) then 
collecting terms of like powers. After computing several of 
the moments and collecting like power terms, it can be shown 
that the autocorrelation function terms follow the following 
pattern 

Thus similarly to the real bandpass Gaussian case the output 
autocorrelation function is a sum of (N-1)/2 terms for an Nth 
odd-order power series; although, the autocorrelation terms 
are products of the autocorrelation and its complex conjugate. 
The output autocorrelation function is a closed form 
expression in terms of autocorrelation of the input signal and 

the sum of the input power weighted by the power series 
coefficients. The output power spectrum is the Fourier 
transform of the antocorrelation function 

where 

and F {  R F ( r ) [ k z ( ~ ) ] ~ }  is the Fourier transform 

Similarly to the real bandpass Gaussian case, use of the 
moment theorem yielded a closed form expression for the 
output spectrum in terms of the input autocorrelation function 
with (N-1)/2 distinct spectral terms. 

C. Spectral Results 
A composite plot of the output power spectrum, using the 

Gaussian moment results from (16), for each of the limiter 
models with a complex Gaussian input signal applied and an 
output power of 2 dBm is shown in Fig. 2. The out-of-band 
distortion is highest for the softer limiter models like the 
C m  s=2 and hyperbolic tangent models, and lowest for 
models with a sharper nonlinear transition for the same output 
power. The spectrum of the input signal limits the 
measurable output power spectrum at far offsets to the carrier 
which is why the far out spectrum converge to nearly the 
same value at offsets greater than 4 MHz. 
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Fig. 2 Power spectrum at 2 dBm with complex Gaussian input 

signal. 

The ACPR versus output power plots for each of the 
limiter models with real and complex Gaussian input signals 
are shown in Fig. 3 and Fig. 4 respectively for a distortion 
offset of 885 KHz. There are differences between ACPR 
produced by the different models similar to the differences 
observed with a CDMA input signal. The triplet multi-tanh, 
Cann s=IO, and Cann s=100 models exhibit a 2:l slope at low 
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output power level; however, there are noticeable notches in 
the ACPR response in the 0 dBm to 6 dBm output power 
range. 
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Fig. 3 Real Gaussian ACPR sweep. 
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Fig 4 Complex Gaussian ACPR sweep 

IV. MEASUREMENTS 

The complex Gaussian moment method was used to 
calculate the output power spectrum and ACPR of an 
integrated RF amplifier with complex Gaussian input signal. 
The device under test (DUT) is a 835 MHz CDMNAMPS 
driver amplifier device fabricated using a GaAs MESFET 
technology [SI. A vector network analyzer, with a built in 
power sweep function, was used to measure the AM-AM and 
AM-PM over an input power range of -25 dl3m to -2 dBm. 
The measured AM-AM, AM-PM characteristics were fit to a 
complex power series of odd order N=13 using a least 
squares solution. 

A camer modulated with a complex Gaussian signal is 
applied to the amplifier circuit and the output distortion 
measured using a spectrum analyzer. ACPR is the ratio, in 
decibels, of the distortion power, in a 30 liHz bandwidth 
offset by 2c-885 IdIz, and the desired channel power, in a 
1.23MHz bandwidth. The ACPR measurements along with 
the predicted ACPR by the complex Gaussian formulation are 

shown in Fig. 5. The measured and predicted ACPR are in 
good agreement below an output power level of 11 dBm. The 
complex Gaussian moment formulation deviates from the 
measured data because of the limited dynamic range of the 
complex power series model of the nonlinear amplifier 
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V. CONCLUSION 

A statistical method for analyzing the power spectrum of 
modulated carriers passed through a nonlinear wireless circuit 
was presented. The method is based on a transformation of 
the statistical properties of the modulated canier passed 
through a complex power series model of the nonlinear 
amplifier. The second order moments of the nonlinear terms 
are calculated and combined leading to a closed form 
expression of the output autocorrelation in terms of the 
autocorrelation function of the input signal. The statistical 
formulation yields ( N - 1 ) / 2  spectral terms for real and 
complex Gaussian modulation of the carrier. The analysis 
technique was applied to limiter amplifier models and 
demonstrated excellent agreement when compared against 
measured data from a CDMA amplifier. 
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