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Abstract—An original, fully analytical, spectral domain
decomposition approach is presented for the time-dependent
thermal modeling of complex non linear three-dimensional (3-D)
electronic systems, from metallized power FETs and MMICs,
through MCMs, up to circuit board level. This solution method
offers a powerful alternative to conventional numerical thermal
simulation techniques, and is constructed to be compatible with
explicitly coupled electrothermal device and circuit simulation on
CAD timescales. In contrast to semianalytical, frequency space,
Fourier solutions involving DFT-FFT, the method presented
here is based on explicit, fully analytical, double Fourier series
expressions for thermal subsystem solutions in Laplace transform
-space (complex frequency space). It is presented in the form

of analytically exact thermal impedance matrix expressions for
thermal subsystems. These include double Fourier series solutions
for rectangular multilayers, which are an order of magnitude
faster to evaluate than existing semi-analytical Fourier solutions
based on DFT-FFT. They also include double Fourier series
solutions for the case of arbitrarily distributed volume heat
sources and sinks, constructed without the use of Green’s function
techniques, and for rectangular volumes with prescribed fluxes
on all faces, removing the adiabatic sidewall boundary condition.
This combination allows treatment of arbitrarily inhomogeneous
complex geometries, and provides a description of thermal mate-
rial non linearities as well as inclusion of position varying and non
linear surface fluxes. It provides a fully physical, and near exact,
generalized multiport network parameter description of non
linear, distributed thermal subsystems, in both the time and fre-
quency domains. In contrast to existing circuit level approaches, it
requires no explicit lumped element, RC-network approximation
or nodal reduction, for fully coupled, electrothermal CAD. This
thermal impedance matrix approach immediately gives rise to
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minimal boundary condition independent compact models for
thermal systems. Implementation of the time-dependent thermal
model as -port netlist elements within a microwave circuit
simulation engine, Transim (NCSU), is described. Electrothermal
transient, single-tone, two-tone, and multitone harmonic balance
simulations are presented for a MESFET amplifier. This thermal
model is validated experimentally by thermal imaging of a passive
grid array representative of one form of spatial power combining
architecture.

Index Terms—Circuits, compact modeling, electrothermal, har-
monic balance, nonlinear simulation, MMICs, power FETs, spatial
power combiners, thermal, transient.

NOMENCLATURE

AC Alternating current.
ACPR Adjacent channel power ratio.
BCI Boundary condition independent.
CAD Computer aided design.
CDMA Code division multiple access.
DC Direct current.
DFT-FFT Discrete Fourier transform, fast Fourier

transform.
EM Electromagnetic.
FDTD Finite difference time domain.
FET Field effect transistor.
FETD Finite element time domain.
HB Harmonic balance.
HEMT High electron mobility transistor.
IC Integrated circuit.
MCM Multichip module.
MESFET Metal semiconductor field effect transistor.
MMIC Monolithic microwave integrated circuit.
MNAM Modified nodal admittance matrix.
MOSFET Metal oxide semiconductor field effect

transistor.
RF Radio frequency.
SPICE Simulation programme with integrated

circuit emphasis.
USE Unsteady surface element.

Simultaneously piecewise constant
functions (36).
Double Fourier series expansion
coefficients.
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Specific heat.
-dimension of rectangular subvolume.

Domain corresponding to heating element,
.
-coordinate of th interface in -level

multilayer, (with ).
Rate of heat generation.
Laplace transform of .
Source term in one-dimensional (1-D)
Helmholtz equation for , (31).
Surface heat flux coefficient.
Surface heat flux coefficient, , at surfaces

, in “radiation” boundary
condition (7).
AC drain-source current.
DC drain-source current.
Double integral over elementary area,
(20).
Double integrals of the form (20), over
elementary areas and , on respective
faces and , of rectangular
subvolume.
Integer indices running over elementary
heating elements.
Thermal diffusivity, .
Temperature independent thermal
diffusivity after time variable
transformation.
Thermal diffusivity of th layer in -level
multilayer.

-dimension of rectangular subvolume.
Inverse Laplace transformation.
Summation indices taking values

.
2 2 analytically obtained transfer matrix
(41).
Time-dependent power dissipation in
elementary area, .
Laplace transformed power dissipation in
elementary area, .
Values of power dissipation, ,
assumed piecewise constant, in element,,
at time step .
Vector of Laplace transformed power
dissipations at active elements,, of
metallized GaAs die (44).
Time dependent imposed flux densities at
surfaces in “radiation” boundary
condition (7).
Laplace transform of .
Index describing layers of -level
multilayer, .
Thermal impedance matrix in complex
frequency space (-port impulse
response).
Time domain thermal impedance matrix
( -port step response)

.

Thermal impedance matrices
corresponding to rectangular volume
discretized on both top and bottom surfaces,

(43).
Thermal impedance matrix, , for
metallized GaAs die, partitioned by active
elements, , and interface elements,.
Thermal impedance matrix for theth
piece of surface metallization (43).
Global thermal impedance matrix for
metallized GaAs die (44).
Amplitude in time constant representation
(26).
Laplace transformation variable (complex
frequency).
Two-dimensional step function, equal to 1
in elementary areas, , and 0 otherwise.
Double Fourier series expansion coefficients.
Time.
Temperature.
Teatsink mount temperature in Kirchhoff
transformation.
Unit step function.
AC drain-source voltage.
DC drain-source voltage.
-dimension of rectangular subvolume.

Cartesian coordinates.
- and -coordinates of surface points,

, defining thermal transfer
impedance in -level multilayer solution
(38).
-coordinates of bounding planes of

elementary rectangular power dissipating
volume, , with cross section, .
-terms in generalized double Fourier

series expansion (30).
Transformation of to solve
Helmoltz equation (31).
Coefficient equal to 0 (imposed
temperature boundary condition) or 1
(imposed flux boundary condition), at
surfaces , in “radiation” boundary
condition (7).
Coefficients of transfer matrix product (39).
Elementary interval in transformed time.
Kronecker delta function.
Laplace transformed rise of linearized
temperature for heating element,.
Linearized temperature rise in element,,
at time step .
Vector of Laplace transformed, linearized
temperature rises at active elements,, of
metallized GaAs die (44).
Intervals in , Fig. 3.

(12).
(24).

of th layer in -level multilayer,
(40).
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Temperature dependent thermal
conductivity.
Temperature independent thermal
conductivity after Kirchhoff
transformation, .
Thermal conductivity of th layer in

-level multilayer.
(12).
(12).

Angular frequency.
Temperature linearized by Kirchhoff
transformation (2).
Laplace transform of.
Ambient temperature.
Laplace transformed linearized
temperature averaged over elementary area,

.
Initial temperature distribution.
Shifted temperature, (9).
Time dependent ambient temperatures

, or heatsink mount
temperatures , at surfaces

, in “radiation” boundary
condition (7).
Laplace transforms of linearized
temperatures averaged over elementary
areas, , and , on respective faces

and , of rectangular
subvolume.
Density.
Sum over all excluding

(24).
Transformed time (4).
Time constant (26).

, Fig. 3.
Derivative of , to reduce
Helmoltz equation (31), to first order.

I. INTRODUCTION

T HE impact of self-heating and mutual thermal interaction
on electronic device and integrated circuit performance

is well known, and the electrothermal simulation problem has
been studied for at least 30 years [1]–[3]. The thermal modeling
of complex three-dimensional (3-D) structures can be achieved
by standard numerical techniques, and solutions of the heat dif-
fusion equation for complex 3-D systems are commonly based
on finite volume, finite element, finite difference, boundary el-
ement or transmission line methods. All of these approaches
require construction of a volume or surface mesh. Such solu-
tions have been combined with circuit simulators for joint elec-
trothermal simulation [4]. However, they are computationally
intensive and therefore generally too slow for treatment of large
systems, by direct coupling to electronic device and circuit sim-
ulators, in the necessarily iterative solution of intrinsically non
linear coupled electrothermal problems. Even numerical solu-
tions optimized for thermal treatment of electronic devices and
circuits, e.g., [5], which is based on hierarchical nesting to treat

the wide range of length and time scales inherent in the cou-
pled electrothermal problem, or [6], based on successive node
reduction for complex inhomogeneous 3-D structures, are not
fast enough for directly coupled electrical and thermal solution.
Thus a number of faster thermal descriptions have been devel-
oped.

The simplest thermal models for the time-independent case
are provided by analytical thermal resistance approaches of
varying levels of complexity, e.g., [7]–[9]. However, it has been
stated repeatedly [10], [11] that the thermal resistance approach
is fundamentally approximate and inadequate for detailed
description of power devices. Until recently, the state of the art
in time-independent thermal simulation of heatsink mounted
power FETs and MMICs, for coupled electrothermal CAD, has
been represented by the hybrid finite element Green’s function
approach of Bonaniet al. [12]. This thermal resistance matrix
approach treats device structure such as surface metallization,
vias and partial substrate thinning.

The thermal resistance and impedance matrix approach is
an example of thermal network extraction. For treatment of
complex structures without direct coupling of electrical and
thermal simulators, generation of thermal networks for both
time-independent and time-dependent electrothermal co-simu-
lation has been described by, e.g., Lee and Allstot [13], Hefner
and Blackburn [14], and Hsu and Vu-Quoc [15]. However,
these approaches are all based on spatial discretization of the
thermal system. They can produce thermal networks containing
a large number of nodes, are inherently approximate through
finite difference [13], [14] or finite element [15] discretization,
and can invoke simplifications to the full 3-D thermal solution,
by solving the heat diffusion equation only in a reduced
dimensional form and without treating detailed device structure
such as die surface metallization [14].

In contrast, analytical solutions can be fully 3-D and avoid
approximations due to spatial discretization. However, in
time-dependent coupled electrothermal CAD, fast analytical
3-D thermal descriptions have been less able to describe
complex structures, and have been limited to simple rectangular
multilayers. Analytical thermal impedance expressions have
been presented, for instance, for MOSFETs [16]. Veijola has
implemented an approximate thermal impedance description,
based on analytical solution for heat-generating spheres,
in circuit simulation programme APLAC [17]. Rizzoli has
employed a Green’s function construction of the thermal
resistance matrix in a wide range of circuit level, harmonic bal-
ance and transient simulations, but with thermal capacitances
described approximately based on an enthalpy formulation
[18]. Analytical Green’s function and Fourier solutions have
been used to describe the time-dependent thermal problem by a
number of authors. In particular, Szekelyet al. have employed
a Fourier series method for over 20 years, providing solutions
for a variety of ICs, microsystem elements, and MCMs [19].

For circuit level electrothermal simulations, thermal model
reduction techniques have been widely employed. Work in this
area includes that of Sabry [20], Napieralski [21], Hsu [22] and
Szekely [23]. Szekely has combined fast sparse finite difference
methods, [6], with lumped element RC network extraction, [23],
to provide coupled electrothermal simulation of complex 3-D
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systems. The related problem of compact model development
is currently an active area of research [24], [25].

The aim of this paper is to describe a new, fully physical and
analytical, approach to the non linear time-dependent thermal
problem in complex 3-D systems, suitable for explicitly
coupled electrothermal device and circuit simulation on CAD
timescales, and requiring essentially no model reduction. To
illustrate the advantages of this approach, particular comparison
is made with the comprehensive circuit level electrothermal
modeling capability of Szekelyet al. Fully physical, coupled
electrothermal device simulations for the thermal time-inde-
pendent and time-dependent cases, have been described by the
authors previously [26]–[32]. These were based on coupling
of the thermal model presented here, to the quasi-two-dimen-
sional (2-D) Leeds Physical Model of MESFETs and HEMTs
[33]–[36]. Coupling to a microwave circuit simulator, Transim
(NCSU) [37], has been introduced in [38]–[41].

Generically, the thermal approach presented in this paper,
is a fully analytical spectral domain decomposition technique
[42]. Simple composite systems have been treated previously
by the Unsteady Surface Element (USE) method of Beck
et al. [43], and this approach has the advantage that, unlike
conventional numerical methods, it only discretises interfaces
between subsystems. Like the USE method, the approach
presented here discretises only interfaces (along with power
dissipating and temperature sensitive elements). It constructs
solutions for thermal subvolumes which are fully analytical,
with development of double Fourier series solutions for thermal
subvolumes by explicit construction of series expansion coeffi-
cients. Thus it differs from semianalytical Fourier approaches
for simple rectangular multilayers [19], based on collocation or
function sampling, which require numerical manipulation such
as DFT-FFT to generate expansion coefficients. As solutions
for subvolumes are fully analytical, no volume or surface mesh
is required. The method described is a thermal impedance
matrix approach. This time-dependent thermal impedance
matrix formulation is a natural development of the authors’
fully analytical implementation of the thermal resistance matrix
approach for the time-independent case, described in [26],
[27] and developed fully in [28]. It is shown that, in contrast
to previous thermal resistance and impedance approaches, this
thermal impedance matrix method can be formulated to provide
an essentially exact solution of the heat diffusion equation in
complex 3-D systems. It therefore removes the need to utilize
computationally intensive numerical techniques in order to
treat complex structures, e.g., [4], [20], [21], [44]. Previous
Green’s function or Fourier approaches have been restricted
to simple rectangular homogeneous volumes and multilayers,
e.g., [3], [18], [23], [45]. The fully analytical model presented
here can describe simultaneously all device detail, from surface
metallization, vias and substrate thinning, in power FETs and
MMICs, through (actively cooled) MMIC on substrate arrays,
up to MCMs and circuit board level. It does this by providing
double Fourier series solutions of the heat diffusion equation
in thermal subsystems, and then constructing global solutions
for complex systems by matching temperature and flux at
subsystem interfaces. As the subsystem solutions are matrix
expressions, an explicit matrix representation can be obtained

for the global thermal impedance matrix of the complex device
structure. A particular intended application is the treatment
of MMIC arrays for spatial power combining at millimeter
wavelengths.

Importantly, this modular thermal solution is constructed
to be immediately compatible with explicitly coupled elec-
trothermal device and circuit simulation on CAD timescales.
This is achieved by formulating the analytically exact sub-
system solutions in terms of thermal impedance matrices which
describe temperature variation with time, only in the vicinity
of the power dissipating, temperature sensitive, and interface
regions required for coupling of the electrical and thermal
problems. No redundant temperature information is generated
on the surface or in the body of the subsystem volumes. As
these minimal thermal solutions are generated analytically,
the thermal impedance matrices are all precomputed, prior to
the coupled electrothermal simulation, purely from structural
information. Thermal updates in the coupled electrothermal
problem are therefore rapid.

Fully coupled device level simulation can be implemented by
combination of the Leeds thermal impedance matrix model with
any thermally self-consistent device model. If the device model
includes self-heating effects, then the global thermal impedance
matrix will provide an accurate, CAD timescale, description
of mutual thermal interaction between power dissipating and
temperature sensitive elements, however complex the thermal
system. Coupled electrothermal solution is achieved by iterative
solution of the electrical and thermal problems, with thermal
updates provided by small matrix multiplications, and thermal
non linearity transferred to the already non linear active device
model.

Circuit implementation of this thermal solution, exploits
the ability of network based microwave circuit simulators to
describe multiport non linear elements in the time domain,
and to treat distributed electromagnetic (EM) systems in terms
of multiport network parameters [46]. The thermal solution
makes use of the close analogy between distributed EM and
thermal systems. The magnetic vector potential wave equation
in frequency space, is just the Helmholtz equation, as is the
time-dependent heat diffusion equation in Laplace transform
-space (complex frequency space), after appropriate transfor-

mation of thermal non linearity. Double Fourier series thermal
solutions resemble analytical EM Green’s function solutions
(and the same series acceleration techniques can be used in each
case). Most importantly, complex EM systems are treated by
segmentation [47] and cascading of subsystem solutions by use
of network parameter matrices. The transformed (initially non
linear) thermal problem is therefore immediately compatible
with network based microwave circuit simulation engines, by
interpretation of thermal impedance matrices, for distributed
thermal subsystems, in terms of generalized multiport network
parameters.

Analytical, -space solution for thermal subsystems, means
that no numerical identification of thermal networks, such
as that provided by the NID method [48], is required. It also
means that each thermal subsystem can be described directly, in
either the time domain or in the frequency domain, by the same
analytical solution. The -space thermal impedance matrix
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method is therefore more general than time-dependent EM
waveguide descriptions, which are conventionally formulated
in frequency space (time-dependent harmonic steady-state).
In the time domain, the thermal subsystem is treated as a
non linear multiport element, which readily allows non linear
matching of transformed temperatures at thermal subsystem
interfaces [27], [28]. In the frequency domain, the thermal
subsystem is represented by a matrix of complex phasors
inserted into the modified nodal admittance matrix (MNAM)
for the microwave system, and thermal non linearity is again
transferred to the already non linear active device model. This
gives coupled electrothermal harmonic balance and transient
solutions on CAD timescales. Coupled electrothermal circuit
level CAD generally requires thermal model reduction, e.g.,
[20]–[23]. Rapidly convergent, fully analytical and minimal
thermal impedance matrix expressions, in both the time and
frequency domains, mean that no reduced, lumped element,
RC network description, is required in the multiport network
parameter approach. The thermal impedance matrices represent
boundary condition independent compact models of thermal
subsystems [24], [25] for the time-dependent case, and with
treatment of thermal non linearity. Analytical expressions for
the multiport network parameters of all thermal subvolumes
means that no distinct thermal simulator, separate from the
coupled electrothermal simulation engine, is required to char-
acterize the complex thermal system.

A key aspect of the thermal solution presented here, is ap-
plication of a generalized “radiation” boundary condition, on
the top and bottom surfaces of all thermal subvolumes, in the
analytical subsystem solutions. This boundary condition allows
analytical subsystem solutions with interface discretization, and
construction of global thermal solutions by vertical matching of
temperatures and fluxes at subsystem interfaces. The boundary
condition also allows integral treatment of surface radiation and
convection in large area systems without approximation such
as that invoked in [19]. (Radiation boundary conditions have
also been applied, for example, in finite difference solutions
for electrothermal simulation [44], and in analytical solutions at
the circuit board level [45].) More comprehensive thermal solu-
tions are also described, which remove the need for an adiabatic
sidewall boundary condition in subvolumes, allowing additional
horizontal interface matching. Such solutions also allow sub-
volume embedding for the treatment of inhomogeneous struc-
tures. The range of application of this thermal impedance ma-
trix approach is therefore again more general than that of con-
ventional EM waveguide formulations. Analytical solution with
prescribed fluxes on all subvolume surfaces allows treatment of
complex packages. By dropping the surface convection coeffi-
cient from the surface boundary conditions, it includes the case
of position varying surface flux, by connection of thermal sur-
face nodes to ambient through thermal resistances describing
piecewise constant surface flux defined over the whole sub-
volume surface.

One aim of this paper is to present explicit analytical
solutions for thermal subsystem impedance matrices, allowing
global solution for complex systems. Such fully analytical solu-
tions treat arbitrarily complex 3-D thermal systems without the
use of volume meshes, uniform or non uniform, thus avoiding

all problems with the wide range of length and time scales in-
herent in the coupled electrothermal problem [49]. Generation
of such solutions requires treatment of thermal non linearity
inherent in temperature dependent material parameters. An
original treatment of this non linearity, for device and circuit
level electrothermal CAD, is presented first [50]–[52]. This is
followed by derivation of thermal impedance matrix solutions
for a homogeneous MMIC, and for an -level rectangular
multilayer. It is shown how the time-dependent form of the
thermal impedance matrix can be expressed in rapidly conver-
gent forms for all time,. This is followed by presentation of an
original double Fourier series solution to the time-dependent
heat diffusion equation with arbitrarily distributed volume heat
sources and sinks. This goes beyond previous solutions in the
literature, which treat heat dissipating sources as planar, either
at the surface or interfaces of rectangular multilayers [19], [27],
[28]. Description of complex 3-D structure, and construction
of global impedance matrices, are outlined next, followed by
discussion of the Leeds thermal impedance matrix approach
as a compact model. Implementation of the time-dependent
thermal impedance matrix approach, in circuit level CAD,
is then illustrated by electrothermal transient and harmonic
balance simulation, particularly demonstrating thermal effects
on intermodulation distortion and spectral regrowth. These
represent an essential aspect of device optimization for nar-
rowband digital modulation applications such as CDMA for
mobile communications. The ultimate intended application of
the modeling capability described here, is study and design
of spatial power combining systems for use as high power
sources at millimeter wavelengths. The thermal model is
therefore validated by thermal imaging of a passive grid array
representative of one form of quasioptical system architecture.

II. THERMAL NON LINEARITY

The time dependent heat diffusion equation is given by

(1)

where
temperature;
time;
temperature dependent thermal conductivity;
rate of heat generation;
density;
specific heat.

This equation is non linear through the temperature dependence
of (and possibly of and ). To linearise the equation, the
Kirchhoff transformation is performed [53]

(2)

where and is the heatsink mount temperature.
The importance of performing the Kirchhoff transformation has
been illustrated, e.g., by Webb [54]. The inverse Kirchhoff trans-
formation is trivial to imposea postiorito solution of the linear
heat diffusion equation, by application of a simple analytical
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formula to the solution temperatures [28], [55]. The equation
for transformed temperaturebecomes

(3)

where diffusivity . is now a function of so the
equation is still non linear.

At this stage it is conventional, in electrothermal simu-
lations employing the Kirchhoff transformation, to assume
that is approximately constant, thus fully linearising
the time-dependent heat diffusion equation. However, for
typical semiconductor systems this assumption requires further
examination and has been discussed by the authors in [50]. It is
shown there, that the Kirchhoff transformation does not remove
the temperature sensitivity of the material parameters for the
time-dependent case. Choice of an approximate mean value for

is not uniquely defined.
A further transformation can therefore be applied to linearise

the heat diffusion equation, by defining a new time variable,
[56], [57]

(4)

Approximating the Laplacian by its conventional rectangular
Cartesian form, the time-dependent heat diffusion equation be-
comes finally

(5)

The fully linearized equation, (5), can now be solved ex-
actly with general linear boundary conditions, and this approx-
imate linearization should be good for the moderate temper-
ature dependences occurring in semiconductor systems [51],
[52]. (Stronger non linearities can be treated, less compactly,
within the fully analytical thermal resistance matrix approach by
the equivalent linearization, [52].) To illus-
trate the significance of the time variable transformation, (4), for
electrothermal response [50], an analytical thermal impedance
matrix is constructed to describe the response to step power
input of 0.4 W, over a central square , at the surface
of a cubic GaAs die, side m. Such a configuration is
illustrative of, for example, a multifinger power FET. It is found
that total neglect of thermal non linearity leads to a K un-
derestimate of the steady-state temperature rise of K. In-
cluding the inverse Kirchhoff transformation, but neglecting the
inverse time variable transformation is seen to overestimate the
temperature rise by % at any given instant, or equivalently
and more importantly, to underestimate the rise time required to
reach a given temperature by as much as%.

Another sometimes used approximation, is that of effectively
linearising the time-dependent heat diffusion equation about a
typical operating point, without employing either the Kirchhoff
or the time variable transformation. The error in this approach
corresponds to % overestimate of temperature rise, or under-
estimate of rise time by as much as %. In addition, simply
guessing a suitable operating point for linearization is highly

subjective, and for the case of transient thermal variation of
large amplitude, easily leads to large errors in the calculated
steady-state operating temperatures. In Si systems, temperature
dependence of material parameters is even more pronounced
than in GaAs [58]. Full linearization of the time-dependent heat
diffusion equation should therefore be implemented to obtain
sufficient accuracy in electrothermal simulations.

III. A NALYTICAL SOLUTIONS

Having described the (large signal) transformation of the non
linear time-dependent heat diffusion equation, to produce a fully
linear problem, analytical solution of the transformed problem
in terms of thermal impedance matrices is now described. The
thermal impedance matrix approach reduces to construction of
global heat flow functions, for power dissipating and tempera-
ture sensitive elements in semiconductor integrated circuits, in
the form

(6)

where is the Laplace transformed temperature rise of el-
ement above its initial temperature, is the thermal
impedance matrix in Laplace-space and the are the trans-
formed time-dependent fluxes due to power dissipation in ele-
ments, .

Formulation of the thermal impedance matrix approach in
Laplace transform -space, rather than in the time domain, is
chosen for a number of reasons. Firstly, the-space formula-
tion is a natural development of the fully analytical thermal
resistance matrix approach for the time-independent case, de-
scribed by the authors previously [26]–[28]. All of the advan-
tageous features of the analytical thermal resistance matrix ap-
proach for the coupled electrothermal description of complex
systems, carry over to the time-dependent case in-space. Sec-
ondly, the -space formulation of the thermal impedance ma-
trix allows immediate incorporation as a multiport distributed
thermal network in circuit level harmonic balance simulators.
Finally, Laplace inversion also allows use in circuit level tran-
sient simulations, and analytical inversion of-space expres-
sions readily gives rise to both small-time and large-time re-
sults for the thermal response, which are not easily obtained
using a direct time domain formulation. However, the thermal
impedance matrix approach can also be developed in the time
domain using Green’s function techniques. This approach is de-
scribed in [30].

In the thermal impedance matrix approach presented here,
is determined in explicit analytical form, purely

from structural information. It is independent of temperature
and power dissipation, and hence of device bias. Its order is
determined only by the number of active device elements,
independent of the level of the complexity of the device
structure, so is already minimal without any model reduction.
Thermal updates in the coupled electrothermal problem reduce
to small matrix multiplications, (6). This approach therefore
offers orders of magnitude speed-up compared to numerical
thermal solutions.
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Fig. 1. Generic thermal subvolume for analytical construction of the thermal
impedance matrix.

A. The Homogeneous Thermal Subsystem

An analytical solution to the linearized heat diffusion equa-
tion, (5), is constructed for the case of a rectangular, homoge-
neous, generic thermal subvolume,

, with active device elements de-
scribed by surface elementary areas,, and base discretized
into elementary areas, (see Fig. 1). Adiabatic boundary con-
ditions are assumed on the side faces and a generalized ‘radi-
ation’ boundary condition is imposed on the top and bottom
faces, . This can be written

(7)

Non linear surface flux boundary conditions can be treated
in the limit of a sequence of such fully linear problems [27],
[59]. Here, imposed flux densities are time
dependent. Coefficients describe surface fluxes due to
radiation and convection. The equal zero for imposed
temperature boundary conditions and unity for imposed flux
boundary conditions. The respective ambient temperatures

, or heatsink mount temperatures ,
are also dependent on time, . The generality of
this boundary condition allows vertical matching of thermal
subsystems, by interface discretization and thermal impedance
matrix manipulation, as well as integral treatment of surface
fluxes. However, the adiabatic sidewall boundary condition
can be removed, as described later, Sections III-B and III-F, to
allow horizontal interface matching and subvolume embedding.

To solve this problem, the Laplace transform is constructed
giving

(8)

assuming no volume sources or sinks, and describing surface
fluxes by imposed boundary conditions, (7).

For the case of a uniform initial temperature distribution equal
to uniform and time independent ambient temperature, the sub-
stitution

(9)

is made, giving

(10)

By separation of variables, the general solution foris of the
form

(11)

where and

(12)

With the transformation of variable, (9), the adiabatic side
wall boundary conditions retain the same form and the radiation
boundary condition on the top and bottom surfaces, ,
becomes

(13)

Within this framework, the time-dependent problem resembles
very closely the time-independent problem [27], [28], thus ex-
plicit forms for the expansion coefficients are obtained from

(14)

and

(15)

Here is the Kronecker delta function and the standard result

(16)

has been used.
Such fully analytical double Fourier series solutions in

Laplace transform -space have been described previously
[3]. They are to be distinguished from semi-analytical Fourier
solutions in frequency space, which are based on collocation or
function sampling, and require numerical manipulation such as
DFT-FFT to obtain expansion coefficients [19].
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Explicit forms for the double Fourier series expansion coeffi-
cients, , can only be obtained for the case of constant,

. Where varies with position, due to position
dependent surface fluxes, a large linear system must be solved
for the expansion coefficients [27], [28]. This computational ex-
pense can be avoided by dropping the surface flux coefficient,

, from the “radiation” boundary condition, (7), discretising
the whole surface, and connecting the thermal subvolume to am-
bient through a set of (generally non linear) external thermal re-
sistances describing piecewise constant surface flux [45]. This
approach is discussed further in Section V. Similarly, use of a
position dependent , for instance in direct construction of a
thermal admittance matrix (as opposed to a thermal impedance
matrix), can always be avoided by discretization of the whole
surface (as in the boundary element method) and imposition of
a corresponding nonmixed boundary condition.

As in the time-independent case for the homogeneous MMIC
[27], [28], to illustrate a particular time-dependent form of the
thermal impedance matrix, put (no radia-
tion from the top surface, ) and

(uniform temper-
ature on the bottom surface, , corresponding to heat
sink mounting at ambient temperature). Assume a surface power
density of the form

(17)

where in active device elementary areas, and
otherwise, then

(18)

The corresponding temperature distribution is given by

(19)

with area integrals defined by

(20)

Constructing the surface temperatures averaged over elementary
areas as

(21)

immediately gives the defining equation of the thermal
impedance matrix approach, (6), in the form

(22)

where

(23)

Extension to treat other realizations of the radiative boundary
condition, (7), is immediate. This allows construction of solu-
tions for large area substrates, with radiation and convection,
and generation of series solutions for thermal subsystems with
discretized interfaces, permitting vertical matching of thermal
subvolume solutions in complex 3-D systems. The expression
for , (23), can be written in alternative equivalent
forms [3], and is readily extended to treat-level multilayers
[3]. The temperature distribution of (19), and the corresponding
thermal impedance matrix of (23), reduce to the respective
steady-state forms [27], [28], in the limit , giving for
the thermal resistance matrix

(24)

where now, , and the sum is over all
excluding .

The thermal impedance matrix approach as described here
means that generally, temperature will only be calculated in
the vicinity of power dissipating and temperature sensitive el-
ements, as required for the coupled electrothermal solution. No
redundant temperature information will be generated on the sur-
face or in the body of the die. However, the solution of the heat
diffusion equation just described, provides analytical expres-
sions for both the thermal impedance matrix and for the cor-
responding temperature distribution throughout the body of the
MMIC. This means that once power dissipations,, have been
obtained self-consistently, by employing the thermal impedance
matrix in the coupled electrothermal implementation, tempera-
ture can be obtained essentially exactly, if required, at any point
within the body or on the surface of the MMIC. This is of value
for model validation against measured thermal images.

The matrix given by (23) represents an exact analytical solu-
tion for time-dependent 3-D heat flow in a MMIC bearing an
arbitrary distribution of power dissipating and temperature sen-
sitive elements. These elements could be transistor fingers or
finger subsections, grouped in any fashion, or could represent
heat dissipating passive elements or effective thermocouples at
metal-substrate contacts [60]. These analytical expressions de-
scribe exactly the finite volume of the die and the finite extent
of transistor fingers, without making any approximations for in-
finite volume or finite end effects. If a simpler, single thermal
impedance description of device heating is required, the ele-
ments of the matrix can be appropriately summed to give the
total, area averaged, temperature rise.

The analytical solution, (23), represents the thermal impulse
response of the MMIC. It is frequency dependent as character-
istic of distributed systems and contains an infinite number of
poles and zeros. It corresponds directly to a multiport thermal
network, Fig. 2, which cannot be represented exactly by a finite
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network of frequency independent primitives, (such as thermal
networks generated by numerical mesh descriptions, e.g.,
[13]–[15], [20], [21], [44], which only give an exact thermal
description in the limit of infinitely fine mesh discretization).
The multiport network is already minimal, in that it describes
nodes corresponding only to power dissipating or temperature
sensitive elements (or discretized interface elements). It there-
fore constitutes a boundary condition independent compact
model for the thermal time-dependent case, with 3-D heat flow
described exactly by a small number of thermal impedances.
The multiport network parameter interpretation presented here,
makes the thermal impedance matrix approach immediately
compatible with network based electromagnetic and electrical
circuit solvers [46], without the need for explicit RC network
approximation, or for any model reduction beyond that implicit
in summation of infinite series to just a finite number of terms.

The thermal impedance matrix, (23), can either be used di-
rectly in frequency space, for instance in harmonic balance sim-
ulations, or Laplace inverted to describe thermal time depen-
dence directly in transient simulations. For the harmonic bal-
ance case, the solution for the thermal impedance matrix is just
of the -dependent form, (23), with . It takes the form
of an array of frequency dependent complex phasors containing
phase and amplitude information for the (asymptotic) sinusoidal
response to harmonic forcing. This matrix then corresponds to
the network parameters of a distributed (originally non linear)
multiport thermal network.

Having obtained transformed temperature in-space, ,
and assuming corresponding to simple step inputs of mag-
nitudes , analytical inversion gives the corresponding time
domain thermal impedance matrix, , corresponding to
step input

(25)

with . Taking the limit and per-
forming the summation explicitly, the time-independent re-
sult is recovered [27], [28]. Using the Watson transformation
[61] and the Poisson summation formula [62], series solutions
such as (23)–(25) can be partially summed explicitly in closed
form, and partially accelerated to give even more rapidly eval-
uated expressions. These results are presented elsewhere [63].
Such treatment can be particularly important for the descrip-
tion of small elements on large die, which can require summa-
tion of large numbers of terms for sufficient resolution. Aver-
aging power dissipations over larger areas can give differences
of several decades in calculated time constants, compared to ac-
curate representation of highly localized heating [32], [64]. Ac-

Fig. 2. ThermalN -port generated directly from analytical solution of the heat
diffusion equation, and represented by thermal impedance matrix,R (s).

curacy in such descriptions is relevant, for instance, in studies
of thermal intermodulation in power HEMTs [32].

Equations (23) and (25) give immediately pole-zero or time
constant representations for the thermal impedance matrices.
Writing [65]

(26)

with , it is apparent from (25) that and are
obtained in explicit analytical form. Retaining just those terms
corresponding to the dominant time constants gives a represen-
tation similar to that abandoned by Napieralskiet al. [21] be-
cause it could not be obtained in a simple parameterized form.
This description generalizes immediately to complex 3-D sys-
tems, as described below.

Although it is distributed, the finite thermal system is seen not
to be represented by a continuous time constant spectrum, but by
a countably infinite number of time constants. However, sum-
ming all contributions within rangeto , where
[65], essentially continuous spectra are obtained (see Fig. 3).
These spectra are calculated for a silicon chip considered by
Szekelyet al.[65] and agreement with the calculated results pre-
sented in Fig. 23 of that paper is good. Exact agreement is not to
be expected, as details of the time constant spectrum depend on
the magnitude and placement of intervals. The two curves
shown correspond to division of the calculated eight decade log-
arithmic interval, into 40 (solid line) and 80 (dotted line) equal
subdivisions, respectively.

Combining tables of standard integrals, e.g., [43], with ex-
pressions for the inverse Laplace transform (using properties
of theta functions) [66], gives the equivalent time-domain form
of the thermal impedance matrix (27), shown at the bottom of
the next page. This form of the time domain thermal impedance
matrix is found to be far more rapidly convergent at very small
times. It is an alternative to the explicit time constant form, (25).

Even though analytical inversion is readily achieved, numer-
ical inversion is highly accurate and algorithmically simple to
implement. It requires only evaluation of the Laplace transform
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Fig. 3. Time constant spectra obtained from (25) and (26) for a Si chip
considered by Szekelyet al. [65].

and a corresponding weight function, at a small number of real
or complex -points [67]–[70],

(28)

with and determined uniquely for a given . Typically
five or six -points are adequate so this approach can be com-
putationally much cheaper than analytical inversion.

Fig. 4 shows temperature rise with time at turn-on, calculated
using the thermal impedance matrix approach, for cubic GaAs
die of side and m, dissipating respectively
0.3, 0.4, and 0.5 W over a central square element of side
on the die surface [71].

The observed trend in the calculated time response, with vari-
ation in die size, could not be predicted over the whole time
range on the basis of commonly used thermal models, which
invoke an infinite or semi-infinite substrate approximation. The
significance of these results is discussed more fully in [71]. The
differences in results obtained by analytical, (27), and numer-
ical, (23) and (28), Laplace inversion respectively, are indistin-
guishable on the scale of this plot. Numerical Laplace inver-
sion gives by far the fastest solution, and the explicit time con-
stant form, (25), requires summation of an impractical number
of terms for sufficient accuracy at very small times.

B. Volume Sources

To construct the time dependent thermal solution with
volume heat sources/sinks and arbitrary initial conditions,
requires the solution of Helmholtz’s equation in Laplace

Fig. 4. Temperature rise with time at turn-on, in the immediate vicinity of the
device active region in a central square,0:1L � 0:1L, on the surface of cubic
die, sideL = 300; 400;500 �m, dissipating 0.3, 0.4, 0.5 W [71].

transform -space. This section presents an original technique
for the generation of double Fourier series solutions, describing
arbitrarily distributed volume heat sources and sinks, without
the use of Green’s functions. It therefore greatly extends the
descriptive power of the Fourier approach beyond the surface
and interface source terms that have been treated previously
[19], [27], [28].

Writing the time-dependent heat diffusion equation with
volume heat source in-space

(29)

and assuming a generalized double Fourier series solution of the
form

(30)

gives

(31)

where

(32)

(27)
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To solve (31) define

(33)

and make the substitution

(34)

to reduce (31) to an equation of 1st-order in . This linear
1st-order equation can be solved by use of a simple integrating
factor, giving the general solution

(35)

This solution of (31) contains two arbitrary constants and
is a general solution. No constitutive equation with-func-
tion source has been formulated and no solution of such an
equation constructed, so no Green’s function (or

in three dimensions) has been used in
this solution of the time-dependent heat diffusion equation
with volume source. However, integrating one by parts and
absorbing a sum in the arbitrary constant, C1_mn, 2 mm can be
expressed in sums of the 1-D Green’s function.

More generally, the approach of (33) and (34) supplies a so-
lution to the problem

(36)

where are simultaneously piecewise constant, without the
use of Green’s functions. It is a constructive solution which
avoids the need for trial and error in obtaining a particular in-
tegral. With the Dirac -function this method can be used
to construct Green’s functions. As the integrals of (35) are easy
to construct for simple , such as sums of step functions,
this approach offers a 2 2 transfer matrix solution to 1-D nu-
merical problems without the need to formulate large sparse
matrices for finite difference operators. Finally, as (35) repre-
sents a general solution with no Green’s function containing
in-built boundary conditions, it supplies a solution to the two-
point boundary value problem, (36), with arbitrary non linear
boundary conditions treated by a subsidiary non linear problem
of order two.)

These solution techniques are individually implicit in texts
such as [72]. However, the authors believe that this double
Fourier series method, for treatment of arbitrary volume sources
or sinks without use of Green’s function techniques, represents
an original approach to solution of the time-independent and
time-dependent heat diffusion equations. This approach is not
discussed in texts such as [43], [73], and [74]. The double
series solution, (30), is to be compared with much more
computationally expensive triple series solutions obtained
using time domain Green’s functions. In the time domain, the
authors’ approach can give both small-time and large-time
series solutions, which may not be readily obtainable using
such Green’s functions. The authors note, however, that iden-
tical solutions are often achievable by alternative techniques.

Fig. 5. Thermal subvolume with arbitrary distribution of power dissipating
volume sources.

In particular, separation of variables for construction of the
3-D Green’s function, followed by construction of the Green’s
function for the resulting 1-D Helmholtz equation, is a widely
used technique, e.g., [75] (Appendix A2) for time-independent
solution of the Poisson equation. Such an approach might there-
fore be expected to produce similar results to those described
below, though the existence of alternative methods offers the
possibility of simplifications in the analysis by appropriate
choice of technique, compare e.g., [45].

Using the above approach, the thermal impedance matrix for
power dissipating volumes, distributed arbitrarily throughout
the body of a heatsink mounted MMIC (Fig. 5) is given by

(37)

Here, are the -coordinates of the planes bounding heat
dissipating volume,, in the -direction, and the are the area
integrals over the cross sections, , of heat dissipating
volumes, , (20). This expression is to be compared with the
thermal impedance matrix for power dissipating surface areas,
(23). Taking the limit, , gives the solution for a die with
dissipating areas distributed arbitrarily throughout its volume,
of value for instance in describing the buried channels below
the semiconductor surface of a multigate power FET. Taking the
further limit, , reproduces (23).

By letting the power dissipating volumes tend to power dis-
sipating surface areas, this thermal solution can be used to de-
scribe arbitrary surface flux distributions, effectively removing
the adiabatic surface boundary condition from all subvolume
faces. Similarly, this solution can be used to describe flux distri-
butions over arbitrary internal surfaces (Fig. 6). Such a construc-
tion, in combination with the analytical solution to be presented
in Section III-F, below, can then be used to describe inhomoge-
neous structures.
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Fig. 6. Illustration of power dissipation over an internal surface, described by
the analytical solution of Section III-B.

This solution also makes possible treatment of the time-de-
pendent problem for other than homogeneous initial conditions.
It therefore allows construction of a time-stepping thermal
impedance matrix formulation for transient electrothermal
simulations, with repeated analytical resetting of initial condi-
tions for the whole distributed thermal volume. Details will be
presented elsewhere.

C. Rectangular -Layer

The simple descriptions of the homogeneous MMIC, pre-
sented above, are readily generalized to treat multilayer systems
by use of a transfer matrix, or two-port network, approach [11].
This is based on matching of Fourier components at interfaces,
and corresponds to use of the double cosine transform to con-
vert the 3-D partial differential equation (5), into a 1-D ordinary
differential equation for the-dependent double Fourier series
coefficients, as described in the previous section. Matching of
linearized temperature and flux at the interfaces of a multilayer
structure can then be imposed by use of a 22 transfer matrix
on the Fourier series coefficients and their derivatives. Arbitrary

-level structures can be treated. Different thermal conductiv-
ities can be assumed in each layer allowing treatment of com-
posites like Cu on AlN (both having temperature independent
thermal conductivities) and MMICs with conductivities varying
from layer to layer due to differences in doping levels (all layers
having the same functional form for the temperature dependence
of the conductivity).

Fig. 7. IllustrativeN -level multilayer thermal subvolume for analytical
construction of thermal transfer impedance.

The corresponding form for the thermal impedance matrix is,
Fig. 7

(38)

where

(39)

with

(40)

and the layers have thermal conductivity,, diffusivity, , and
interface -coordinates, , (with ).
The are analytically obtained 2 2 matrices, explicitly

determined entirely by and as (41),
shown at the bottom of the page. These transfer matrices become
nearly singular at high frequencies, simplifying construction of
the multilayer thermal response.

To illustrate the accuracy and speed of this method [38],
the above analytical solution for an -level multilayer, with

, is used to plot the complex locus of the thermal
transfer impedance in Fig. 8. The four-layer, heatsink mounted
device considered, is a structure examined by Szekelyet

(41)
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Fig. 8. Complex locus of the thermal transfer impedance, calculated using
an analytical series expression, for a four-layer, heatsink mounted structure
examined by Szekelyet al. [23], [48].

al., ([23] Figs. 5 and 6; [48] Fig. 17). Agreement with the
calculations of Szekely seems good. The data for this figure
took less than 1 s to generate on a 500 MHz Pentium processor
and consists of 65 frequency points. This can be compared
with Szekely’s published steady-state simulation times, [76].
The comparison suggests that despite the speed of the FFT,
the need to generate redundant temperature information on a
surface mesh in Szekely’s semianalytical function sampling or
collocation approach, makes the fully analytical double Fourier
series transfer matrix method at least faster for the same
number of basis states.

The method can be generalized further, by imposing speci-
fied flux discontinuities at the interfaces. The solution then rep-
resents, for instance, the case of a MMIC with active device
channel buried by a thin layer of semiconductor, as described by
(37) (with ), but distinguishing the thermal conduc-
tivities of the various semiconductor layers. This transfer matrix
approach can also be combined with the volume heat source so-
lution of Section III-B, to describe rectangular-layers con-
taining an arbitrary distribution of power dissipating volumes,
without the need to introduce artificial interfaces. Details are
presented elsewhere [77].

The Kirchhoff transformation is exact for-level multilayers
with the same functional form (but different values) for the tem-
perature dependent thermal conductivity in each layer. A single,
global Kirchhoff transformation is also a good approximation
for multilayers in which the functional form of differs
between layers, so long as an appropriately modified effective
value for is chosen in each layer for which the global trans-
formation is not exact [78], [79].

D. MMIC Superstructure

It has been demonstrated that inclusion of surface metalliza-
tion is essential for accurate description of thermal effects in
power devices [54], [79]–[81]. Comparison with experiment
for multifinger power HBTs shows that the simple thermal
description corresponding to the resistance matrix of (24)
is highly accurate when combined with a simple model of
heat shunting by an air bridge [82]. The analytical thermal
resistance and impedance matrix approach presented here, has

been designed to allow descriptions of surface metallization
and air bridges, and other vertical geometries such as flip chips
and solder bumps, as well as MMIC arrays, as outlined below.

The extension to include complex 3-D structure is achieved
by solving the heat diffusion equation analytically for thermal
sub elements, then combining thermal impedance matrices for
subsystems by matching of temperature and flux at discretized
interfaces. For illustration, specifying flux on top and bottom
surfaces, , and assuming no radiative or convective
surface losses, ), the following relations
are obtained for temperatures, and , averaged over
elementary areas, , and , on faces and ,
respectively, Fig. 1

(42)

Here, and are respective imposed fluxes in elementary
areas, and , on faces and . The thermal
impedance matrices are obtained in the explicit form

(43)

where the and are area integrals of the form, (20), over
elementary areas and , on faces and , re-
spectively. These expressions are readily inverted analytically
or numerically, as described in Section III-A, to give (fully pa-
rameterized) time domain results. As described in [38], analyt-
ical inversion gives rise to explicit expressions for the individual
terms in pole-zero or time constant representations and allows
direct construction of time constant spectra.

(Resistance matrix expressions for the thermal time-indepen-
dent case have been given in [28]. Alternative forms for the se-
ries constructions given there, can be obtained using closed form
summation and series acceleration techniques [63].)

These series expressions represent generalized multiport
-parameters for the distributed thermal subsystems. Net-

work parameter descriptions for thermal systems have been
described previously, [20]. However, the construction of net-
work parameters described in [20] was neither analytical, nor
simple, and required complex numerical manipulations based
on the boundary element method. This model also did not
treat thermal non linearity, and involved approximate fitting
of network parameters and explicit model reduction. Time
domain simulation in [20] also required additional complex
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manipulation to convert the admittance matrix description to a
system of integral equations treatable by the circuit simulator.
This is in contrast to direct generation of the time-domain
response described in this work, based on Laplace-space
formulation and analytical or numerical Laplace inversion.

Combining the thermal impedance matrices for individual
subvolumes, a global thermal impedance matrix for complex
3-D systems can be obtained. This is illustrated in the next sec-
tion [38] for the case of a metallized MMIC. More generally,
thermal subsystems can be represented individually by netlist el-
ements in circuit simulation. Expressing the thermal impedance
matrices as non linear elements in the time domain, then allows
non linear matching of interface temperatures at subsystem in-
terfaces, in those cases where the functional form of the Kirch-
hoff transformation differs between subvolumes.

The -space formulation means that no artificial piecewise
constant time dependence is assumed for interface fluxes, in
contrast to the time-domain USE method [43]. However, the
thermal impedance matrix approach can be developed within
the USE framework [30], with direct time domain interface
matching, where it avoids repeated matrix inversion.

E. Global Impedance Matrices

Construction of thermal impedance matrices is now described
for more complex systems, such as power FETs and MMICs
with surface metallization, Fig. 9.

To illustrate the interface matching approach, the global
thermal impedance matrix is constructed for the case of
pieces of rectangular, but otherwise arbitrary, metallization on
the surface of an otherwise homogeneous heatsink mounted
MMIC. Multiple levels of metallization are treated in the same
fashion. Matching flux and (linearized) temperature at the
interface between metal and MMIC die, the following relation
is obtained:

(44)

where
vector of MMIC active device power dissipations;
global thermal impedance matrix for the coupled GaAs
and metal system;
vector of MMIC active device temperature rises.

The global impedance matrix is given explicitly by

(45)

(46)

Here, of (23) for the MMIC die has been partitioned by ac-
tive device elementary areas,, and interface elementary areas
between MMIC die and metal,, and the are thermal
impedance matrices for each piece of metallization, (43).

Thus, by simple matrix manipulation, the global thermal
impedance matrix for the metallized MMIC can be obtained as
an explicit matrix expression for any given value of Laplace
transform variable, . Also, using the simple algorithm for
the numerical Laplace inverse, (28), the value of the global
thermal impedance matrix can be evaluated at any time step,

Fig. 9. Surface metallization of a power MESFET.

, in the time domain. The-space formulation means that
when power dissipation is knowna priori, temperature can be
obtained directly at any required instant, without the need to
take consecutive timesteps from . In cases where non
linear interface matching cannot be neglected, the thermal
impedance matrix approach allows formulation of a non linear
system of equations for the correctly matched temperatures
[27].

The significance of the relation, (45), should be stressed.
It represents an explicit analytical expression for the solution
of the time-dependent heat diffusion equation in an arbitrarily
complex 3-D volume. In contrast to conventional numerical
techniques, such as FDTD or FETD, it requires no volume
mesh, discretising only interfaces (and power dissipating and
temperature sensitive elements). It is therefore extremely
simple to formulate and implement, avoiding the large prepa-
ration times of FE simulations, as well as the intricacies of
FDTD and FETD code for complex structures. The solution
is modular and hierarchical, so once the global impedance
matrix has been constructed for a single metallized MMIC,
this could then, for example, be used to describe each MMIC
in an MMIC array. The global impedance matrix
for the metallized MMIC would only have to be constructed
once, to describe all identical MMICs. It could also be
stored for re-use in later coupled electrothermal simulations,
cutting later precomputation time effectively to zero. Finally,
there is no restriction on heat loss mechanisms involved in this
solution, and for instance, ultimate heat loss from the system
could be purely by radiation and convection from the grid array
substrate, without any heatsink mounting.

This method therefore avoids all the previous limitations of
fully analytical approaches, as listed for instance in [49], and
provides a natural solution to the problem of variation in length
scale over the whole of an electrothermal system. Resolution of
temperature in each thermal subsystem is defined by its local
coordinate system and the corresponding double Fourier series
expansion. There is no need for any sort of uniform mesh re-
solving the finest detail at all length scales, or for imposed non
uniform grid construction. Also, by development of closed form
and accelerated expressions for the thermal impedance matrices,
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as indicated earlier and presented elsewhere [63], all series con-
vergence rates are fast and resolution limits are removed within
any single thermal subsystem.

The method presented here is immediately compatible
with explicitly coupled electrothermal device and circuit level
simulation on CAD timescales. The directly coupled thermal
impedance matrix approach represents ‘near exact’ solution
of the non linear time dependent heat diffusion equation for
the complex 3-D system, at points, or averaged over regions,
corresponding to power dissipating and temperature sensitive
elements. The only approximations are finite interface dis-
cretization between thermal subsystems; in the time domain,
the assumption of piecewise constant time variation and nu-
merical Laplace inversion if employed; use of a single global
Kirchhoff transformation if non linear interface matching
between subsystems in not imposed; and partial treatment of
temperature dependent diffusivity. This “near exact” compact
model for arbitrarily complex structures, is to be contrasted
with simplified compact component models, based on reduced
dimensional solutions of the 3-D heat diffusion equation
and neglecting detailed device structure such as die surface
metallization, e.g., [14].

Finally, the authors’ approach allows netlist construction of
any thermal system constructable from rectangular subvolumes.
This is again in contrast to component models such as those of
[14], which require individual analysis and construction of an
appropriate discretization, before they can be entered into the
circuit simulator component library.

F. Inhomogeneous Thermal Conductivity

The analytical double Fourier series solution for the thermal
impedance matrix can be further generalized to treat, essen-
tially exactly, piecewise uniform, but otherwise arbitrarily inho-
mogeneous thermal conductivity, such as full and partial thick-
ness vias, and partial substrate thinning in power transistors and
MMICs. A computationally much cheaper, but approximate,
treatment of vias, based on the the simple equivalence prin-
ciple method of Bonaniet al., [10], [12], [83], has also been im-
plemented within the thermal resistance matrix approach. Con-
struction of such solutions for the time-independent case is de-
scribed in [28].

Vertical matching obtainable by use of the “radiation”
boundary condition (7) can be extended by removal of the
adiabatic side wall assumption (Fig. 10). This allows horizontal
matching of rectangular subvolumes for which flux boundary
conditions are prescribed on all faces. The corresponding
double Fourier series solution takes the form

(47)

Fig. 10. Illustration of power dissipation over the whole external surface of a
rectangular subvolume, described by the analytical solution of Section III-F.

where,

and

(48)

The expansion coefficients are all obtained as
explicit analytical expressions (when surface flux coefficient,,
is excluded from the surface boundary condition). Again, this so-
lution is not described in standard texts such as [43], [73], [74].

Combining the above solution with that for arbitrary distribu-
tions of heat sources described in Section III-B, gives a fully an-
alytical description of inhomogeneous structures based on small
dense matrix manipulation.

IV. COUPLED ELECTROTHERMAL TRANSIENT

The thermal impedance matrix in-space can be used di-
rectly in coupled electrothermal harmonic balance simulations
by putting . In this case, the matrix of frequency depen-
dent complex phasors corresponds to the network parameters
of the distributed multiport thermal network. It is inserted di-
rectly into the MNAM for the microwave system and so does
not increase the number of non linear equations describing the
coupled solution.

In the coupled electrothermal transient problem, Laplace
transformed active power dissipations, , are not known
explicitly and must be obtained by self-consistent solution.
To combine the electrical and thermal descriptions, the corre-
sponding must therefore be discretized in time. Dividing
the time interval of interest into equal subintervals of length
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Fig. 11. Thermal equivalent circuit corresponding to resistance matrixR [26], [82].

, with the taking the piecewise constant form (for
illustration)

for

(49)

then gives

(50)

Laplace inverting the impedance matrix equation, (22),
the temperature rise of element at time

, is obtained as a function of the . Writing

from the electrical model then gives

(51)

(52)

where is the unit step function.
This corresponds to systems of equations in unknowns,

where is the number of discretized time points in the time in-
terval under consideration, and is the number of power dissi-
pating or temperature sensitive elements. The Laplace inversion,
with piecewise constant power dissipation, avoids any explicit
convolution operation.

The entire thermal description can therefore be obtained
by precomputation of at timesteps,

. These precomputed values can be stored
for repeated re-use in different electrothermal simulations.
For reduction of precomputation time, the can be
generated at intervals, and interior points obtained accurately
by interpolation. This is a time-domain approach equivalent
to representation of a frequency space transfer function by a
polynomial fit.

Extension to linear, quadratic or higher order interpolation of
the active device power dissipations in each subinterval,, is

immediate, and for sufficiently short step lengths, low orders of
interpolation should be required.

After self-consistent electrothermal solution, and inversion of
the Kirchhoff and time variable transformations, physical active
device temperatures are finally obtained as a function of phys-
ical time, , and electrical solutions, dc or rf, are determined.

V. COMPACT MODELS

In the fully analytical approach described above, the global
thermal impedance matrix describing a complex 3-D system,
such as a packaged electronic component, consists of a minimal
number of thermal impedances describing self-heating and
mutual thermal interaction at only those sites chosen to be
of interest for electrothermal simulation. This description is
minimal in two senses. It contains the smallest number of
thermal multiport nodes compatible with coupling to electrical
network nodes. It also contains the smallest number of thermal
impedances consistent with exact solution of the heat diffusion
equation. These thermal impedances do not have a direct
interpretation in terms of discretized physical layout, but
constitute ‘thermal links’ as defined in [25]. The general form
of the equivalent circuit, corresponding to thermal resistance
matrix for the time independent case, is shown in Fig. 11
[26], [82], and has been employed successfully in SPICE-like
circuit simulation [82].

This basic form generalizes readily to arbitrary numbers of
nodes, unlike thermal networks based on direct physical dis-
cretization of the thermal system, which can grow rapidly more
convoluted with increase in size. Generalization to the time-de-
pendent thermal impedance matrix case is immediate. Imple-
mentation of the thermal multiport network in electrothermal
CAD can be achieved in both the time and frequency domains,
as described above. Direct use of the solution of the heat dif-
fusion equation, in the form of explicit double Fourier series
expressions for thermal impedance matrices describing thermal
multiports, avoids the need for lumped element RC network
generation, and is already minimal without any node reduction
such as that described in [84].

Thermal impedance matrices for the time independent case,
and in the time domain, have been described previously by
Franke and Froehler [85], for compact model development
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based on numerical simulation or experiment. Their corre-
sponding equivalent circuit should be compared with Fig. 11.
Sabry [20] has suggested the thermal admittance matrix as a
compact model for time-dependent electrothermal CAD, as
an alternative to demonstrably inadequate star models. Code-
casaet al. have proposed exact thermal-port construction,
in the form of thermal resistance and impedance matrices
[86], [87], though without constructive details of the exact
thermal solution for multilayer and complex systems. Thermal
impedance matrices and -ports, for the time-independent
and time-dependent cases, have been described by Szekelyet
al. as early as [2], [88], with generation of a minimal thermal
impedance matrix at least implicit in compact, lumped element
RC network approximation and nodal reduction [84]. Although
the concept of the thermal impedance matrix as a compact
model for electrothermal CAD is well explored, the authors’
formulation is unique in providing constructive details for a
minimal compact model, obtained by direct analytical solution
of the heat diffusion equation in complex structures. It is
also unique in its -space (as opposed to frequency space)
formulation, allowing directly both frequency domain and time
domain representations (by analytical or numerical Laplace
inversion) based on the same series expressions, without
explicit realization as an RC network.

The thermal impedance matrix, which is generated analyti-
cally based on the imposed boundary condition, (7), constitutes
a boundary condition independent compact model, as defined
broadly by Lasance [24], [25]. Treatment of the time-depen-
dent case, with description of thermal non linearity, represents
a generalization of the time-independent thermal resistance net-
works generally defining compact models. The analytically im-
posed ‘radiation’ boundary condition, (7), is sufficiently general
to include a wide range of boundary condition sets, including
free and forced convection, heat sink, cold plate and fluid bath,
as well as unbalanced ambient temperatures. Where full layout
details are not available, or deviate from nominally specified
values, a global thermal impedance matrix expression, such as
(45), provides a fully parameterized relation for compact model
optimization.

Description of electronic packages typically involves position
varying surface flux. Where this is described through position
dependent surface flux coefficients, such as , (7),
the simple, explicit solution of (14) and (15) no longer applies.
Instead, a large linear system must be solved for the Fourier
expansion coefficients [27]. Similarly, even if surface flux co-
efficients, , are constant, the generalized double Fourier se-
ries of (47) requires solution of corresponding linear systems.
Such solutions are computationally expensive, but not totally
intractable, and have been described by the authors for the time
independent, double Fourier series treatment of inhomogeneous
structures [28]. However, in the time dependent case, where re-
peated solution of the large dense linear system would be re-
quired, this approach is unattractive without reduction of the
dense matrix manipulation costs. Such a reduction might be pos-
sible by the use of wavelet methods, e.g., [89, ch. 4].

Thislargecomputationalproblemiseasilyavoidedbyadopting
the solutions of Sections III-B and III-F, with flux prescribed on
all free subvolume faces, and with no explicit inclusion of sur-

Fig. 12. Illustration of the treatment of position varying surface heat flux
coefficient in the analytical thermal impedance matrix description of electronic
packages.

Fig. 13. Schematic of the simulated amplifier with thermal circuit [38], [39].

face flux coefficient, , in the solution boundary conditions. The
magnitude of surface flux from each elementary area of the fully
discretized surface can then be determined by external thermal
resistancesconnectingsurface thermalnodes to ambient, Fig.12,
as in standard compact model descriptions [25], [45], [77]. This
fully analytical approach, with full surface discretization, also
allows immediate treatment of surface flux non linearity [27],
[59], [77]. However, the inaccuracy of using just one or two sur-
face nodes todescribepositiondependent surface fluxes has been
noted, for instance by Franke [85]. Surface discretization in this
fashion means that flux is effectively assumed constant over each
surface element. In fact, even where surface flux coefficient,,
is constant, flux varies with temperature over each surface ele-
ment as . This effect can be included exactly in the
fully analytical solution with no explicit surface thermal nodes,
when is constant and is retained explicitly in the radiation
boundary condition [see (7)].

VI. CIRCUIT SIMULATION

Explicitly coupled electrothermal circuit level simulation
based on the time-dependent thermal impedance matrix ap-
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Fig. 14. Drain-source currentI ( , solid line) and drain-source voltageV (dashed line,!) for a five-finger power transistor, from transient electrothermal
analysis [38], [39].

Fig. 15. Drain-source currenti ( , solid line) and drain-source voltagev (dashed line,!) from single-tone HB analysis with fundamental frequency 10
MHz [39].

proach is now illustrated, by combination with a microwave
circuit simulator, Transim (NCSU) [37].

A. Transim (NCSU)

Transim has an input format that is similar to the SPICE
format with extensions for variables, sweeps, user defined
models, and repetitive simulation. The program provides a
variety of output data and plots. The addition of new circuit

element models and analysis types in Transim is much simpler
than in other circuit simulators such as SPICE. For example,
new element models are coded and incorporated into the
program without modification to the high-level simulator. The
circuit analysis types currently available in Transim are DC,
AC, harmonic balance (HB) [90], convolution transient [91],
wavelet transient [92], and time-marching transient [93]. Some
insight into the program architecture is given in [37]. Transim,
including the Leeds thermal impedance matrix model, is free
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Fig. 16. Power dissipation ( , solid line) and temperature variation (dashed line,!) for the five-finger power transistor, from single-tone HB analysis with
fundamental frequency 10 MHz [39].

software distributed under the GNU license. Further details
may be found at the website [94].

Thermal effects were incorporated into the circuit simulator
engine by making the thermal model look like an electrical cir-
cuit [2], [95], specifically a multiport network described in ei-
ther the time or frequency domain. To ensure separate circuits
for the electrical and thermal subsystems, a local reference node
concept was employed [96]. This concept was initially devel-
oped for integrated circuit and EM field analysis of distributed
microwave circuits, and guarantees that there is no mixing of
electric and thermal currents.

The circuit used in the simulations described below, is shown
in Fig. 13. The MESFET was modeled using the Curtice-Et-
temberg cubic model with symmetric diodes and capacitances
[97]. The extra terminals in the MESFET schematic represent
the thermal connections. The thermally distributed power FET
die was represented by analytically exact thermal one-port net-
work parameters (with no explicit lumped element RC network
approximation).

Transient analysis of distributed microwave circuits is com-
plicated by the inability of frequency independent primitives
to model distributed circuits. Generally, the linear part of a
microwave circuit is described in the frequency domain by
network parameters, especially where numerical field analysis
is used to model a spatially distributed structure. Inverse Fourier
transformation of these network parameters yields the impulse
responseof the linearcircuit.Thishasbeenusedwithconvolution
to achieve transient analysis of distributed circuits. Transim uses
a state variable approach for the convolution transient [91]. An
algebraic nonlinear system is solved at each time step using a
quasi-Newton method. In this analysis the thermal element is
treatedinthetimedomain,(25),alongwiththenonlinearelements
in the circuit. The input power to the thermal system is chosen as

thestatevariableof theelement.Then the thermal impedancema-
trix approach is used to calculate the temperature corresponding
to the input power given by the state variable at each iteration
to solve the nonlinear system. The Kirchhoff transformation is
implemented within the thermal element, so allowing non linear
interface matching between thermal subsystems.

The harmonic balance technique uses a linear combination of
sinusoids to approximate the periodic and quasiperiodic signals
found in a time-dependent steady-state response. The system of
nonlinear differential equations describing the circuit can then be
transformed into a nonlinear algebraic system. Details of the im-
plementation of HB in Transim are given in [90]. In this analysis
the thermal element is modeled in the frequency domain, (23).
Theelementsofthethermalimpedancematrixareentereddirectly
into the modified nodal admittance matrix of the circuit at each
frequency. The thermal element is then ‘embedded’ in the linear
part of the HB formulation and does not increase the size of the
nonlinear system of equations. The Kirchhoff transformation for
the linear thermal system is transferred into the alreadynon linear
active device model by appropriate state variable definition.

No separate thermal simulation is required for the coupled
calculation by the electrothermal simulation engine. All thermal
impedance matrices are generated by multiport thermal network
elements defined within the electrothermal circuit simulation
engine, Transim. Thermal impedance matrices (in either the time
or frequency domain) are precomputed from fully analytical
expressions,prior to thecoupledelectrothermalsimulation.They
only have to be generated once, for any netlist specified thermal
subsystem, and can be stored for reuse in later simulations.

B. Simulations

Fig. 14 illustrates transient decay in drain-source current,
as a result of thermal variation under the influence of a step
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Fig. 17. Power dissipation in the frequency domain for a 50-finger power
transistor, from two-tone HB analysis with fundamental frequency 1 GHz and
difference frequency 1 MHz [39].

input in drain-source voltage , for a multifinger power tran-
sistor, calculated using the thermal impedance matrix approach
implemented in Transim [38]. One-tone, two-tone, and multi-
tone HB simulations are also presented in Figs. 15 to 19 [39].
These simulations used the simplest one-port thermal descrip-
tion of the power FET, returning surface average temperature
rise as a function of surface average power dissipation over the
active regions of the multigate device.-port thermal elements
have also been implemented in Transim. After precomputation
of thermal impedances, the coupled electrothermal simulations
took a few seconds on a 500 MHz Pentium processor. Figs. 15
and 16 illustrate single-tone HB simulation. Such results raise
the question of whether small amplitude thermal oscillations
at microwave frequencies could ever act as a source of ‘clas-
sical’ thermal noise. Figs. 17 and 18 illustrate two-tone HB,
demonstrating intermodulation distortion due to amplifier non
linearity. As a result of thermal inertia, thermal response is seen
to be much greater at the 1 MHz difference frequency than at
the GHz fundamental frequencies. Fig. 19 illustrates the po-
tential of the model for prediction of thermal effects on spectral
regrowth and ACPR, by means of multitone HB.

VII. T HERMAL MODEL VALIDATION

To validate the thermal model, a series of time dependent
thermal images of a passive grid array at turn-on, representa-
tive of one form of spatial power combining architecture, were
obtained using a video capture card interfaced between an Infra-
metrics PM-280 Thermacam and a PC. Commercial software
enabled the capture frame rate to be preset and data output to
a file in AVI format. A frame rate of one image per second
was chosen and a total of 350 frames recorded. Frame rates
of up to 50 Hz are readily available, allowing measurement of
thermal time constants in individual MMICs. These showed lat-
eral heat diffusion in related experiments reaching steady state
on timescales s.

Experimental thermal images for the FR-4 grid array are
plotted in Fig. 20 and corresponding thermal simulations

Fig. 18. Temperature variation in the frequency domain for the 50-finger
power transistor, from two-tone HB analysis with fundamental frequency
1 GHz and difference frequency 1 MHz [39].

Fig. 19. Current response from multitone HB analysis with 11 fundamentals
at frequency 0.5 GHz and difference frequency steps of 0.5 MHz [39]. Circles:
without thermal effects. Crosses: with thermal effects.

are shown in Fig. 21. These simulations and measurements
of thermal response are for a 1010 passive grid array,
dissipating 2 W over an area 55 cm . The simulations were
based on a simple analytical expression for thermal impedance,
returning central temperature as a function of the average power
dissipation over the whole area of the central array of heat
dissipating resistors [28]. In terms of the corresponding thermal
network, the thermal impedance corresponds to a one-port
thermal element with one terminal held at constant ambient
temperature. Laplace inversion was performed numerically
[67]. Agreement between theory and experiment is good,
with just one scalar fitting parameter to determine the ratio
of radiative to convective surface flux losses. Adjustment of
this parameter essentially fixes the asymptotic value of the
surface temperature rise [71]. Data for FR-4 was taken from
[98] and (along with geometrical parameters) independently
determines the thermal rise times. In all cases, heat loss for
the horizontal, essentially free-standing array is purely by
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Fig. 20. Time dependent measurements of 10� 10 passive grid array: FR-4, 5� 5 cm , dissipating 2 W. Cooling purely by surface radiation and convection (no
heatsink mounting).

Fig. 21. Time dependent thermal simulations of10�10 passive grid array: FR-4, 5� 5 cm , dissipating 2 W. Cooling purely by surface radiation and convection
(no heatsink mounting).

surface radiation and convection with no heatsink mounting.
Times to steady state for lateral diffusion are seen to be very

long with implications for quasioptical array beam formation.
The observed reduction in lateral diffusion in the simulations
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compared to experiment, is probably due to neglect of the
known anisotropy of the FR-4 thermal conductivity. This is
approximately 3 times larger in-plane than in the perpendicular
direction [99]. This anisotropy is easily treated by simple
extension of the analytical model [45].

VIII. C ONCLUSION

An original, fully analytical, spectral domain decomposition
approach to the solution of the non linear time-dependent heat
diffusion equation, in complex 3-D systems, has been described.
It has been illustrated largely for hybrid and monolithic inte-
grated circuits, but is equally applicable to packaged compo-
nents, multichip modules, circuit boards and systems. It is based
on fully analytical expressions for solution of the heat diffu-
sion equation in rectangular thermal subvolumes (though other
regular geometries, such as cylinders, are readily treated). This
fully analytical thermal model is observed to be at least
faster than corresponding semi-analytical Fourier solutions for

-level multilayers, and also treats arbitrarily complex 3-D sys-
tems without invoking conventional numerical methods. It re-
quires no volume or surface discretization, discretising only the
interfaces between thermal subsystems. It is compatible with
network based EM/electrical circuit simulators via interpreta-
tion as a multiport thermal network, with direct use of essen-
tially exact, generalized multiport network parameters, in either
frequency space or the time domain. This approach avoids the
need for explicit, lumped element RC network approximation or
model reduction, apart from that inherent in truncation of infi-
nite series at a finite number of terms sufficient to ensure conver-
gence (and in numerical Laplace inversion, when employed). It
gives rise to minimal boundary condition independent compact
models for complex thermal systems in the form of analytically
obtained thermal impedance matrices, describing temperature
response only at power dissipating and temperature sensitive el-
ements. The method has no power or temperature restrictions,
so is not a small signal approximation.

The problem of thermal non linearity, due to temperature de-
pendent thermal diffusivity, has been treated approximately by
application of a time variable transformation, in addition to the
well known Kirchhoff transformation for treatment of tempera-
ture dependent thermal conductivity. In contrast with many elec-
trothermal CAD models, which neglect thermal non linearity in
order to generate a linear thermal network, the model presented
here can treat thermal non linearity due to temperature depen-
dence of material parameters, as well as that due to non linear
surface fluxes in large area systems.

A range of original thermal solutions have been presented in
the form of thermal impedance matrices for electrothermal sub-
systems. In particular, an original, Green’s function free, ap-
proach to the double Fourier series solution of problems with
arbitrarily distributed volume heat sources and sinks, has been
described. A double Fourier series solution for prescribed flux
on all faces of a rectangular volume has also been presented.
These two solutions remove the need for an adiabatic sidewall
boundary condition. Employing these techniques, construction
of global thermal solutions for complex 3-D systems based on
the thermal impedance matrix approach, has been outlined, re-

moving the limitations of all previous fully analytical solutions
for thermal systems.

This thermal impedance matrix method has been illustrated
by generation of thermal responses for test systems in both the
frequency and time domains, and compared against published
results. Agreement was found to be good. The model was val-
idated experimentally for the case of a passive grid array at
turn-on, by high resolution time-dependent thermal imaging.
Simulations were performed for the horizontal, essentially free-
standing array, assuming heat loss purely by surface radiation
and convection with no heatsink mounting.

Coupled electrothermal simulation has been demonstrated by
implementation of the Leeds thermal impedance matrix model
in a microwave circuit simulator, Transim (NCSU). Simulated
transient, one-tone, two-tone and multitone HB results were pre-
sented for a power MESFET.

Future development of the Leeds thermal impedance matrix
model in Transim will include extension of the approach to
generate explicitly, heat transfer coefficient,, describing sur-
face flux losses. It will explore wavelet techniques for reduc-
tion of large, dense, , matrix eigenvalue and inversion
problems, from operation to operation pro-
cesses, with particular application to the economical description
of inhomogeneous thermal systems. It will include integration
of the rapid Leeds Physical Model of MESFETs and HEMTs,
into circuit simulator, Transim, to produce fully physical, cou-
pled electrothermal, circuit level CAD. Finally, it will include
development of circuit simulation techniques to treat more fully
the huge range of time constants inherent in fully coupled elec-
trothermal simulations of large systems.

The modeling capability described here will be applied to the
study and design of spatial power combining architectures for
use as high power sources at millimeter wavelengths.
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