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Abstract—An original, fully analytical, spectral domain minimal boundary condition independent compact models for
decomposition approach is presented for the time-dependent thermal systems. Implementation of the time-dependent thermal
thermal modeling of complex non linear three-dimensional (3-D) model as IN-port netlist elements within a microwave circuit
electronic systems, from metallized power FETs and MMICs, simulation engine, Transim (NCSU), is described. Electrothermal
through MCMs, up to circuit board level. This solution method transient, single-tone, two-tone, and multitone harmonic balance
offers a powerful alternative to conventional numerical thermal simulations are presented for a MESFET amplifier. This thermal
simulation techniques, and is constructed to be compatible with model is validated experimentally by thermal imaging of a passive
explicitly coupled electrothermal device and circuit simulation on grid array representative of one form of spatial power combining

CAD timescales. In contrast to semianalytical, frequency space, architecture.

Fourier solutions involving DFT-FFT, the method presented
here is based on explicit, fully analytical, double Fourier series
expressions for thermal subsystem solutions in Laplace transform
s-space (complex frequency space). It is presented in the form
of analytically exact thermal impedance matrix expressions for
thermal subsystems. These include double Fourier series solutions
for rectangular multilayers, which are an order of magnitude
faster to evaluate than existing semi-analytical Fourier solutions aAc
based on DFT-FFT. They also include double Fourier series ACPR
solutions for the case of arbitrarily distributed volume heat

sources and sinks, constructed without the use of Green’s function BCI
techniques, and for rectangular volumes with prescribed fluxes CAD

on all faces, removing the adiabatic sidewall boundary condition. CDMA
This combination allows treatment of arbitrarily inhomogeneous pc
complex geometries, and provides a description of thermal mate- DET-FET
rial non linearities as well as inclusion of position varying and non

linear surface fluxes. It provides a fully physical, and near exact,
generalized multiport network parameter description of non EM
linear, distributed thermal subsystems, in both the time and fre- FDTD
guency domains. In contrast to existing circuit level approaches, it FgT
requires no explicit lumped element, RC-network approximation FETD

or nodal reduction, for fully coupled, electrothermal CAD. This

thermal impedance matrix approach immediately gives rise to HB
HEMT
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NOMENCLATURE

Alternating current.

Adjacent channel power ratio.
Boundary condition independent.
Computer aided design.

Code division multiple access.

Direct current.

Discrete Fourier transform, fast Fourier
transform.

Electromagnetic.

Finite difference time domain.

Field effect transistor.

Finite element time domain.

Harmonic balance.

High electron mobility transistor.
Integrated circuit.

Multichip module.

Metal semiconductor field effect transistor.
Monolithic microwave integrated circuit.
Modified nodal admittance matrix.

Metal oxide semiconductor field effect
transistor.

Radio frequency.

Simulation programme with integrated
circuit emphasis.

Unsteady surface element.
Simultaneously piecewise constant
functions (36).
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w(T) Temperature dependent thermal the wide range of length and time scales inherent in the cou-
conductivity. pled electrothermal problem, or [6], based on successive node
Ks Temperature independent thermal reduction for complex inhomogeneous 3-D structures, are not
conductivity after Kirchhoff fast enough for directly coupled electrical and thermal solution.
transformationgs = x(7s). Thus a number of faster thermal descriptions have been devel-
Ko Thermal conductivity of-th layer in oped.
N-level multilayer. The simplest thermal models for the time-independent case
Am mw /L (12). are provided by analytical thermal resistance approaches of
i nmw /W (12). varying levels of complexity, e.g., [7]-[9]. However, it has been
w Angular frequency. stated repeatedly [10], [11] that the thermal resistance approach
0 Temperature linearized by Kirchhoff is fundamentally approximate and inadequate for detailed
transformation (2). description of power devices. Until recently, the state of the art
g Laplace transform of. in time-independent thermal simulation of heatsink mounted
0ol Ambient temperature. power FETs and MMICs, for coupled electrothermal CAD, has
O Laplace transformed linearized been represented by the hybrid finite element Green'’s function
temperature averaged over elementary aregpproach of Bonarét al.[12]. This thermal resistance matrix
D;. approach treats device structure such as surface metallization,
6(r =0) Initial temperature distribution. vias and partial substrate thinning.
€] Shifted temperaturesf — (7 = 0) (9). The thermal resistance and impedance matrix approach is
6o.p(x,y,T) Time dependent ambient temperatures an example of thermal network extraction. For treatment of
(cvo,p # 0), or heatsink mount complex structures without direct coupling of electrical and
temperature$ag p = 0), at surfaces thermal simulators, generation of thermal networks for both
z =0, D, in “radiation” boundary time-independent and time-dependent electrothermal co-simu-
condition (7). lation has been described by, e.g., Lee and Allstot [13], Hefner
éOavi,éDavj Laplace transforms of linearized and Blackburn [14], and Hsu and Vu-Quoc [15]. However,
temperatures averaged over elementary these approaches are all based on spatial discretization of the
areas,D;, andD,, on respective faces thermal system. They can produce thermal networks containing
z = 0andz = D, of rectangular a large number of nodes, are inherently approximate through
subvolume. finite difference [13], [14] or finite element [15] discretization,
p Density. and can invoke simplifications to the full 3-D thermal solution,
E;m Sum over allm, n excluding by solving the heat diffusion equation only in a reduced
(m,n) = (0,0) (24). dimensional form and without treating detailed device structure
T Transformed time (4). such as die surface metallization [14].
T Time constant (26). In contrast, analytical solutions can be fully 3-D and avoid
¢ In 7, Fig. 3. approximations due to spatial discretization. However, in
Cmn(2) Derivative 0fz,,,(2), dzm,/dz, to reduce time-dependent coupled electrothermal CAD, fast analytical
Helmoltz equation (31), to first order. 3-D thermal descriptions have been less able to describe

complex structures, and have been limited to simple rectangular
multilayers. Analytical thermal impedance expressions have
been presented, for instance, for MOSFETSs [16]. Veijola has
HE impact of self-heating and mutual thermal interactioimplemented an approximate thermal impedance description,
on electronic device and integrated circuit performandssed on analytical solution for heat-generating spheres,
is well known, and the electrothermal simulation problem has circuit simulation programme APLAC [17]. Rizzoli has
been studied for at least 30 years [1]-[3]. The thermal modeliegnployed a Green’s function construction of the thermal
of complex three-dimensional (3-D) structures can be achievex$istance matrix in a wide range of circuit level, harmonic bal-
by standard numerical techniques, and solutions of the heat difice and transient simulations, but with thermal capacitances
fusion equation for complex 3-D systems are commonly basddscribed approximately based on an enthalpy formulation
on finite volume, finite element, finite difference, boundary elf18]. Analytical Green’s function and Fourier solutions have
ement or transmission line methods. All of these approachesen used to describe the time-dependent thermal problem by a
require construction of a volume or surface mesh. Such sohwmber of authors. In particular, Szekelyal. have employed
tions have been combined with circuit simulators for joint ele@ Fourier series method for over 20 years, providing solutions
trothermal simulation [4]. However, they are computationallfor a variety of ICs, microsystem elements, and MCMs [19].
intensive and therefore generally too slow for treatment of largeFor circuit level electrothermal simulations, thermal model
systems, by direct coupling to electronic device and circuit simeduction techniques have been widely employed. Work in this
ulators, in the necessarily iterative solution of intrinsically noarea includes that of Sabry [20], Napieralski [21], Hsu [22] and
linear coupled electrothermal problems. Even numerical solBzekely [23]. Szekely has combined fast sparse finite difference
tions optimized for thermal treatment of electronic devices amdethods, [6], with lumped element RC network extraction, [23],
circuits, e.g., [5], which is based on hierarchical nesting to treat provide coupled electrothermal simulation of complex 3-D

|I. INTRODUCTION
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systems. The related problem of compact model developmémtthe global thermal impedance matrix of the complex device
is currently an active area of research [24], [25]. structure. A particular intended application is the treatment
The aim of this paper is to describe a new, fully physical araf MMIC arrays for spatial power combining at millimeter
analytical, approach to the non linear time-dependent thermavelengths.
problem in complex 3-D systems, suitable for explicitly Importantly, this modular thermal solution is constructed
coupled electrothermal device and circuit simulation on CAB be immediately compatible with explicitly coupled elec-
timescales, and requiring essentially no model reduction. Trmthermal device and circuit simulation on CAD timescales.
illustrate the advantages of this approach, particular comparistnis is achieved by formulating the analytically exact sub-
is made with the comprehensive circuit level electrothermsaystem solutions in terms of thermal impedance matrices which
modeling capability of Szekelgt al. Fully physical, coupled describe temperature variation with time, only in the vicinity
electrothermal device simulations for the thermal time-indef the power dissipating, temperature sensitive, and interface
pendent and time-dependent cases, have been described byahiens required for coupling of the electrical and thermal
authors previously [26]-[32]. These were based on couplipgoblems. No redundant temperature information is generated
of the thermal model presented here, to the quasi-two-dimam the surface or in the body of the subsystem volumes. As
sional (2-D) Leeds Physical Model of MESFETs and HEMTthese minimal thermal solutions are generated analytically,
[33]-[36]. Coupling to a microwave circuit simulator, Transinthe thermal impedance matrices are all precomputed, prior to
(NCSU) [37], has been introduced in [38]-[41]. the coupled electrothermal simulation, purely from structural
Generically, the thermal approach presented in this papeformation. Thermal updates in the coupled electrothermal
is a fully analytical spectral domain decomposition techniqu@oblem are therefore rapid.
[42]. Simple composite systems have been treated previouslyully coupled device level simulation can be implemented by
by the Unsteady Surface Element (USE) method of Bedombination ofthe Leeds thermalimpedance matrix model with
et al. [43], and this approach has the advantage that, unlikay thermally self-consistent device model. If the device model
conventional numerical methods, it only discretises interfacesludes self-heating effects, then the global thermal impedance
between subsystems. Like the USE method, the approanhtrix will provide an accurate, CAD timescale, description
presented here discretises only interfaces (along with powsdrmutual thermal interaction between power dissipating and
dissipating and temperature sensitive elements). It construmperature sensitive elements, however complex the thermal
solutions for thermal subvolumes which are fully analyticakystem. Coupled electrothermal solution is achieved by iterative
with development of double Fourier series solutions for thermsdlution of the electrical and thermal problems, with thermal
subvolumes by explicit construction of series expansion coefipdates provided by small matrix multiplications, and thermal
cients. Thus it differs from semianalytical Fourier approache®n linearity transferred to the already non linear active device
for simple rectangular multilayers [19], based on collocation anodel.
function sampling, which require numerical manipulation such Circuit implementation of this thermal solution, exploits
as DFT-FFT to generate expansion coefficients. As solutiotie ability of network based microwave circuit simulators to
for subvolumes are fully analytical, no volume or surface mestescribe multiport non linear elements in the time domain,
is required. The method described is a thermal impedanaed to treat distributed electromagnetic (EM) systems in terms
matrix approach. This time-dependent thermal impedano& multiport network parameters [46]. The thermal solution
matrix formulation is a natural development of the authorshakes use of the close analogy between distributed EM and
fully analytical implementation of the thermal resistance matrthermal systems. The magnetic vector potential wave equation
approach for the time-independent case, described in [28],frequency space, is just the Helmholtz equation, as is the
[27] and developed fully in [28]. It is shown that, in contrastime-dependent heat diffusion equation in Laplace transform
to previous thermal resistance and impedance approaches, skspace (complex frequency space), after appropriate transfor-
thermal impedance matrix method can be formulated to providetion of thermal non linearity. Double Fourier series thermal
an essentially exact solution of the heat diffusion equation golutions resemble analytical EM Green’s function solutions
complex 3-D systems. It therefore removes the need to utilizend the same series acceleration techniques can be used in each
computationally intensive numerical techniques in order tmase). Most importantly, complex EM systems are treated by
treat complex structures, e.g., [4], [20], [21], [44]. Previousegmentation [47] and cascading of subsystem solutions by use
Green'’s function or Fourier approaches have been restrictefchetwork parameter matrices. The transformed (initially non
to simple rectangular homogeneous volumes and multilayelisgar) thermal problem is therefore immediately compatible
e.g., [3], [18], [23], [45]. The fully analytical model presentedvith network based microwave circuit simulation engines, by
here can describe simultaneously all device detail, from surfaogéerpretation of thermal impedance matrices, for distributed
metallization, vias and substrate thinning, in power FETs atldermal subsystems, in terms of generalized multiport network
MMICs, through (actively cooled) MMIC on substrate arraygparameters.
up to MCMs and circuit board level. It does this by providing Analytical, s-space solution for thermal subsystems, means
double Fourier series solutions of the heat diffusion equatitimat no numerical identification of thermal networks, such
in thermal subsystems, and then constructing global soluticas that provided by the NID method [48], is required. It also
for complex systems by matching temperature and flux ateans that each thermal subsystem can be described directly, in
subsystem interfaces. As the subsystem solutions are masither the time domain or in the frequency domain, by the same
expressions, an explicit matrix representation can be obtairethlytical solution. Thes-space thermal impedance matrix
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method is therefore more general than time-dependent E&ll problems with the wide range of length and time scales in-
waveguide descriptions, which are conventionally formulatdgerent in the coupled electrothermal problem [49]. Generation
in frequency space (time-dependent harmonic steady-stat#)such solutions requires treatment of thermal non linearity
In the time domain, the thermal subsystem is treated asnherent in temperature dependent material parameters. An
non linear multiport element, which readily allows non lineaoriginal treatment of this non linearity, for device and circuit
matching of transformed temperatures at thermal subsystiwel electrothermal CAD, is presented first [50]—[52]. This is
interfaces [27], [28]. In the frequency domain, the thermdbllowed by derivation of thermal impedance matrix solutions
subsystem is represented by a matrix of complex phaséos a homogeneous MMIC, and for aiV-level rectangular
inserted into the modified nodal admittance matrix (MNAMmultilayer. It is shown how the time-dependent form of the
for the microwave system, and thermal non linearity is agathermal impedance matrix can be expressed in rapidly conver-
transferred to the already non linear active device model. Thgent forms for all timeg¢. This is followed by presentation of an
gives coupled electrothermal harmonic balance and transieniginal double Fourier series solution to the time-dependent
solutions on CAD timescales. Coupled electrothermal circuieat diffusion equation with arbitrarily distributed volume heat
level CAD generally requires thermal model reduction, e.gspurces and sinks. This goes beyond previous solutions in the
[20]-[23]. Rapidly convergent, fully analytical and minimaliterature, which treat heat dissipating sources as planar, either
thermal impedance matrix expressions, in both the time aatithe surface or interfaces of rectangular multilayers [19], [27],
frequency domains, mean that no reduced, lumped elemd@8]. Description of complex 3-D structure, and construction
RC network description, is required in the multiport networkf global impedance matrices, are outlined next, followed by
parameter approach. The thermal impedance matrices represi&tussion of the Leeds thermal impedance matrix approach
boundary condition independent compact models of thernad a compact model. Implementation of the time-dependent
subsystems [24], [25] for the time-dependent case, and witiermal impedance matrix approach, in circuit level CAD,
treatment of thermal non linearity. Analytical expressions fas then illustrated by electrothermal transient and harmonic
the multiport network parameters of all thermal subvolumdsalance simulation, particularly demonstrating thermal effects
means that no distinct thermal simulator, separate from the intermodulation distortion and spectral regrowth. These
coupled electrothermal simulation engine, is required to chaepresent an essential aspect of device optimization for nar-
acterize the complex thermal system. rowband digital modulation applications such as CDMA for
A key aspect of the thermal solution presented here, is dpobile communications. The ultimate intended application of
plication of a generalized “radiation” boundary condition, othe modeling capability described here, is study and design
the top and bottom surfaces of all thermal subvolumes, in tRé spatial power combining systems for use as high power
analytical subsystem solutions. This boundary condition alloggurces at millimeter wavelengths. The thermal model is
analytical subsystem solutions with interface discretization, affterefore validated by thermal imaging of a passive grid array
construction of global thermal solutions by vertical matching depresentative of one form of quasioptical system architecture.
temperatures and fluxes at subsystem interfaces. The boundary
condition also allows integral treatment of surface radiation and II. THERMAL NON LINEARITY
convection in large area systems without approximation suc : e L
as that invoked in [19]. (Radiation boundary conditions havehThe time dependent heat diffusion equation is given by
also been applied, for example, in finite difference solutions T
for electrothermal simulation [44], and in analytical solutions at VARV +g = pCr 1)
the circuit board level [45].) More comprehensive thermal solu-
tions are also described, which remove the need for an adiabstieere

sidewall boundary condition in subvolumes, allowing additional T’ temperature;

horizontal interface matching. Such solutions also allow sub-% time;

volume embedding for the treatment of inhomogeneous struc+(1") temperature dependent thermal conductivity;
tures. The range of application of this thermal impedance ma-g(x, v, z, t) rate of heat generation;

trix approach is therefore again more general than that of conp density;

ventional EM waveguide formulations. Analytical solution with C specific heat.

prescribed fluxes on all subvolume surfaces allows treatmentidfis equation is non linear through the temperature dependence
complex packages. By dropping the surface convection coeffif«(7") (and possibly op andC). To linearise the equation, the
cient from the surface boundary conditions, it includes the cakechhoff transformation is performed [53]

of position varying surface flux, by connection of thermal sur- ’

fa_lce nqdes to ambient through thermal resistances describing 6 —Tot 1 w(T) dT @
piecewise constant surface flux defined over the whole sub- ks Jrg

volume surface.

One aim of this paper is to present explicit analyticakhererxs = x(Ts) andZs is the heatsink mount temperature.
solutions for thermal subsystem impedance matrices, allowilige importance of performing the Kirchhoff transformation has
global solution for complex systems. Such fully analytical solbeen illustrated, e.g., by Webb [54]. The inverse Kirchhoff trans-
tions treat arbitrarily complex 3-D thermal systems without thi@rmation is trivial to impose postiorito solution of the linear
use of volume meshes, uniform or non uniform, thus avoidirtgat diffusion equation, by application of a simple analytical
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formula to the solution temperatures [28], [55]. The equatisubjective, and for the case of transient thermal variation of

for transformed temperatufebecomes large amplitude, easily leads to large errors in the calculated
steady-state operating temperatures. In Si systems, temperature
2y 1 00 g ®) dependence of material parameters is even more pronounced

k() 0t ks than in GaAs [58]. Full linearization of the time-dependent heat

diffusion equation should therefore be implemented to obtain

where diffusivity k. = r/pC. k is now a function off so the  sufficient accuracy in electrothermal simulations.
equation is still non linear.

At this stage it is conventional, in electrothermal simu-
lations employing the Kirchhoff transformation, to assume HI. ANALYTICAL SOLUTIONS

that k(¢) is approximately constant, thus fully linearising |aying described the (large signal) transformation of the non
the time-dependent heat diffusion equation. However, f@reqrime-dependent heat diffusion equation, to produce a fully
typical semiconductor systems this assumption requires furthge o hroplem, analytical solution of the transformed problem

examination and has been discussed by the authors in [50]. ltj$erms of thermal impedance matrices is now described. The
shown there, that the Kirchhoff transformation does not remoyg, .4 impedance matrix approach reduces to construction of

t_he temperature sensitivity_ of the material. parameters for thg)nal heat flow functions, for power dissipating and tempera-
time-dependent case. Choice of an approximate mean valuedgg sensitive elements in semiconductor integrated circuits, in
k(#) is not uniquely defined. the form

A further transformation can therefore be applied to linearise
the heat diffusion equation, by defining a new time variable, G — Z Ren, ()P, (6)

[56], [57] r

t —_—
ket = / k() dt. (4) whereA#; is the Laplace transformed temperature rise of el-
0 ementi above its initial temperaturéiry, , (s) is the thermal

Approximating the Laplacian by its conventional rectanguli'inpecjance mairix in Laplacespace and th&; are the trans-

Cartesian form, the time-dependent heat diffusion equation g[med time-dependent fluxes due to power dissipation in ele-

ments,j = 1,...,4,..., M.

comes finall
y Formulation of the thermal impedance matrix approach in
1 66 Laplace transforny-space, rather than in the time domain, is
T ks Rs () chosen for a number of reasons. Firstly, thepace formula-

tion is a natural development of the fully analytical thermal

The fully linearized equation, (5), can now be solved exesistance matrix approach for the time-independent case, de-
actly with general linear boundary conditions, and this approgeribed by the authors previously [26]-[28]. All of the advan-
imate linearization should be good for the moderate tempeageous features of the analytical thermal resistance matrix ap-
ature dependences occurring in semiconductor systems [Fihach for the coupled electrothermal description of complex
[52]. (Stronger non linearities can be treated, less compactystems, carry over to the time-dependent casesppace. Sec-
within the fully analytical thermal resistance matrix approach byndly, thes-space formulation of the thermal impedance ma-
the equivalent linearizatio(#) — k(x,y, z,t) [52].) Toillus- trix allows immediate incorporation as a multiport distributed
trate the significance of the time variable transformation, (4), fthermal network in circuit level harmonic balance simulators.
electrothermal response [50], an analytical thermal impedarigi@ally, Laplace inversion also allows use in circuit level tran-
matrix is constructed to describe the response to step pow@nt simulations, and analytical inversion £kpace expres-
input of 0.4 W, over a central squabe L. x 0.11, at the surface sions readily gives rise to both small-time and large-time re-
of a cubic GaAs die, sidé = 400 xm. Such a configuration is sults for the thermal response, which are not easily obtained
illustrative of, for example, a multifinger power FET. It is foundusing a direct time domain formulation. However, the thermal
that total neglect of thermal non linearity leads te-30 K un- impedance matrix approach can also be developed in the time
derestimate of the steady-state temperature riseldf K. In-  domain using Green’s function techniques. This approach is de-
cluding the inverse Kirchhoff transformation, but neglecting thecribed in [30].
inverse time variable transformation is seen to overestimate thén the thermal impedance matrix approach presented here,
temperature rise by-4% at any given instant, or equivalently R, (s) is determined in explicit analytical form, purely
and more importantly, to underestimate the rise time requiredftom structural information. It is independent of temperature
reach a given temperature by as much-a@§%. and power dissipation, and hence of device bias. Its order is

Another sometimes used approximation, is that of effectivetietermined only by the number of active device elements,
linearising the time-dependent heat diffusion equation aboutrelependent of the level of the complexity of the device
typical operating point, without employing either the Kirchhofktructure, so is already minimal without any model reduction.
or the time variable transformation. The error in this approadthermal updates in the coupled electrothermal problem reduce
corresponds te-6% overestimate of temperature rise, or undete small matrix multiplications, (6). This approach therefore
estimate of rise time by as much @60%. In addition, simply offers orders of magnitude speed-up compared to numerical
guessing a suitable operating point for linearization is highthermal solutions.
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assuming no volume sources or sinks, and describing surface
0 fluxes by imposed boundary conditions, (7).

For the case of a uniform initial temperature distribution equal
to uniform and time independent ambient temperature, the sub-
stitution

O=s0—0(r=0) 9
is made, giving

V6 - 26 =0. (10)
S

By separation of variables, the general solutionébois of the

form

O(s) = Z COS Ay COS [l Y

mn

X (Chun €Osh Yy 2 + Sy sinh v, 2) - (11)

wherem,n =0,1,2,..., and
D; mm nimw s
J )\rn:Ta Hn = Wa ’ngz)‘fn‘f‘ﬂi‘f‘g (12)

Fig. 1. Generic thermal subvolume f lytical construction of the thermal . . . _—
in'%edancee ?ﬁ:tf,x ermat subvolime for analyfical consiruction o1ihe EMaT \with the transformation of variable, (9), the adiabatic side

wall boundary conditions retain the same form and the radiation
A. The Homogeneous Thermal Subsystem boundary condition on the top and bottom surfaces; 0, D,

becomes

An analytical solution to the linearized heat diffusion equa- _
tion, (5), is constructed for the case of a rectangular, homoge- © = _

P ATS . ’ g DK HypO+s z,1y;8) = 0. 13

neous, generic thermal subvolunfeg =z < L, 0 <y < W, 0.D™5 5, + Ho,p® + spo.p(z, 3 5) (13)

0 <z < D, with active device elements= 1,...,M de- \yjithin this framework, the time-dependent problem resembles

_scribed by surface elementar)_/ aredj, gnd k_Jase discretizedVery closely the time-independent problem [27], [28], thus ex-
into elementary area); (see Fig. 1). Adiabatic boundary con-icit forms for the expansion coefficients are obtained from
ditions are assumed on the side faces and a generalized ‘radi-

ation’ boundary condition is imposed on the top and bottom H,C,,,,,
faces,» = 0, D. This can be written

= —Ymn Srn,n Qoks

a0 Lo 5 .
ao,pks 5+ Ho,p(0 = bo,p(x,4,7)) + po,p(w,y,7) = 0. _dods COSE;Tx)COS(N"y)SpO(x’y’ ) do dy
z T(l +5mo)(1 +6n0)

(7)
Non linear surface flux boundary conditions can be treateghd
in the limit of a sequence of such fully linear problems [27], Coan]
[59]. Here, imposed flux densitiego n(z,y,7) are time
dependent. Coefficientsly p describe surface fluxes due to

(14)

ApKsYmn SILW(Vn D) + H p cosh(yn D))
+ Srnn [aDI{S,ann COSh(,annD) + HD Sinh(,YnlnD)]

radiation and convection. The, p equal zero for imposed _ _fOL fOW cos(Amx) cos(pny)spp(x,y; s) da dy
temperature boundary conditions and unity for imposed flux o LW (14 6m0) (1 + 6n0) )
boundary conditions. The respective ambient temperatures (15)

(awo,p # 0), or heatsink mount temperaturés, p = 0),

are also dependent on timé, p(z,y, 7). The generality of Heresé,,., is the Kronecker delta function and the standard result
this boundary condition allows vertical matching of thermal

subsystems, by interface discretization and thermal impedance / COS A COS Ay @ A = L S (1 + 6mobmr0)  (16)
matrix manipulation, as well as integral treatment of surface Jo

fluxes. However, the adiabatic sidewall boundary conditiqrpaS been used.

can be removed, as described later, Sections IlI-B and IlI-F, t0gch fully analytical double Fourier series solutions in

allow horizontal interface matching and subvolume embeddi%place transforms-space have been described previously

. . They are to be distinguished from semi-analytical Fourier
giving solutions in frequency space, which are based on collocation or
o2 _ i[ G- 0(r = 0)] =0 8 function sampling, and require numerical manipulation such as
ks o T=0)= (®) DFT-FFT to obtain expansion coefficients [19].

To solve this problem, the Laplace transform is construct
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Explicit forms for the double Fourier series expansion coeffivhere
cients,Crun, Smn, can only be obtained for the case of constant, 1 Atanh(vmnD) It I
ao.p,Ho p. WhereH,  varies with position, due to position Rry,,(s) = s T
dependent surface fluxes, a large linear system must be solved rsLW o Yo (L4 8mo)(1 +8no) - Loy
for the expansion coefficients [27], [28]. This computational ex- (23)
pense can be avoided by dropping the surface flux coefficie

T from the “radiation” boundary condition, (7), discretisin Eti(tension to treat other realizations of the radiative boundary
0,0 y ‘N %ondition, (7), is immediate. This allows construction of solu-

the whole surface, and connecting the thermal subvolume to a}m- . o .
. : ions for large area substrates, with radiation and convection,
bient through a set of (generally non linear) external thermal re-

. o X ; nd generation of series solutions for thermal subsystems with

sistances describing piecewise constant surface flux [45]. This™ ¥ : o . ;

o . : T iscretized interfaces, permitting vertical matching of thermal

approach is discussed further in Section V. Similarly, use of @ . ; )

- . L : subvolume solutions in complex 3-D systems. The expression
position dependent, ;, for instance in direct construction of a : . . !

i O : for Rry,.(s), (23), can be written in alternative equivalent
thermal admittance matrix (as opposed to a thermal |mpedar(ce &

matrix), can always be avoided by discretization of the who grms [3], and is readily extended to treitlevel multilayers
surface (as in the boundary element method) and impositiontR
a corresponding nonmixed boundary condition.

As in the time-independent case for the homogeneous MM

[27], [28], to illustrate a particular time-dependent form of the

}. The temperature distribution of (19), and the corresponding
ermal impedance matrix of (23), reduce to the respective
eady-state forms [27], [28], in the limi/k — 0, giving for

e thermal resistance matrix

thermal impedance matrix, pdty = 1, Hyp = 0 (no radia- Rpy. = 1

tion from the top surface; = 0) andap = 0, Hp = 1, Y ksLW

pD(xaya’r) = Oa QD(.’L',y,T) = 9(7 = 0) (uniform temper— 7 ! 4tanh(rnlnD) Irznn-[%]nn

ature on the bottom surface, = D, corresponding to heat  * DIgo + %;l (14 6m0)(1 + 600) I (e4)

sink mounting at ambient temperature). Assume a surface power
density of the form where now[2

B m,n = 0,1, 27,7m excluding(m,n) = (0,0).
po(z,y,7) = Z Sz, y)Pi(7) A7 The thermal impedance matrix approach as described here
! means that generally, temperature will only be calculated in
whereS;(z,y) = 1 in active device elementary are&s, and the vicinity of power dissipating and temperature sensitive el-

= A2, + 12, and the sun}_’ is over all

n

S;(x,y) = 0 otherwise, then ements, as required for the coupled electrothermal solution. No
_ redundant temperature information will be generated on the sur-
Po = Z Si(x,y)F;. (18) face orinthe body of the die. However, the solution of the heat
g diffusion equation just described, provides analytical expres-
The corresponding temperature distribution is given by sions for both the thermal impedance matrix and for the cor-
1 B 8(r = 0) responding temperature distribution throughout the body of the
-0O(s) =6(s) - —— MMIC. This means that once power dissipatioffs,have been
s s obtained self-consistently, by employing the thermal impedance
== Z COS A & COS fin Yy matrix in the coupled electrothermal implementation, tempera-
mn ture can be obtained essentially exactly, if required, at any point
~ 1 4 Z Irinni within the body or on the surface of the MMIC. This is of value
Fs LW (1 4 610)(1 + 6r0) i Tmn for model validation against measured thermal images.
x (sinh Yynp 2 — tanh Yy, D cosh Yy, 2) Pi The matrix given by (23) represents an exact analytical solu-

(19) tion for time-dependent 3-D heat flow in a MMIC bearing an
arbitrary distribution of power dissipating and temperature sen-
defined by sitive elements. These elements could be transistor fingers or
finger subsections, grouped in any fashion, or could represent
I:;m — // cos (@) cos (@) dx dy. (20) heat dissipating passive elements or effective thermocouples at
D; L w metal-substrate contacts [60]. These analytical expressions de-

Constructing the surface temperatures averaged over elemen$&fiPe exactly the finite volume of the die and the finite extent

with area integrald?,

n

areasD; as of transistor fingers, without making any approximations for in-

- finite volume or finite end effects. If a simpler, single thermal
fsz_ @‘ dz dy impedance description of device heating is required, the ele-
av;, = =0 (21) ments of the matrix can be appropriately summed to give the

I, dxdy :
i total, area averaged, temperature rise.

immediately gives the defining equation of the thermal The analytical solution, (23), represents the thermal impulse
impedance matrix approach, (6), in the form response of the MMIC. It is frequency dependent as character-

or — istic of distributed systems and contains an infinite number of
Gy — o(r=0) _ > R, (s)P; (22) poles and zeros. It corresponds directly to a multiport thermal
s J network, Fig. 2, which cannot be represented exactly by a finite
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network of frequency independent primitives, (such as thermal

networks generated by numerical mesh descriptions, e.g., : :
[13]-[15], [20], [21], [44], which only give an exact thermal :
description in the limit of infinitely fine mesh discretization). .

The multiport netvx_/ork is already mini_ma_l, in_ that it describes 0, P; P; 00
nodes corresponding only to power dissipating or temperature R

sensitive elements (or discretized interface elements). It there- 9.” P’ THy )

fore constitutes a boundary condition independent compact ! : P; .
model for the thermal time-dependent case, with 3-D heat flow ‘ !
described exactly by a small number of thermal impedances. . :

The multiport network parameter interpretation presented here, Py Pm o0y
makes the thermal impedance matrix approach immediately O o

compatible with network based electromagnetic and electrical

circuit solvers [46], without the need for explicit RC network l

approximation, or for any model reduction beyond that implicit

in summation of infinite series to just a finite number of terms. 8¢

The_ thermal |mpedance m_atrlx, (23_)' can elth_er be used _gf@. 2. ThermalN -port generated directly from analytical solution of the heat
rectly in frequency space, for instance in harmonic balance sisfusion equation, and represented by thermal impedance ma&eis; ,(s).
ulations, or Laplace inverted to describe thermal time depen-
dence directly in transient simulations. For the harmonic bal-

ance case. the solution for the thermal impedance matrix is .SU{acy in such descriptions is relevant, for instance, in studies
’ P 18 thermal intermodulation in power HEMTSs [32].

of the s-dependent form, (23), with — j w. It takes the form Equations (23) and (25) give immediately pole-zero or time

of an array of frequency dependent complex phasors containin . . .
. . . L . stant representations for the thermal impedance matrices.
phase and amplitude information for the (asymptotic) sinusoi riting [65]

response to harmonic forcing. This matrix then corresponds to
the network parameters of a distributed (originally non linear)
multiport thermal network.

Having obtained transformed temperaturesispace 4(s),
and assuming’; corresponding to simple step inputs of magwith i = (I, m,n), it is apparent from (25) thak; andr; are
nitudes P;, analytical inversion gives the corresponding timgbtained in explicit analytical form. Retaining just those terms
domain thermal impedance matr&yn, ; (7), corresponding to corresponding to the dominant time constants gives a represen-

Rru(t) = ZRi(l — exp(—t/7;)) (26)

step input tation similar to that abandoned by Napieralskial. [21] be-
cause it could not be obtained in a simple parameterized form.
Rom,,;(7) This description generalizes immediately to complex 3-D sys-
— -t {RTH (8)1} tems, as described below. _
I Although itis distributed, the finite thermal system is seen not
1 2 4 I I tobe represgntgq by a continuom_Js time constant spectrum, but by
T heLW D lz: (1 + 8mo)(1+ 6n0) 1y a pountably mflnl.te nunjb(_ar of time constants. However, sum-
mn ming all contributions within rangéto {+ A{, where{ =lnr

1—exp {_7@ [(1%/2)2 + (rn)2 + (%)2} k'r} [65], essentially continuous spectra are obtained (see Fig. 3).
These spectra are calculated for a silicon chip considered by
.2 {(l+1/2)2 n (m)z n (l)ﬂ Szekelygt a_I.[65] and agreeme_ntwith the calculated resul_ts pre-
w sented in Fig. 23 of that paper is good. Exact agreement is not to
(25) be expected, as details of the time constant spectrum depend on
the magnitude and placement of intervalg. The two curves
with I,m,n = 0,1,2,.... Taking the limitr — oo and per- shown correspond to division of the calculated eight decade log-
forming thel summation explicitly, the time-independent rearithmic interval, into 40 (solid line) and 80 (dotted line) equal
sult is recovered [27], [28]. Using the Watson transformaticsubdivisions, respectively.
[61] and the Poisson summation formula [62], series solutionsCombining tables of standard integrals, e.g., [43], with ex-
such as (23)—(25) can be partially summed explicitly in closqutessions for the inverse Laplace transform (using properties
form, and partially accelerated to give even more rapidly evaif theta functions) [66], gives the equivalent time-domain form
uated expressions. These results are presented elsewhere §83he thermal impedance matrix (27), shown at the bottom of
Such treatment can be particularly important for the descrifite next page. This form of the time domain thermal impedance
tion of small elements on large die, which can require summiaatrix is found to be far more rapidly convergent at very small
tion of large numbers of terms for sufficient resolution. Avertimes. It is an alternative to the explicit time constant form, (25).
aging power dissipations over larger areas can give differenceg&ven though analytical inversion is readily achieved, numer-
of several decades in calculated time constants, compared toieat inversion is highly accurate and algorithmically simple to
curate representation of highly localized heating [32], [64]. Admplement. It requires only evaluation of the Laplace transform
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Fig. 3. Time constant spectra obtained from (25) and (26) for a Si chip

considered by Szekelyt al. [65]. Fig. 4. Temperature rise with time at turn-on, in the immediate vicinity of the

device active region in a central eqqaﬂe]_,L x 0.1L, on the surface of cubic
and a corresponding weight function, at a small number of rdlig. sideL = 300,400,500 pm, dissipating 0.3, 0.4, 0.5 W [71].
or complexs-points [67]—-[70], ) _ . )
transforms-space. This section presents an original technique
L7HF() hr, = Z w, f(5,), (28) for the generation of double Fourier series solutions, describing
i arbitrarily distributed volume heat sources and sinks, without
) _ ) ) ) the use of Green’s functions. It therefore greatly extends the
with w,, ands, determined uniquely for a given,. Typically gescriptive power of the Fourier approach beyond the surface
five or six s-points are adequate so this approach can be cofyq interface source terms that have been treated previously
putationally much cheaper than analytical inversion. [19], [27], [28].
F|g.4shows temperature rise Wlt.h time atturn—on,cal_culatedWriting the time-dependent heat diffusion equation with
using the thermal impedance matrix epproaeh, for cuble Gadsiume heat source in-space
die of sideZ = 300,400 and500 pm, dissipating respectively
0.3, 0.4, and 0.5 W over a central square element of Gitle 27 S a 1 f(r =0)
.04, V30— —0=—|—g(z,vu, 7% 29
on the die surface [71]. ks Lsg(a: v, 78) + ks (29)
The observed trend in the calculated time response, with vari- : : . . .
Lo R . . and assuming a generalized double Fourier series solution of the
ation in die size, could not be predicted over the whole ti e
range on the basis of commonly used thermal models, which

invoke an infinite or semi-infinite substrate approximation. The f(s) = Z COS A COS ftn 3y L (7) (30)
significance of these results is discussed more fully in [71]. The P
differences in results obtained by analytical, (27), and num i
ical, (23) and (28), Laplace inversion respectively, are indistin- & Zn 9
guishable on the scale of this plot. Numerical Laplace inver- dz2 YonnZmn = G (2) (31)
sion gives by far the fastest solution, and the explicit time co
stant form, (25), requires summation of an impractical number
of terms for sufficient accuracy at very small times. Grn(2) = —4
(1 + 67710)(1 + 6n0)LW
B. Volume Sources Lrw
) ) ) X / / COS Ay, & COS [ Y
To construct the time dependent thermal solution with 0Jo
volume heat sources/sinks and arbitrary initial conditions, 1 _ ) 6(r =0)
requires the solution of Helmholtz's equation in Laplace X L—Sg(%y% s) + T he } dydz. (32)

2 kT ad kT _p2p2 DI
Ron(7) = mféo {\/ —+ 2> (-1) [\/ 7@*’3 E/k7) _ Dl erfe <ﬁ)] }
=1

erf(Ppn VET) = 302 (1)

2DIT
1 d 4 ' o1 exp DI T
mn-mn +hl erfc i + Frnn kr }
* rs LW ; (1+6mo)(1+8n0) IS  Don | ¥ [ (l/_;;)ll“ )}

—PY 4 n [erfc (\?—k% - Fm"\/ﬂ)}
(27)



576 IEEE TRANSACTIONS ON COMPONENTS AND PACKAGING TECHNOLOGIES, VOL. 24, NO. 4, DECEMBER 2001

To solve (31) define x
Zrnn = e’ymnzznln (33) 0]

and make the substitution

dzrnn

dz

to reduce (31) to an equation of 1st-orderdjR,,. This linear
1st-order equation can be solved by use of a simple integratil
factor, giving the general solution

Crnn = (34)

7

vz vz
e s _ i
A e—%mz/ 2 Ymn% / e~y (z”) d"" do
0 0

Clmn -~ = oz Fig. 5. Thermal subvolume with arbitrary distribution of power dissipating
+ D e 4 compe” ™. (35)  volume sources.
mn

This solution of (31) contains two arbitrary constants angh particular, separation of variables for construction of the
is a general solution. No constitutive equation witfunc-  3.p Green’s function, followed by construction of the Green’s
tion source has been formulated and no solution of such gction for the resulting 1-D Helmholtz equation, is a widely
equation constructed, so no Green's functidh'(z,z’) (or ysed technique, e.g., [75] (Appendix A2) for time-independent
GF(z,y,2,2’.y/,2') in three dimensions) has been used igoution of the Poisson equation. Such an approach might there-
this solution of the time-dependent heat diffusion equatiqfre pe expected to produce similar results to those described
with volume source. However, integrating one by parts angbjow, though the existence of alternative methods offers the
absorbing a sum in the arbitrary constant, C1_mn, 2 mm cani&ssibility of simplifications in the analysis by appropriate

expressed in sums of the 1-D Green'’s function. choice of technique, compare e.g., [45].
More generally, the approach of (33) and (34) supplies a s0-sing the above approach, the thermal impedance matrix for

lution to the problem power dissipating volumes, distributed arbitrarily throughout

27 4z the body of a heatsink mounted MMIC (Fig. 5) is given by
a— +b—+cZ =G(z) (36) o

dz 2 dz R 1 I:n,n I%ln,n

wherea, b,  are simultaneously piecewise constant, without the () ks LW ; It

use of Green’s functions. It is a constructive solution which —4 1

avoids the need for trial and error in obtaining a particular in- . (1+ 6m0) (1 + 6n0) V2.,

tegral. WithG(z) the Diracé-function this method can be used sinh Vi 210 —sinh Yoy, 71

to construct Green'’s functions. As the integrals of (35) are easy [Z;Zﬁ (;mz_(bl_)ﬂ )—coshyamn (D—212)]

to construct for simple7(z), such as sums of step functions, X x ~ coshynD

this approach offers a2 2 transfer matrix solution to 1-D nu- +1-— %

merical problems without the need to formulate large sparse (37)

matrices for finite difference operators. Finally, as (35) repre-
sents a general solution with no Green’s function containindere,;;, z;» are thez-coordinates of the planes bounding heat
in-built boundary conditions, it supplies a solution to the twadissipating volume;, in thez-direction, and thé ,, are the area
point boundary value problem, (36), with arbitrary non lineantegrals over the: — y cross sections);, of heat dissipating
boundary conditions treated by a subsidiary non linear problemlumes,, (20). This expression is to be compared with the
of order two.) thermal impedance matrix for power dissipating surface areas,
These solution techniques are individually implicit in text$23). Taking the limitz;» — z;1, gives the solution for a die with
such as [72]. However, the authors believe that this douldéssipating areas distributed arbitrarily throughout its volume,
Fourier series method, for treatment of arbitrary volume sourcefsvalue for instance in describing the buried channels below
or sinks without use of Green’s function techniques, represetihe semiconductor surface of a multigate power FET. Taking the
an original approach to solution of the time-independent afarther limit, z;», 2;; — 0, reproduces (23).
time-dependent heat diffusion equations. This approach is noBy letting the power dissipating volumes tend to power dis-
discussed in texts such as [43], [73], and [74]. The doubsipating surface areas, this thermal solution can be used to de-
series solution, (30), is to be compared with much moseribe arbitrary surface flux distributions, effectively removing
computationally expensive triple series solutions obtainglde adiabatic surface boundary condition from all subvolume
using time domain Green’s functions. In the time domain, tifaces. Similarly, this solution can be used to describe flux distri-
authors’ approach can give both small-time and large-tinieitions over arbitrary internal surfaces (Fig. 6). Such a construc-
series solutions, which may not be readily obtainable usitign, in combination with the analytical solution to be presented
such Green'’s functions. The authors note, however, that ideém-Section IlI-F, below, can then be used to describe inhomoge-
tical solutions are often achievable by alternative techniquemous structures.



BATTY et al: ELECTROTHERMAL CAD OF POWER DEVICES AND CIRCUITS 577

Fig. 6. lllustration of power dissipation over an internal surface, described by
the analytical solution of Section III-B. Fig. 7. |lllustrative N-level multilayer thermal subvolume for analytical
construction of thermal transfer impedance.

This solution also makes possible treatment of the time-de-The corresponding form for the thermal impedance matrix is,
pendent problem for other than homogeneous initial conditionsg. 7

It therefore allows construction of a time-stepping thermal
impedance matrix formulation for transient electrothermafry,; (s) :Zcos Am@; €08 pinYi (Umn [ Bmn)

simulations, with repeated analytical resetting of initial condi- mn
tions for the whole distributed thermal volume. Details will be % —4 I (38)
presented elsewhere. R1 LW (L + 6m0) (14 6no)vom
where
C. RectangulatV-Layer Umn \ _ 2@ 272 (N—1) 1
< [3nm ) o % % T % —COth’yr(é\ﬁ) DN
The simple descriptions of the homogeneous MMIC, pre- (39)

sented above, are readily generalized to treat multilayer systems

by use of a transfer matrix, or two-port network, approach [11‘f|‘.’Ith

This is based on matching of Fourier components at interfaces, - ) , s 1/2

and corresponds to use of the double cosine transform to con- Tmn = <)‘rn + php T+ kf) (40)

vert the 3-D partial differential equation (5), into a 1-D ordinary "

differential equation for the-dependent double Fourier serie@nd the layers have thermal conductivity, diffusivity, k.., and
coefficients, as described in the previous section. Matching iBferfacez-coordinatesD,., r = 1,..., N, (with Do = 0).
linearized temperature and flux at the interfaces of a multilay&he M) are analytically obtained 2 2 matrices, explicitly
structure can then be imposed by use ofsa2transfer matrix determined entirely by:,., 5,41, fy,(,:,)“ fy,(,’{,f Y and D, as (41),

on the Fourier series coefficients and their derivatives. Arbitrashown at the bottom of the page. These transfer matrices become
N-level structures can be treated. Different thermal conductirrearly singular at high frequencies, simplifying construction of
ities can be assumed in each layer allowing treatment of cothe multilayer thermal response.

posites like Cu on AIN (both having temperature independentTo illustrate the accuracy and speed of this method [38],
thermal conductivities) and MMICs with conductivities varyinghe above analytical solution for aN-level multilayer, with
from layer to layer due to differences in doping levels (all layers — j w, is used to plot the complex locus of the thermal
having the same functional form for the temperature dependeti@nsfer impedance in Fig. 8. The four-layer, heatsink mounted
of the conductivity). device considered, is a structure examined by Szeletly

ﬁ(r) = cosh v, Dy cosh {0 D,
(1) . . . (r+1) .
— Tmn PrtL tanh fy,(m)LD,, tanh fy,(mf UD,  tanh fy,(mf Up, — Tmn_Eril fanh fy,(m)LD,,
% AT b A5
» (r+1) " (r+1) r r
— tanh fy,(m)LD,, + Tma il fanh fy,(mf I)DT T Eril — tanh fy,(m)LD,, tanh fy,(m'f I)DT

mn Fr Yrmn Kor

(41)
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been designed to allow descriptions of surface metallization

and air bridges, and other vertical geometries such as flip chips

and solder bumps, as well as MMIC arrays, as outlined below.
The extension to include complex 3-D structure is achieved

by solving the heat diffusion equation analytically for thermal

: sub elements, then combining thermal impedance matrices for

; subsystems by matching of temperature and flux at discretized

E interfaces. For illustration, specifying flux on top and bottom

: : surfaces; = 0, D, and assuming no radiative or convective

; surface lossegw p = 1, Hy p = 0), the following relations

| are obtained for temperature%,avi andép av,;,» averaged over

5 10 15 20 25 30 elementary aread);, and D, on facesz = 0O andz = D,

Re(Zth) [K/W] respectively, Fig. 1

Im(Zth) [K/W]

-10

-15

'
o1
O oo

an analytical series expression, for a four-layer, heatsink mounted structure Oav; = s

Fig. 8. Complex | f the thermal transfer impedance, calculated using 7 b(r =0) w0 B oD B
ig omplex locus of the thermal transfer impedance, calculated using _ Z RS, Pov + Z RS Pp,
examined by Szekelgt al. [23], [48]. v J

J

9Davj - —9(7_ 0) = ZRggﬁPOZ + ZR?}%]_,PD]V.
al.,, ([23] Figs. 5 and 6; [48] Fig. 17). Agreement with the 5 i i

calculations of Szekely seems good. The data for this figure (42)
took less than 1 s to generate on a 500 MHz Pentium processor _

and consists of 65 frequency points. This can be compard@re.lo: andPp; are respective imposed fluxes in elementary
with Szekely’s published steady-state simulation times, [76}r€as.; and D;, on faces: = 0 andz = D. The thermal
The comparison suggests that despite the speed of the pmpedance matrices are obtained in the explicit form

the need to generate redundant temperature information on a 4 coth mn D J0i Jo¢

surface mesh in Szekely’s semianalytical function sampling or R}Y; | = e
collocation approach, makes the fully analytical double Fourier e ks LW ; (14 6m0)(1 + 6no)ymn 154
series transfer matrix method at leastx faster for the same oD 1 —4cosechy,, D I% IDJ
number of basis states. TH ™ we LW Z (14 6m0) (L + 6n0)Ymn 1%
The method can be generalized further, by imposing speci- . mn A he D Pipoi
fied flux discontinuities at the interfaces. The solution then rep- R20 — 3 COSECH Ymn i mn
resents, for instance, the case of a MMIC with active device T KsLW L (1 +6mo)(L+ 6no)ymn Iy

channel buried by a thin layer of semiconductor, as described by D
(37) (with z;2 — z;1), but distinguishing the thermal conduc- RTnjj,
tivities of the various semiconductor layers. This transfer matrix
approach can also be combined with the volume heat source so-
lution of Section IlI-B, to describe rectangulaf-layers con- where thel® andIPJ

. ) AR SRS e 2 are area integrals of the form, (20), over
taining an arbitrary distribution of power dissipating VOIume%lementary aread. and.D.. on faces: — 0 andz = D. re-
3 Nl ~ v T 1

W'thOUtt tge lneedhto |nt7r$duce artificial interfaces. Details ar5epectively. These expressions are readily inverted analytically
presented elsewhere [77], or numerically, as described in Section IlI-A, to give (fully pa-

.;Lhti chhhofff tratr]sforlr?atlont;ste;?fct f@ft-levlel mufltllaz%/erts rameterized) time domain results. As described in [38], analyt-
wi e same functional form (but different values) for the te cal inversion gives rise to explicit expressions for the individual

perature dependent thermal conductivity in each layer. A sing Brms in pole-zero or time constant representations and allows
global Kirchhoff transformation is also a good approximatioBirect construction of time constant spectra

for multilayers in which the functional _form OE(T.), differs . (Resistance matrix expressions for the thermal time-indepen-
between Iaygrs, S0 Ior)g as an appropnatgly modified effec'uagnt case have been given in [28]. Alternative forms for the se-
value f.omls is chosen in each layer for which the global "aNS5es constructions given there, can be obtained using closed form
formation is not exact [78], [79]. summation and series acceleration techniques [63].)
These series expressions represent generalized multiport
D. MMIC Superstructure Z-parameters for the distributed thermal subsystems. Net-
It has been demonstrated that inclusion of surface metallizaork parameter descriptions for thermal systems have been
tion is essential for accurate description of thermal effects described previously, [20]. However, the construction of net-
power devices [54], [79]-[81]. Comparison with experimenwork parameters described in [20] was neither analytical, nor
for multifinger power HBTs shows that the simple thermaimple, and required complex numerical manipulations based
description corresponding to the resistance matrix of (2dh the boundary element method. This model also did not
is highly accurate when combined with a simple model dfeat thermal non linearity, and involved approximate fitting
heat shunting by an air bridge [82]. The analytical thermalf network parameters and explicit model reduction. Time
resistance and impedance matrix approach presented here doasain simulation in [20] also required additional complex

—4cothym,D IR DS

mnTmn

1
rsLW g; (]_ + 67”0)(1 + 6n0)7nln Ié—())’]

(43)
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manipulation to convert the admittance matrix description to ¢
system of integral equations treatable by the circuit simulatol
This is in contrast to direct generation of the time-domain
response described in this work, based on Laplaspace
formulation and analytical or numerical Laplace inversion.

Combining the thermal impedance matrices for individual
subvolumes, a global thermal impedance matrix for comple:
3-D systems can be obtained. This is illustrated in the next set
tion [38] for the case of a metallized MMIC. More generally,
thermal subsystems can be represented individually by netliste
ements in circuit simulation. Expressing the thermal impedanc
matrices as non linear elements in the time domain, then allow
non linear matching of interface temperatures at subsystem i
terfaces, in those cases where the functional form of the Kirch
hoff transformation differs between subvolumes.

The s-space formulation means that no artificial piecewise
constant time dependence is assumed for interface fluxesFin 9. Surface metallization of a power MESFET.
contrast to the time-domain USE method [43]. However, the

thermal impedance matrix approach can be developed withigr, in the time domain. The-space formulation means that
the USE framework [30], with direct time domain interfaceyhen power dissipation is knowapriori, temperature can be

matching, where it avoids repeated matrix inversion. obtained directly at any required instant, without the need to
. take consecutive timesteps from= 0. In cases where non
E. Global Impedance Matrices linear interface matching cannot be neglected, the thermal

Construction of thermal impedance matrices is now describedpedance matrix approach allows formulation of a non linear
for more complex systems, such as power FETs and MMIGgstem of equations for the correctly matched temperatures
with surface metallization, Fig. 9. [27].

To illustrate the interface matching approach, the global The significance of the relation, (45), should be stressed.
thermal impedance matrix is constructed for the caséVof It represents an explicit analytical expression for the solution
pieces of rectangular, but otherwise arbitrary, metallization af the time-dependent heat diffusion equation in an arbitrarily
the surface of an otherwise homogeneous heatsink mountednplex 3-D volume. In contrast to conventional numerical
MMIC. Multiple levels of metallization are treated in the saméechniques, such as FDTD or FETD, it requires no volume
fashion. Matching flux and (linearized) temperature at thmesh, discretising only interfaces (and power dissipating and
interface between metal and MMIC die, the following relatiotemperature sensitive elements). It is therefore extremely

is obtained: simple to formulate and implement, avoiding the large prepa-
. lob a ration times of FE simulations, as well as the intricacies of
AY" = REP (44) FDTD and FETD code for complex structures. The solution

is modular and hierarchical, so once the global impedance
where . ) :
o . . ... matrix has been constructed for a single metallized MMIC,
P?* vector of MMIC active device power dissipations; . .
lob ; . this could then, for example, be used to describe each MMIC
R%*°” global thermal impedance matrix for the coupled GaAs . .
=TH ih an N x N MMIC array. The global impedance matrix
and metal system;
A6 vector of MMIC active device temperature rises.

The global impedance matrix is given explicitly by

for the metallized MMIC would only have to be constructed
once, to describe alv? identical MMICs. It could also be
stored for re-use in later coupled electrothermal simulations,

E:g;;b _ ROT% + RaT,iH R1 Ra,Ta,H (45) cutting later pre_co_mputation time effective_ly to zero. Finally,_
= b1 oD DN y there is no restriction on heat loss mechanisms involved in this
R = diag (ETH( ... o S ,QTH( ‘)) — R, solution, and for instance, ultimate heat loss from the system

(46) could be purely by radiation and convection from the grid array
substrate, without any heatsink mounting.
Here, R . of (23) for the MMIC die has been partitioned by ac- This method therefore avoids all the previous limitations of
tive device elementary areas,and interface elementary areadully analytical approaches, as listed for instance in [49], and
between MMIC die and metal, and theﬁTDF’?(") are thermal provides a natural solution to the problem of variation in length
impedance matrices for each piece of metallization, (43).  scale over the whole of an electrothermal system. Resolution of
Thus, by simple matrix manipulation, the global thermaemperature in each thermal subsystem is defined by its local
impedance matrix for the metallized MMIC can be obtained a®ordinate system and the corresponding double Fourier series
an explicit matrix expression for any given value of Laplacexpansion. There is no need for any sort of uniform mesh re-
transform variables. Also, using the simple algorithm for solving the finest detail at all length scales, or for imposed non
the numerical Laplace inverse, (28), the value of the globahiform grid construction. Also, by development of closed form
thermal impedance matrix can be evaluated at any time stapd accelerated expressions for the thermal impedance matrices,
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as indicated earlier and presented elsewhere [63], all series con- x

vergence rates are fast and resolution limits are removed within 19 NO ADIABATIC SIDEWALL
any single thermal subsystem.
The method presented here is immediately compatible y p?
k

with explicitly coupled electrothermal device and circuit level
simulation on CAD timescales. The directly coupled thermal
impedance matrix approach represents ‘near exact’ solution
of the non linear time dependent heat diffusion equation for
the complex 3-D system, at points, or averaged over regions,
corresponding to power dissipating and temperature sensitive
elements. The only approximations are finite interface dis-
cretization between thermal subsystems; in the time domain, D p
the assumption of piecewise constant time variation and nu- N
merical Laplace inversion if employed; use of a single global
Kirchhoff transformation if non linear interface matching
between subsystems in not imposed; and partial treatment of
temperature dependent diffusivity. This “near exact” compact /\%

model for arbitrarily complex structures, is to be contrasted p*

with simplified compact component models, based on reduced '

dimensional solutions of the 3-D heat diffusion equation w L

and neglecting detailed device structure such as die surface

metallization, e.g.. [14]- Fig. 10. lllustration of power dissipation over the whole external surface of a

Finally, the authors’ approach allows netlist construction eéctangular subvolume, described by the analytical solution of Section I1I-F.
any thermal system constructable from rectangular subvolumes.
This is again in contrast to component models such as those %f
X T : . Wwhere,
[14], which require individual analysis and construction of an

appropriate discretization, before they can be entered into the

H H H H nm nm nmw
circuit simulator component library. py— T M=y =
F. Inhomogeneous Thermal Conductivity N = Ho &7 + %7 e %7 and
The analytical double Fourier series solution for the thermal ;2 = )2 4 ~2 4 S (48)
impedance matrix can be further generalized to treat, essen- ks
tially exactly, piecewise uniform, but otherwise arbitrarily inh0=|.he expansion coefficientd, .., By, . .., are all obtained as

mogeneous thermal conductivity, such as full and partial thicg—

. i o . xplicit analytical expressions (when surface flux coefficiéht,
ness vias, and partial substrate thinning in power transistors ‘?’ngcluded from the surface boundary condition). Again, this so-

MMICs. A computatlonally much chea}per, but a}pproxmat%tioms not described in standard texts such as [43], [73], [74].
treatment of vias, based on the the simple equivalence prin,

. . ; Combining the above solution with that for arbitrary distribu-
ciple method of Bonaret al, [10], [12], [83], has also been im- tions of heat sources described in Section IlI-B, gives a fully an-

p:emtgntede|th|r:1 thle 't[_hermfal rtehS|st'Fanc_e r;atnx gpptroaCh'.C%gtical description of inhomogeneous structures based on small
struction of such solutions for the time-independent case is d&5. o \atrix manipulation.

scribed in [28].

Vertical matching obtainable by use of the “radiation”
boundary condition (7) can be extended by removal of the IV. COUPLED ELECTROTHERMAL TRANSIENT
adiabatic side wall assumption (Fig. 10). This allows horizontal
matching of rectangular subvolumes for which flux boundarlye
conditions are prescribed on all faces. The correspondiB
double Fourier series solution takes the form

The thermal impedance matrix issspace can be used di-
ctly in coupled electrothermal harmonic balance simulations
9puttingS — jw. Inthis case, the matrix of frequency depen-
dent complex phasors corresponds to the network parameters
of the distributed multiport thermal network. It is inserted di-

- b(r=0) 1 rectly into the MNAM for the microwave system and so does
0(s) = s * s not increase the number of non linear equations describing the
COS Ay & COS Liny coupled solution.
X (Apmn €0sh Y 2 + By sinh vy, 2) In the coupled electrothermal transient problem, Laplace
o Z ~+ COS Lim ¥ COS Y2 transformed active power dissipations;(s), are not known
oo X {(Crn c0Sh Ay @ + Doy sinh A, ) explicity and must be obtained by self-consistent solution.
~+ €OS A\ COS Y 2 To combine the electrical and thermal descriptions, the corre-
X (B oSN fimny + Fing sinh fopny) spondingP; (7) must therefore be discretized in time. Dividing

(47) the time interval of interest into equal subintervals of length
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Fig. 11. Thermal equivalent circuit corresponding to resistance mﬂtﬂxij [26], [82].

ér, with the P;(r) taking the piecewise constant form (forimmediate, and for sufficiently short step lengths, low orders of

illustration) interpolation should be required.
After self-consistent electrothermal solution, and inversion of
Pi(r) =P for(n—1)6r <7 <nér, n=1,...,N  theKirchhoff and time variable transformations, physical active

(49) device temperatures are finally obtained as a function of phys-
ical time,T;(¢), and electrical solutions, dc or rf, are determined.
then gives
V. COMPACT MODELS

7 1 n . .
Pi(s) = Z g(l - 6_557)6_("_1)567’]»( ), (50) In the fully analytical approach described above, the global
n thermal impedance matrix describing a complex 3-D system,
Lapiace imering the impedance mat equaton, (@25 PeEG0Ed Sckonic componert, consts o a i
the temperature rise of elemerntat time = = mér, . P 9 g
(m) - _ . (n) - mutual thermal interaction at only those sites chosen to be
Ag;"”, is obtained as a function of theé’;”’. Writing : : . : L
tm) () plm)y ¢ he electrical model h . of_ mteregt for electrothermal S|mulat|on. This description is
A7 = AG; (P from the electrical model then gives  minimal in two senses. It contains the smallest number of

thermal multiport nodes compatible with coupling to electrical

A (‘Pi(m)) network nodes. It also contains the smallest number of thermal
= L7 Ry, ()P5(5) brmmsr (51) imped_ances consistent With exact solution of the heat diffu;ion
equation. These thermal impedances do not have a direct
= Z Z[“(m —n+1)Rru,; ((m —n+ 1)é7) interpretation in terms of discretized physical layout, but
noJ constitute ‘thermal links’ as defined in [25]. The general form
—u(m — n)Rru,, ((m — n)év)]Pj(") (52) of the equivalent circuit, corresponding to thermal resistance
matrix & . for the time independent case, is shown in Fig. 11
whereu(7) is the unit step function. [26], [82], and has been employed successfully in SPICE-like

This corresponds t&y systems of equations il¥ unknowns, circuit simulation [82].
whereNN is the number of discretized time points in the time in- This basic form generalizes readily to arbitrary numbers of
terval under consideration, aid is the number of power dissi- nodes, unlike thermal networks based on direct physical dis-
pating or temperature sensitive elements. The Laplace inversiorgtization of the thermal system, which can grow rapidly more
with piecewise constant power dissipation, avoids any explicionvoluted with increase in size. Generalization to the time-de-
convolution operation. pendent thermal impedance matrix case is immediate. Imple-

The entire thermal description can therefore be obtainetentation of the thermal multiport network in electrothermal
by precomputation ofRry,,(7) at timesteps,m = nér, CAD can be achieved in both the time and frequency domains,
n = 0,...,N. These precomputed values can be stores described above. Direct use of the solution of the heat dif-
for repeated re-use in different electrothermal simulationfasion equation, in the form of explicit double Fourier series
For reduction of precomputation time, thery,, (7) can be expressions for thermal impedance matrices describing thermal
generated at intervals, and interior points obtained accuratetyltiports, avoids the need for lumped element RC network
by interpolation. This is a time-domain approach equivalegeneration, and is already minimal without any node reduction
to representation of a frequency space transfer function bysach as that described in [84].
polynomial fit. Thermal impedance matrices for the time independent case,

Extension to linear, quadratic or higher order interpolation @ind in the time domain, have been described previously by
the active device power dissipations in each subintefiralis Franke and Froehler [85], for compact model development
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based on numerical simulation or experiment. Their corre N
sponding equivalent circuit should be compared with Fig. 11 TOP2
Sabry [20] has suggested the thermal admittance matrix as Rrop1

compact model for time-dependent electrothermal CAD, a
an alternative to demonstrably inadequate star models. Cod

casaet al. have proposed exact thermal-port construction, ﬁ 7. R
in the form of thermal resistance and impedance matrice ﬁ

[86], [87], though without constructive details of the exact NN
thermal solution for multilayer and complex systems. Therma Reeaps

impedance matrices and/-ports, for the time-independent
and time-dependent cases, have been described by Satkely
al. as early as [2], [88], with generation of a minimal thermal
impedance matrix at least implicit in compact, lumped elemen
RC network approximation and nodal reduction [84]. Although
the concept of the thermal impedance matrix as a compau
model for electrothermal CAD is well explored, the authors’
formulation is unique in providing constructive details for a RBOTTOMI

minimal compact model, obtained by direct analytical solution ~Reorrom2

of the heat @ffpsmn equation in complex structures. It II§|g. 12. lllustration of the treatment of position varying surface heat flux
also unique in itss-space (as opposed to frequency spacggefficient in the analytical thermal impedance matrix description of electronic
formulation, allowing directly both frequency domain and timeackages.
domain representations (by analytical or numerical Laplace
inversion) based on the same series expressions, without

explicit realization as an RC network. vad

The thermal impedance matrix, which is generated analyti-
cally based on the imposed boundary condition, (7), constitutes
a boundary condition independent compact model, as defined Thermal L
broadly by Lasance [24], [25]. Treatment of the time-depen- 1-Port %
dent case, with description of thermal non linearity, represents  Vbias
a generalization of the time-independent thermal resistance net- 300K v'
works generally defining compact models. The analytically im-
posed ‘radiation’ boundary condition, (7), is sufficiently general Thermal ground (0 K)
to include a wide range of boundary condition sets, including Vs

free and forced convection, heat sink, cold plate and fluid bath,
as well as unbalanced ambient temperatures. Where full layout _ _ o o
details are not available, or deviate from nominally SpeCifie'ag‘ 13. Schematic of the simulated amplifier with thermal circuit [38], [39].

values, a global thermal impedance matrix expression, such as

(45), provides a fully parameterized relation for compact modftace fl_ux coefficientH, in the solution boundary conditions. The
optimization. magnitude of surface flux from each elementary area of the fully

Description of electronic packages typically involves positioﬂ'scret'zed surface can then be determined by external thermal

varying surface flux. Where this is described through positiorﬁS'Stances connecting surface thermal nodesto ambient, Fig. 12,

dependent surface flux coefficients, such 4§ p(z, ), (7). as in standard compact model descriptions [25], [45], [77]. This

the simple, explicit solution of (14) and (15) no longer applieél.my analytical approach, with full surface discretization, also
' Fég)ws immediate treatment of surface flux non linearity [27],

Instead, a large linear system must be solved for the Four 7 H the £ using iust N
expansion coefficients [27]. Similarly, even if surface flux co 1. [771. OWEVer, fne Inaccuracy of using Just one or two sur-
@ce nodes to describe position dependent surface fluxes has been

efficients, H, are constant, the generalized double Fourier s ted. for inst by Eranke 851, Surf di tization in thi
ries of (47) requires solution of corresponding linear syste pted, forinstance by Fran € [85]. Surface discretization in this

Such solutions are computationally expensive, but not tota%shion means that flux is effectively assumed constant_o_vereach
intractable, and have been described by the authors for the ti face element. In .faCt’ even where surface flux coefficint,
independent, double Fourier series treatment of inhomogenegugonStam’ flux varies V_V'th temperature over each surf:_ice ele-
structures [28]. However, in the time dependent case, where ent asH(Q — eam").' Th|§ effect can b_e included exactly in the
peated solution of the large dense linear system would be lly analytical solution with no explicit surface thermal nodes,

quired, this approach is unattractive without reduction of tHe enHo, is constant and is retained explicitly in the radiation

dense matrix manipulation costs. Such a reduction might be p g_undary condition [see (7)].

sible by the use of wavelet methods, e.g., [89, ch. 4].
Thislarge computational problemis easily avoided by adopting

the solutions of Sections I11-B and IlI-F, with flux prescribed on Explicitly coupled electrothermal circuit level simulation

all free subvolume faces, and with no explicit inclusion of subased on the time-dependent thermal impedance matrix ap-

VI. CIRCUIT SIMULATION
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Fig. 14. Drain-source currerdt; («—, solid line) and drain-source voltagé, (dashed line—) for a five-finger power transistor, from transient electrothermal
analysis [38], [39].
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Fig. 15. Drain-source currenf. (<, solid line) and drain-source voltage. (dashed line—) from single-tone HB analysis with fundamental frequency 10
MHz [39].

proach is now illustrated, by combination with a microwavelement models and analysis types in Transim is much simpler
circuit simulator, Transim (NCSU) [37]. than in other circuit simulators such as SPICE. For example,
new element models are coded and incorporated into the
A. Transim (NCSU) program withput modification to the'high-lgvel simylator. The
circuit analysis types currently available in Transim are DC,
Transim has an input format that is similar to the SPICEC, harmonic balance (HB) [90], convolution transient [91],
format with extensions for variables, sweeps, user definedivelet transient [92], and time-marching transient [93]. Some
models, and repetitive simulation. The program providesimsight into the program architecture is given in [37]. Transim,
variety of output data and plots. The addition of new circuihcluding the Leeds thermal impedance matrix model, is free
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Fig. 16. Power dissipation-, solid line) and temperature variation (dashed line), for the five-finger power transistor, from single-tone HB analysis with
fundamental frequency 10 MHz [39].

software distributed under the GNU license. Further detaiise state variable ofthe element. Thenthe thermalimpedance ma-
may be found at the website [94]. trix approach is used to calculate the temperature corresponding
Thermal effects were incorporated into the circuit simulatd® the input power given by the state variable at each iteration
engine by making the thermal model look like an electrical cito solve the nonlinear system. The Kirchhoff transformation is
cuit [2], [95], specifically a multiport network described in ei-implemented within the thermal element, so allowing non linear
ther the time or frequency domain. To ensure separate circuitterface matching between thermal subsystems.
for the electrical and thermal subsystems, a local reference nod&he harmonic balance technique uses a linear combination of
concept was employed [96]. This concept was initially devesinusoids to approximate the periodic and quasiperiodic signals
oped for integrated circuit and EM field analysis of distributetbund in a time-dependent steady-state response. The system of
microwave circuits, and guarantees that there is no mixing e®nlinear differential equations describing the circuit can then be
electric and thermal currents. transformed into a nonlinear algebraic system. Details of the im-
The circuit used in the simulations described below, is shoviementation of HB in Transim are given in [90]. In this analysis
in Fig. 13. The MESFET was modeled using the Curtice-Etbe thermal element is modeled in the frequency domain, (23).
temberg cubic model with symmetric diodes and Capacitanc'élgeelementsofthethermalimpedancematrixareentereddirectly
[97]. The extra terminals in the MESFET schematic represé’ﬁto the modified nodal admittance matrix of the circuit at each
the thermal connections. The thermally distributed power FETequency. The thermal element s then ‘embedded’ in the linear
die was represented by analytically exact thermal one-port nert of the HB formulation and does not increase the size of the
work parameters (with no explicit lumped element RC networkonlinear system of equations. The Kirchhoff transformation for
approximation). the linear thermal system s transferred into the already non linear
Transient analysis of distributed microwave circuits is confictive device model by appropriate state variable definition.
plicated by the inability of frequency independent primitives NO separate thermal simulation is required for the coupled
to model distributed circuits. Generally, the linear part of galculation by the electrothermal simulation engine. All thermal
microwave circuit is described in the frequency domain U’ynpedance matrices are generated by multiport thermal network
network parameters, especially where numerical field anan@ments defined within the electrothermal circuit simulation
is used to model a spatially distributed structure. Inverse Fourfitgine, Transim. Thermalimpedance matrices (in either the time
transformation of these network parameters yields the impule frequency domain) are precomputed from fully analytical
response of the linear circuit. This has been used with convolutirPressions, prior to the coupled electrothermal simulation. They
to achieve transient analysis of distributed circuits. Transim us@dly have to be generated once, for any netlist specified thermal
a state variable approach for the convolution transient [91]. A4bsystem, and can be stored for reuse in later simulations.
algebraic nonlinear system is solved at each time step using a_ .
quasi-Newton method. In this analysis the thermal element%s Simulations

treatedinthetime domain, (25), alongwiththe nonlinearelementsrFig. 14 illustrates transient decay in drain-source curfgnt
in the circuit. The input power to the thermal system is chosenas a result of thermal variation under the influence of a step
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Fig. 17. Power dissipation in the frequency domain for a 50-finger power
transistor, from two-tone HB analysis with fundamental frequency 1 GHz amlg. 18. Temperature variation in the frequency domain for the 50-finger
difference frequency 1 MHz [39]. power transistor, from two-tone HB analysis with fundamental frequency
1 GHz and difference frequency 1 MHz [39].

input in drain-source voltagg,,, for a multifinger power tran-
sistor, calculated using the thermal impedance matrix approach 60
implemented in Transim [38]. One-tone, two-tone, and multi-

tone HB simulations are also presented in Figs. 15 to 19 [39]. 50 B
These simulations used the simplest one-port thermal descrip-

tion of the power FET, returning surface average temperature A4o— B
rise as a function of surface average power dissipation over the Eso— B
active regions of the multigate devic¥-port thermal elements 2

have also been implemented in Transim. After precomputation 20 N

of thermal impedances, the coupled electrothermal simulations
took a few seconds on a 500 MHz Pentium processor. Figs. 15 4,
and 16 illustrate single-tone HB simulation. Such results raise

the question of whether small amplitude thermal oscillations 0
at microwave frequencies could ever act as a source of ‘clas- 0485 049 0495 05 0505 051 0515 052
sical’ thermal noise. Figs. 17 and 18 illustrate two-tone HB, Frequency (GHz)

demonstrating intermodulation distortion due to amplifier non

i i i ; i ig- 19. Current response from multitone HB analysis with 11 fundamentals
linearity. As a result of thermal |nert|§1, thermal response is Se?t requency 0.5 GHz and difference frequency steps of 0.5 MHz [39]. Circles:
to be much greater at the 1 MHz_dlffer_ence frequency than @hout thermal effects. Crosses: with thermal effects.

the~1 GHz fundamental frequencies. Fig. 19 illustrates the po-

tential of the model for prediction of thermal effects on spectrglre shown in Eia. 21. These simulations and measurements
regrowth and ACPR, by means of multitone HB. 9. 2.

of thermal response are for a %QL0 passive grid array,
dissipating 2 W over an areax55 cn?. The simulations were
based on a simple analytical expression for thermal impedance,
To validate the thermal model, a series of time dependeeturning central temperature as a function of the average power
thermal images of a passive grid array at turn-on, representigssipation over the whole area of the central array of heat
tive of one form of spatial power combining architecture, werdissipating resistors [28]. In terms of the corresponding thermal
obtained using a video capture card interfaced between an Infnatwork, the thermal impedance corresponds to a one-port
metrics PM-280 Thermacam and a PC. Commercial softwatermal element with one terminal held at constant ambient
enabled the capture frame rate to be preset and data outpuetaoperature. Laplace inversion was performed numerically
a file in AVI format. A frame rate of one image per secon@67]. Agreement between theory and experiment is good,
was chosen and a total of 350 frames recorded. Frame ratéth just one scalar fitting parameter to determine the ratio
of up to 50 Hz are readily available, allowing measurement of radiative to convective surface flux losses. Adjustment of
thermal time constants in individual MMICs. These showed lathis parameter essentially fixes the asymptotic value of the
eral heat diffusion in related experiments reaching steady stateface temperature rise [71]. Data for FR-4 was taken from
on timescales-1 s. [98] and (along with geometrical parameters) independently
Experimental thermal images for the FR-4 grid array ametermines the thermal rise times. In all cases, heat loss for
plotted in Fig. 20 and corresponding thermal simulatiorthe horizontal, essentially free-standing array is purely by

VII. THERMAL MODEL VALIDATION
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Fig. 20. Time dependent measurements ok11D passive grid array: FR-4,5%5 cn¥, dissipating 2 W. Cooling purely by surface radiation and convection (no
heatsink mounting).
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Fig.21. Time dependent thermal simulationd 6fx 10 passive grid array: FR-4,% 5 cn¥, dissipating 2 W. Cooling purely by surface radiation and convection
(no heatsink mounting).

surface radiation and convection with no heatsink mountinigng with implications for quasioptical array beam formation.
Times to steady state for lateral diffusion are seen to be veFjie observed reduction in lateral diffusion in the simulations
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compared to experiment, is probably due to neglect of timeoving the limitations of all previous fully analytical solutions
known anisotropy of the FR-4 thermal conductivity. This i$or thermal systems.
approximately 3 times larger in-plane than in the perpendicularThis thermal impedance matrix method has been illustrated
direction [99]. This anisotropy is easily treated by simplby generation of thermal responses for test systems in both the
extension of the analytical model [45]. frequency and time domains, and compared against published
results. Agreement was found to be good. The model was val-
idated experimentally for the case of a passive grid array at
turn-on, by high resolution time-dependent thermal imaging.
An original, fully analytical, spectral domain decompositiofsimulations were performed for the horizontal, essentially free-
approach to the solution of the non linear time-dependent h&tanding array, assuming heat loss purely by surface radiation
diffusion equation, in complex 3-D systems, has been describ@fd convection with no heatsink mounting.
It has been illustrated largely for hybrid and monolithic inte- Coupled electrothermal simulation has been demonstrated by
grated circuits, but is equally applicable to packaged compimplementation of the Leeds thermal impedance matrix model
nents, multichip modules, circuit boards and systems. It is badgdd microwave circuit simulator, Transim (NCSU). Simulated
on fully analytical expressions for solution of the heat diffutransient, one-tone, two-tone and multitone HB results were pre-
sion equation in rectangular thermal subvolumes (though otfs&nted for a power MESFET.
regular geometries, such as cylinders, are readily treated). Thi§uture development of the Leeds thermal impedance matrix
fully analytical thermal model is observed to be at legsk model in Transim will include extension of the approach to
faster than corresponding semi-analytical Fourier solutions fagnerate explicitly, heat transfer coefficieft, describing sur-
N-level multilayers, and also treats arbitrarily complex 3-D sy$ace flux losses. It will explore wavelet techniques for reduc-
tems without invoking conventional numerical methods. It rdion of large, denselV x N, matrix eigenvalue and inversion
quires no volume or surface discretization, discretising only tioblems, fromO(N?) operation taD(NiogN) operation pro-
interfaces between thermal subsystems. It is compatible witBsses, with particular application to the economical description
network based EM/electrical circuit simulators via interpret&f inhomogeneous thermal systems. It will include integration
tion as a multiport thermal network, with direct use of esse@f the rapid Leeds Physical Model of MESFETs and HEMTs,
tially exact, generalized multiport network parameters, in eith#to circuit simulator, Transim, to produce fully physical, cou-
frequency space or the time domain. This approach avoids ped electrothermal, circuit level CAD. Finally, it will include
need for explicit, lumped element RC network approximation étevelopment of circuit simulation techniques to treat more fully
model reduction, apart from that inherent in truncation of infthe huge range of time constants inherent in fully coupled elec-
nite series at a finite number of terms sufficient to ensure convéiothermal simulations of large systems.
gence (and in numerical Laplace inversion, when employed). ItThe modeling capability described here will be applied to the
gives rise to minimal boundary condition independent compa®tidy and design of spatial power combining architectures for
models for complex thermal systems in the form of analyticallyse as high power sources at millimeter wavelengths.
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response only at power dissipating and temperature sensitive el- REFERENCES
ements. The method has no power or temperature reStriCtionﬁl] R. C.Joy and E. S. Schlig, “Thermal properties of very fast transistors,”
so is not a small signal approximation. IEEE Trans. Electron Devicesol. ED-17, pp. 586-594, Aug. 1970.
The problem of thermal non linearity, due to temperature de-[2] V. Szekely and K. Tarnay, “Accurate algorithm for temperature calcula-
. . . tion of devices in nonlinear-circuit-analysis progran&léctron. Lett,
pendent thermal diffusivity, has been treated approximately by | g 5 470-472, Dec. 1972.
application of a time variable transformation, in addition to the [3] A. G. Kokkas, “Thermal analysis of multiple-layer structurelEEEE
well known Kirchhoff transformation for treatment of tempera- __ Trans. Electron Devicesol. ED-21, pp. 674-681, Nov. 1974. .
.. . [4] S.Wunsche, C. Clauss, P. Schwarz, and F. Winkler, “Electrothermal cir-
ture dependent thermal conductivity. In contrast with many elec-"" ¢, simulation using simulator couplingiEE Trans. VLSI Systvol.
trothermal CAD models, which neglect thermal non linearity in 5, pp. 277-282, June 1997.
order to generate a linear thermal network, the model presentetp! J S. Wilson, P. E. Raad, and D. C. Price, “Transient adaptive thermal
here can treat thermal non linearity due to temperature depen- ?ﬂqg,?&og of mierowave integrated circuits?toc. 14th IEEE SEMI-
ymp.pp. 1-7, 1998.

dence of material parameters, as well as that due to non linea] V. Szekely, A. Pahi, and M. Rencz, “SUNRED, a new field solving ap-

surface fluxes in large area systems. proach,” inProc. Symp. Design, Test Microfab. MEMS MOENMSI.

A f original th I 'soluti h b di 3680, 1999, pp. 278-288.
range of original thermal solutions have been presente In[7] H. Fukui, “Thermal resistance of GaAs field-effect transistors,Téch.

the form of thermal impedance matrices for electrothermal sub-  Dig. IEEE Int. Electron Devices MeetingVashington, DC, Dec. 1980,
systems. In particular, an original, Green’s function free, ap- __ pp. 118-121. o -

h he double F . . uti f bl . h[8] H. F. Cooke, “Precise technique finds FET thermal resistaridefow.
proach to the double Fourier series solution of problems wit RF, pp. 85-87, Aug. 1986.
arbitrarily distributed volume heat sources and sinks, has beel®] R. Anholt, Electrical and Thermal Characterization of MESFETS,
described. A double Fourier series solution for prescribed flux _ HEMTs, and HBTs Norwood, MA: Artech, 1994.

Il f f a rectanaular volume h | been br nt éO] F. Bonani, G. Ghione, M. Pirola, and C. U. Naldi, “Large-scale, com-
on all races o a ectangular volume has also _ee _p e.se * puter-aided thermal design of power GaAs integrated devices and cir-
These two solutions remove the need for an adiabatic sidewall cuits,” in Proc. IEEE GaAs IC Sympl994, pp. 141-144.
boundary condition. Employing these techniques, constructiod1] J.-M. Dorkel, P. Tounsi, and P. Leturcq, “Three-dimensional thermal

f alobal thermal solutions for complex 3-D tems based on modeling based on the two-port network theory for hybrid or mono-
orgio soluuons plex s-D sys S bas lithic integrated power circuits,lEEE Trans. Comp., Packag., Manu-

the thermal impedance matrix approach, has been outlined, re- fact. Technol. Avol. 19, pp. 501-507, Dec. 1996.

VIIl. CONCLUSION



588

[12] F. Bonani, G. Ghione, M. Pirola, and C. U. Naldi, “Thermal CAD for [35]

(13]

(14]

(15]

[16]

(17]

(18]

(19]

(20]

[21]

(22]

(23]

[24]

(25]

(26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

IEEE TRANSACTIONS ON COMPONENTS AND PACKAGING TECHNOLOGIES, VOL. 24, NO. 4, DECEMBER 2001

power Ill-V devices and MMICs,Proc. SBMO/IEEE MTT-S Internat.
Microw. Optoelectron. Confvol. 1, pp. 352-357, 1995.

S.-S. Lee and D. J. Allstot, “Electrothermal simulation of integrated cir- [36]

cuits,” IEEE J. Solid-State Circuitvol. 28, pp. 1283-1293, Dec. 1993.
A. R. Hefner and D. L. Blackburn, “Thermal component models for
electrothermal network simulationZEE Trans. Comp., Packag., Man-
ufact. Technol. Avol. 17, pp. 413—-424, Sept. 1994.

J. T. Hsu and L. Vu-Quoc, “A rational formulation of thermal circuit
models for electrothermal simulation—Part I: Finite element method,”
IEEE Trans. Circuits Systvol. 43, pp. 721-732, Sept. 1996.

J. S. Brodsky, R. M. Fox, D. T. Zweidinger, and S. Veeraraghavan, “A
physics-based, dynamic thermal impedance model for SOl MOSFETSs,”
IEEE Trans. Electron Devicesol. 44, pp. 957-964, June 1997.

T. Veijola, L. Costa, and M. Valtonen, “An implementation of elec-

trothermal component models in a general purpose circuit simulatiof39]

programme,” inProc. THERMINIC’97 Cannes, France, Sept. 21-23,
1997, pp. 96-100.
V. Rizzoli, A. Lipparini, A. Costanzo, and V. Frontini, “Three-dimen-

sional computation of the thermal parameters of multiple-gate poweif40]

FETs,” inProc. Eur. Microw. Conf.vol. 23, 1993, pp. 698—700.

A. Csendes, V. Szekely, and M. Rencz, “An efficient thermal simula-
tion tool for ICs, microsystem elements and MCMs: Ti8-THER-
MANAL,” Microelectron. J, vol. 29, pp. 241-255, 1998.

M.-N. Sabry, “Static and dynamic thermal modeling of IQgljtroelec-
tron. J, vol. 30, pp. 1085-1091, 1999.

M. Furmanczyk, A. Napieralski, K. Szaniawski, W. Tylman, and A.
Lara, “Reduced electrothermal models for integrated circuitsProc.

1st Int. Conf. Model Simul. Semicond. Microsy$898, pp. 139-144.

J. T. Hsu and L. Vu-Quoc, “A rational formulation of thermal circuit

models for electrothermal simulation—Part II: Model reduction tech- [43]

niques,”|IEEE Trans. Circuits Systvol. 43, pp. 733-744, Sept. 1996.

V. Szekely, “THERMODEL: A tool for compact dynamic thermal model [44]

generation,’'Microelectron. J, vol. 29, pp. 257-267, 1998.

C. J. M. Lasance, “Two benchmarks for the study of compact thermal
modeling phenomena,” iRroc. 6th THERMINIC WorkshgBudapest,
Hungary, Sept. 2000, pp. 235-243.

C. J. M. Lasance, D. den Hertog, and P. Stehouwer, “Creation and
evaluation of compact models for thermal characterization using
dedicated optimization softwareProc. 15th |IEEE SEMI-THERM
Symp, pp. 189-200, 1999.

W. Batty, A. J. Panks, and C. M. Snowden, “Fully coupled electrothermal
simulation of MMICs and MMIC arrays based on a physical model,” in
Proc. IEEE MTT-S Int. Microw. Symp. Djgiol. 2, 1999, pp. 693—-696.

W. Batty, A. J. Panks, R. G. Johnson, and C. M. Snowden, “Elec-
trothermal modeling and measurement for spatial power combining a
millimeter wavelengths,TEEE Trans. Microwave Theory Techol.

47, pp. 2574-2585, Dec. 1999.

——, “Electrothermal modeling of monolithic and hybrid microwave
and millimeter wave ICs,VLSI Designvol. 10, no. 4, pp. 355-389,
2000.

R. G. Johnson, W. Batty, A. J. Panks, and C. M. Snowden, “Fully phys-
ical, coupled electrothermal simulations and measurements of pow
FETs,” in Proc. IEEE MTT-S Int. Microw. Symp. Djgeol. 1, Boston,
MA, June 2000, pp. 461-464.

S. David, W. Batty, A. J. Panks, R. G. Johnson, and C. M. Snowden[51]

“Fully physical coupled electrothermal modeling of transient and
steady-state behavior in microwave semiconductor devicesPrae.

8th Gallium Arsenide Applicat. Symp. (GAAS 20@%ris, France, Oct.
2000.

——, “Electrothermal modeling of microwave transistors and MMICs
for optimized transient and steady-state performance,”Pioc.

8th IEEE Int. Symp. Electron. Dev. Microw. Optoelectron. Appl.
(EDMO’00), Glasgow, U.K., Nov. 2000.

——, “Thermal transients in microwave active devices and their influ-
ence on intermodulation distortion,” Proc. IEEE MTT-S Int. Microw.
Symp. Dig.vol. 1, Tucson, AZ, May 2001, pp. 431-434.

C. M. Snowden and R. R. Pantoja, “Quasitwo-dimensional MESFET
simulations for CAD,” |IEEE Trans. Electron Devicesvol. 36, pp.
1564-1574, Dec. 1989.

C. G. Morton, J. S. Atherton, C. M. Snowden, R. D. Pollard, and M. [56]

J. Howes, “A large-signal physical HEMT model,” IEEE MTT-S Int.
Microw. Symp. Dig.1996, pp. 1759-1762.

(37]

(38]

[41]

[42]

[45]

[46]

[471
(48]

[49]

[52]

(53]

(54]

[55]

R. G. Johnson, C. M. Snowden, and R. D. Pollard, “A physics-based
electrothermal model for microwave and millimeter wave HEMTSs,” in
IEEE MTT-S Int. Microw. Symp. Digvol. 3, 1997, pp. 1485-1488.

L. Albasha, R. G. Johnson, C. M. Snowden, and R. D. Pollard, “An
investigation of breakdown in power HEMTs and MESFETSs utilising an
advanced temperature-dependent physical modeRrae. IEEE 24th

Int. Symp. Compound Semicon8ian Diego, CA, 1997, pp. 471-474.

C. E. Christoffersen, U. A. Mughal, and M. B. Steer, “Object oriented
microwave circuit simulation,Int. J. RF Microw. CAEvol. 10, no. 3,

pp. 164-182, 2000.

W. Batty, C. E. Christoffersen, S. David, A. J. Panks, R. G. Johnson, C.
M. Snowden, and M. B. Steer, “Steady-state and transient electrothermal
simulation of power devices and circuits based on a fully physical
thermal model,” inProc. 6th Int. Workshop Thermal Investigations ICs
Syst. (THERMINIC’0Q)Budapest, Hungary, Sept. 2000, pp. 125-130.
——, “Predictive microwave device design by coupled electrothermal
simulation based on a fully physical thermal model,Piroc. 8th IEEE

Int. Symp. Electron. Dev. Microw. Optoelectron. Appl. (EDMO;00)
Glasgow, Scotland, U.K., Nov. 2000.

——, “Fully physical time-dependent compact thermal modeling of
complex non linear 3-D systems for device and circuit level elec-
trothermal CAD,” inProc. 17th Annu. IEEE Semicond. Thermal Meas.
Manag. Symp. (SemiTherm XVIBan Jose, CA, Mar. 2001, pp. 71-84.
——, “Global electrothermal CAD of complex non linear 3-d systems
based on a fully physical time-dependent compact thermal model,” in
Proc. IEEE MTT-S Int. Microw. Symp. Djgrol. 2, Tucson, AZ, May
2001, pp. 667-670.

D. Gottlieb and S. A. Orszag, “Numerical analysis of spectral methods:
Theory and applications,” iRroc. CBMS-NSF Reg. Conf. Series Appl.
Math. Philadelphia, PA, 1977.

J. V. Beck, K. Cole, A. Haji-Sheikh, and B. Litkoulileat Conduction
Using Green’s Functions Washington, DC: Hemisphere, 1992.

G. Digele, S. Lindenkreuz, and E. Kasper, “Fully coupled dynamic elec-
trothermal simulation,"EEE Trans. VLSI Systvol. 5, pp. 250-257,
June 1997.

G. N. Ellison, “Thermal analysis of microelectric packages and printed
circuit boards using an analytic solution to the heat conduction equa-
tion,” Adv. Eng. Softwarevol. 22, no. 2, pp. 99-111, 1995.

M. B. Steer, J. F. Harvey, J. W. Mink, M. N. Abdulla, C. E. Christof-
fersen, H. M. Gutierrez, P. L. Heron, C. W. Hicks, A. I. Khalil, U. A.
Mughal, S. Nakazawa, T. W. Nuteson, J. Patwardhan, S. G. Skaggs, M.
A. Summers, S. Wang, and A. B. Yakovlev, “Global modeling of spa-
tially distributed microwave and millimeter-wave systemEEE Trans.
Microw. Theory Techvol. 47, pp. 830-839, 1999.

K. C. Gupta, “Emerging trends in millimeter-wave CADEEE Trans.
Microwave Theory Techvol. 46, pp. 747-755, 1998.

V. Szekely, “Identification of RC networks by deconvolution: Chances
and limits,”IEEE Trans. Circuits Systvol. 45, pp. 244-258, Mar. 1998.

P. E. Raad, J. S. Wilson, and D. C. Price, “Adaptive modeling of the tran-
sients of submicron integrated circuit$EE Trans. Comp., Packag.,
Manufact. Technol. Avol. 21, pp. 412-417, Sept. 1998.

0] W. Batty and C. M. Snowden, “Electrothermal device and circuit sim-

ulation with thermal non linearity due to temperature dependent diffu-
sivity,” Electron. Lett, vol. 36, pp. 1966-1968, Dec. 2000.

K. Krabbenhoft and L. Damkilde, Comment: electrothermal device and
circuit simulation with thermal non linearity due to temperature depen-
dent diffusivity, inElectron. Lett to be published.

W. Batty, S. David, and C. M. Snowden, Reply to comment on elec-
trothermal device and circuit simulation with thermal non linearity due
to temperature dependent diffusivity, Eectron. Lett to be published.

W. B. Joyce, “Thermal resistance of heat sinks with temperature-depen-
dent conductivity,"Solid-State Electronvol. 18, pp. 321-322, 1975.

P. W. Webb and I. A. D. Russell, “Thermal simulation of transients in
microwave devicesProc. Inst. Elect. Engvol. 138, no. 3, pp. 329-334,
1991.

L.L.Liou, J. L. Ebel,and C. I. Huang, “Thermal effects on the character-
istics of AlGaAs/GaAs heterojunction bipolar transistors using two-di-
mensional numerical simulationTrans. Electron Devicesol. 40, pp.
35-43, Jan. 1993.

V. Kadambi and B. Dorri, “Solution of thermal problems with non-
linear material properties by the boundary integral method Prioc.
BETECH'85 C. A. Brebbia, Ed., Berlin, Germany, 1985, pp. 151-161.



BATTY et al: ELECTROTHERMAL CAD OF POWER DEVICES AND CIRCUITS

[57]

(58]

[59]

(60]

(61]
(62]

(63]

(64]

(65]

(66]

[67]

[68]

(69]

[70]

[71]

[72]
[73]

[74]
[75]

[76]

[77]

[78]

[79]

(80]

(81]

L. C. Wrobel and C. A. Brebbia, “The dual reciprocity boundary el- [82]
ement formulation for nonlinear diffusion problemsZomput. Meth.
Appl. Mech. Eng.vol. 65, pp. 147-164, 1987.

Y. S. Touloukian, Ed.Thermophysical Properties of Matteser. The
TPRC Data Series. West Lafayette, IN: IFI/Plenum, Thermophysical
Properties Research Center, Purdue Univ., 1973, vol. 10.

R. M. S. da Gama, “A linear scheme for simulating conduction heat
transfer problems with nonlinear boundary conditiondgpl. Math.
Modeling vol. 21, no. 27, pp. 447-454, 1997. [84]
V. Szekely, A. Poppe, A. Pahi, A. Csendes, G. Hajas, and M. Rencz,
“Electrothermal and logi-thermal simulation of VLSI designtfEE
Trans. VLSI Systvol. 5, pp. 258-269, June 1997.

A. D. Wunsch,Complex Variables with Applicationnd ed. New
York: Addison-Wesley, 1994, ch. 6.

H. Dym and H. P. McKearfourier Series and Integrals New York:
Academic, 1972.

W. Batty, S. David, A. J. Panks, R. G. Johnson, and C. M. Snowden,
“Series acceleration of a compact thermal model and fast non linear opl87]
timization of electrothermal device design,”Roc. 7th Int. Workshop
Thermal Investigations ICs Syst. (THERMINIC'ORaris, France, Sept.

2001, pp. 11-16.

M. N. Sabry, W. Fikry, Kh. A. Salam, M. M. Awad, and A. I. Nasser, “A [88]
lumped transient thermal model for self-heating in MOSFETsPrioc.

6th Int. Workshop Thermal Investigations ICs Syst. (THERMINIG'00)
Budapest, Hungary, Sept. 2000, pp. 137-144. [
V. Szekely, A. Poppe, and M. Rencz, “Algorithmic extension of thermal
field solvers: Time constant analysi€foc. 16th IEEE SEMI-THERM
Symp, pp. 99-106, 2000.

F. Oberhettinger and L. Badiifables of Laplace Transforms New
York: Springer-Verlag, 1973.

H. Stehfest, “Algorithm 368 numerical inversion of Laplace transforms
[D5],” Commun. ACMvol. 13, no. 1, pp. 47-49 and 624, 1970.

P. Satravaha and S. Zhu, “An application of the LTDRM to transient [92]
diffusion problems with nonlinear material properties and nonlinear
boundary conditions,”Appl. Math. Comput.vol. 87, no. 2-3, pp.
127-160, 1997.

K. Singhal and J. Vlach, “Computation of time domain response by nu-
merical inversion of the Laplace transfornd,”Franklin Inst, vol. 299,

no. 2, pp. 109-126, 1975.

R. Griffith and M. S. Nakhla, “Mixed frequency/time domain analysis
of nonlinear circuits, IEEE Trans. Computer-Aided Desigrol. 11, pp.  [95
1032-1043, Aug. 1992.

W. Batty, A. J. Panks, S. David, R. G. Johnson, and C. M. Snowden,
“Electrothermal modeling and measurement of thermal time constants
and natural convection in MMIC grid arrays for spatial power com- [96
bining,” in IEEE MTT-S Int. Microw. Symp. Digvol. 3, 2000, pp.
1937-1940.

R. Karel, Survey of Applicable MathematicsLondon, U.K.: lliffe,
1969.

H. S. Carslaw and J. C. Jaeg€onduction of Heat in Solids2nd

ed. Oxford, U.K.: Oxford Univ. Press, 1959.

M. N. Ozisik, Heat Conduction New York: Wiley, 1980.

M. N. Sabry, “An integral method for studying the onset of natural con-
vection,”Eur. J. Mech., B, Fluidsvol. 12, no. 3, pp. 337-365, 1993.

V. Szekely, M. Rencz, and B. Courtois, “Simulation, testing and mod-
eling of the thermal behavior and electrothermal interactions in ICs,
MCMs and PWBs,” inProc. SW Symp. Mixed-Signal Desid®899, pp.
168-173.

W. Batty, A. J. Panks, C. E. Christoffersen, S. David, R. G. Johnso
C. M. Snowden, and M. B. Steer, “Fully analytical compact therme
model of complex electronic power devices and packages in coupl
electrothermal CAD,” irProc. 7th Int. Workshop Thermal Investigations
ICs Syst. (THERMINIC'01)Paris, France, Sept. 2001, pp. 99-102.

F. Bonani and G. Ghione, “On the application of the Kirchhoff transfor
mation to the steady-state thermal analysis of semiconductor devic
with temperature-dependent and piecewise inhomogeneous theri
conductivity,” Solid-State Electron.vol. 38, no. 7, pp. 1409-1412,
1995.

(83]

(85]

(86]

[90]

[91]

[93]

[94]

[97]
[98]
[99]

589

C. M. Snowden, “Large-signal microwave characterization of Al-
GaAs/GaAs HBTs based on a physics-based electrothermal model,”
IEEE Trans. Microwave Theory Teclol. 45, pp. 58-71, Jan. 1997.

F. Bonani, G. Ghione, M. Pirola, and C. U. Naldi, “A large-scale,
self-consistent thermal simulator for the layout optimization of power
I1I-V field-effect and bipolar transistors,” irfProc. |IEEE Eur. Gal-
lium—Arsenide Related IlI-V Compounds Appl. Symp. (GaAs1®BH4,

pp. 411-414.

M. Rencz, V. Szekely, A. Pahi, and A. Poppe, “An alternative method
for electrothermal circuit simulation,” iRroc. 1999 SW Symp. Mixed-
Signal Design1999, pp. 168-173.

T. Franke and U. Froehler, “Thermal modeling of semiconductor
packages,” irProc. 6th Int. Workshop Thermal Investigations ICs Syst.
(THERMINIC’00) Budapest, Hungary, Sept. 2000, pp. 193-198.

L. Codecasa and M. Santomauro, “A new approach to model self-heating
of electric circuits through thermal networks, ®moc. Eur. Conf. Circuit
Theory Designvol. 1, 1999, pp. 563-566.

L. Codecasa, D. D’Amore, and P. Maffezzoni, “Electrothermal networks
for the analysis of power devices,” Proc. 6th Int. Workshop Thermal
Investigations ICs Syst. (THERMINIC'Q@pudapest, Hungary, Sept.
2000, pp. 131-136.

V. Szekely, “Accurate calculation of device heat dynamics: A special
feature of the TRANS-TRAN circuit-analysis programmé&lectron.
Lett, vol. 9, pp. 132—-134, June 1973.

89] G. Erlebacher, M. Y. Hussaini, and L. M. Jameson, Eb¢ayvelets:

Theory and Applications Oxford, U.K.: Oxford Univ. Press, 1996.

C. E. Christoffersen, M. B. Steer, and M. A. Summers, “Harmonic bal-
ance analysis for systems with circuit-field interactions, |HEE Int.
Microw. Symp. Dig.June 1998, pp. 1131-1134.

C. E. Christoffersen, M. Ozkar, M. B. Steer, M. G. Case, and M. Rod-
well, “State-variable-based transient analysis using convoluti&tE
Trans. Microw. Theory Techvol. 47, pp. 882—-889, June 1999.

C. E. Christoffersen and M. B. Steer, “State-variable-based transient cir-
cuit simulation using wavelets|EEE Microwave Wireless Components
Lett, vol. 11, pp. 1623, Apr. 2001.

C. E. Christoffersen, “Global Modeling of Nonlinear Microwave
Circuits,” Ph.D. dissertation, North Carolina State Univ., Raleigh, Dec.
2000.

Transim Software
http://www.ece.ncsu.edu/erl/transim/

[Online]. Available:

] H. Gutierrez, C. E. Christoffersen, and M. B. Steer, “An integrated envi-

ronment for the simulation of electrical, thermal and electromagnetic in-
teractions in high-performance integrated circuirdc. IEEE 6th Top-
ical Meeting Elect. Perform. Electron. Packaept. 1999.

] C. E. Christoffersen and M. B. Steer, “Implementation of the local refer-

ence concept for spatially distributed circuitit. J. RF Microw. Com-
puter-Aided Eng.vol. 9, no. 5, 1999.

Microwave Harmonica Elements Librgrg994.

Thermal Wizard [Online]. Available: http://www.mayahtt.com/tmwiz

F. Sarvar, N. J. Poole, and P. A. Witting, “PCB glass-fiber lam-
inates—Thermal-conductivity measurements and their effect on
simulation,”J. Electron. Mater.vol. 19, no. 12, pp. 1345-1350, 1990.

William Batty (M’'93) was born in England in 1963.
He received the B.A. degree in physics from Oxford
University, Oxford, U.K., in 1985 and the Ph.D.
degree from Surrey University, Guildford, U.K., in
1990. He studied part Ill of the mathematics tripos
at Cambridge University from 1985 to 1986 before
beginning his doctoral work.

After a year working as a Senior Scientific Officer
at the Hadley Centre for Climate Research, Meteoro-
logical Office (1990-1991), he worked as a Research
Fellow at the University of York, U.K. (1991-1996)

and at the University of Wales, Bangor, U.K. (1996-1997). Since 1997, he has

P. W. Webb, “Thermal modeling of power gallium arsenide microwavbeen with the Institute of Microwaves and Photonics, the University of Leeds,

integrated circuits,”|IEEE Trans. Electron. Devicesvol. 40, pp.
867-877, May 1993.

U.K., where he is a Senior Research Fellow. His research has spanned the whole
frequency spectrum from optoelectronic quantum well device modeling, partic-

P. W. Webb and I. A. D. Russell, “Thermal resistance of gallium-amlarly bipolar diode lasers and quantum-confined Stark effect optical modula-

senide field-effect transistorsProc. Inst. Elect. Eng.vol. 136, no. 5,
pp. 229-234, 1989.

tors, through THz unipolar intersubband lasers, to his current work in the area
of spatial power combining at millimeter wavelengths. He is currently modeling

P. W. Webb, “Thermal design of gallium arsenide MESFETSs for mielectrothermal effects in power FETs, MMICs, and MMIC grid arrays and also
crowave power amplifiers,Proc. Inst. Elect. Engvol. 144, no. 1, pp. has research interests in hole-based intersubband lasers for far-infrared emis-

45-50, 1997. sion.



IEEE TRANSACTIONS ON COMPONENTS AND PACKAGING TECHNOLOGIES, VOL. 24, NO. 4, DECEMBER 2001

Carlos E. Christoffersen (M'00) was born in Santa
Fe, Argentina, in 1968. He received the M.S. degre:
in electronic engineering from the National Univer-
sity of Rosario, Argentina, in 1993 and the M.S. de-
gree and Ph.D. degree in electrical engineering fror
North Carolina State University (NCSU), Raleigh, in
1998 and 2000, respectively.

From 1991 to June 1996, he was a Member o
Research Staff, Laboratory of Microelectronics,
National University of Rosario. From 1993 to
1995, he was a Research Fellow of the National

Christopher M. Snowden (F'96) received the B.Sc.
(with honors), M.Sc., and Ph.D. degrees from the
University of Leeds, U.K.

He is currently Joint Chief Executive of Filtronic
plc and Professor of microwave engineering at the
University of Leeds. After graduating in 1977, he
worked as an Applications Engineer for Mullard
near London, U.K. (now part of Philips). His
Ph.D. studies were later conducted in association
with Racal-MESL and were concerned with the
large-signal characterization and design of MESFET

Research Council of Argentina (CONICET). Since 1996, he has been witticrowave oscillators. He has held the personal Chair of Microwave Engi-
the Department of Electrical and Computer Engineering, NCSU. His researgkering at the University of Leeds, since 1992. From 1995 to 1998, he was
interests include computer aided analysis of circuits and analog, RF, afédad of the Department and subsequently Head of the School of Electronic and
microwave circuit design. Electrical Engineering. He was the first Director of the Institute of Microwaves
Dr. Christoffersen received the Fulbright Scholarship in 1993. and Photonics located in the School. He was a Consultant to M/A-COM Inc.,

Andrew J. Panks (M'01) received the B.Eng.
and Ph.D. degrees in electronic and electric
engineering from The University of Leeds, U.K., in
1993 and 1997, respectively.

Since 1997, he has been a Research Fellov
initially with the the Microwave and Terahertz Tech-
nology Group, and more recently with the Institute
of Microwaves and Photonics, Leeds University.
His current recearch interests include large signe
modeling of nonlinear circuits, thermal modeling
and measurements of passive and active microwa

from 1989 to 1998. In 1998, he joined Filtronic as Director of Technology.
His main personal research interests include semiconductor device and circuit
modeling (CAD), microwave, millimeter-wave and optoelectronic circuit
technology, compound semiconductor device modeling, microwave, terahertz
and optical nonlinear subsystem design, and advanced semiconductor devices.
He has written eight books, over 250 refereed journal and conference papers,
and many other articles.

Dr. Snowden received the 1999 Microwave Prize of the IEEE Microwave
Theory and Techniques Society. He is a Fellow of the Royal Academy of En-
gineering and the of the IEE. He is currently a Distinguished Lecturer for the
IEEE Electron Devices Society.

Michael B. Steer(F'99) received the B.E. and Ph.D.
degrees in electrical engineering from the University
of Queensland, Brisbane, Australia, in 1976 and
1983, respectively.

He is Professor of electrical and computer
engineering at North Carolina State University,
Raleigh. His research work has been closely tied to
solving fundamental problems in modeling and im-
plementing RF and microwave circuits and systems.

Up to 1996, he was the founding librarian of the IBIS
consortium which provides a forum for developing
behavioral models. A converter written by his group to automatically develop
behavioral models from a Spice netlist (spice2ibis) is being used throughout the
digital design community. Currently, one of his interests is in global modeling
of the physical layer of RF, microwave, and millimeterwave electronic systems
in support of multifunctional, adaptive RF front ends. He is doing research
in technology integration as well as signal integrity and circuit modeling
in general. In 1999 and 2000, he was Professor in the School of Electronic
and Electrical Engineering, University of Leeds, where he held the Chair
in Microwave and Millimeterwave Electronics. He was also Director of the
Institute of Microwaves and Photonics, University of Leeds. He has organized
many workshops and taught many short courses on signal integrity, wireless,
d and RF design. He has authored or co-authored more than 200 refereed papers
n?.nd book chapters on topics related to high speed digital design and to RF and
microwave design methodology. He is co-author of the bBokndations of

) . Interconnect and Microstrip DesigfiNew York: Wiley, 2000).
gltijrqsgu;gtrfzelnzgt.l?t.edoe}glilﬁirécvae\l/iztrgg(‘jelgT\zltoTic():i Dr. Steer received thg Presidential Young Investigator (USA) awar_d, in 1987,
(IMP), University of Leeds, U.K and the Bronze Medallion from U.S. Army Research for “Outstanding Scien-

' T tific Accomplishment” in 1994 and 1996, respectively. He has been cited “for
contributions to the computer aided engineering of nonlinear microwave and
millimeter-wave circuits” by the IEEE. He is active in the Microwave Theory
and Techniques (MTT) Society. In 1997, he was Secretary of the Society and
from 1998 to 2000 was an Elected Member of its AdCom.

circuits, and physical device modeling of MESFETs, HEMTSs, and HBTSs.

Stéphane Davidwas born in France. He receive
the B.Eng. and M.Sc. degrees in electronics fro
the University of Huddersfield, U.K. and is currently




