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Abstract— A general reduced state variable circuit for-
mulation is developed and implemented using wavelets
in a circuit simulator for the first time. The same for-
mulation can be used with non-wavelet transformations
or to implement implicit time marching methods. This
formulation is particularly well suited to modeling RF
and microwave circuits. This paper reviews the formula-
tion and presents the simulation of a nonlinear transmis-
sion line and a 2 by 2 quasi-optical grid amplifier using
wavelets and a time marching method.

I. Introduction

The most widespread method of nonlinear circuit
analysis is time-domain analysis (also called transient
analysis) using programs like Spice. Such programs
use numerical integration to convert a nonlinear system
of coupled algebraic and ordinary differential equations
(ODEs) into a nonlinear algebraic system of equations.
The number of nonlinear unknowns is approximately
equal to the number of nodes in the circuit.

This paper outlines a method (originally developed
to be used with wavelet transformations) of analyzing
circuits with the minimum number of unknowns and er-
ror functions starting from a modified nodal admittance
matrix (MNAM) of the linear part of the circuit. This
approach has several advantages. The resulting system
of nonlinear equations is generally much smaller than
the nonlinear system resulting from applying conven-
tional formulations. Also the flexibility of the modified
nodal admittance matrix is kept as well as the robust-
ness provided by the state variable approach [6]. This
formulation is used to derive circuit transient analyses
based on wavelets and the backward Euler numerical
integration.

Wavelet basis functions are ideally suited to expand-
ing a response with an overall coarse response but fine
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behavior in some regions as higher order and more lo-
calized basis functions can be concentrated on the re-
gions where the response varies rapidly. Multiresolution
analysis has been used with a wide variety of modeling
problems including signal processing and electromag-
netics. It is important to know where wavelet analysis
is applicable as this guides future development. In cir-
cuits, voltage and current changes vary with time and
location (e.g. node index) and so they can be modeled
with few state variables by using variable resolution. In
contrast, in conventional transient simulation the same
fine time step is used at every node. Zhou et al. pre-
sented the pseudo-wavelet collocation method for sim-
ple networks in [3] and [4]. The state-variable-based
wavelet transient analysis used in this work was pre-
sented in Reference [1]. This circuit analysis technique
was implemented in an object-oriented circuit simulator
(Transim, [5]).

Section II reviews and expands the formulation of the
transient analysis originally presented in [1]. It is shown
that a state variable transient analysis using the back-
ward Euler method can also be derived by just replac-
ing two matrices in the wavelet formulation. Section III
presents the simulation of a nonlinear transmission line
(NLTL) and a 2 by 2 quasi-optical grid amplifier us-
ing both analysis techniques. The results are discussed.
Finally, the conclusions are given in Section IV.

II. Formulation of the Transient Analysis

We begin by reviewing the error function formulation
presented in [1]. Wavelets are introduced by considering
the function g(t) defined in I. The following square
matrices WJ and W′

J can be defined:

g = WJ ĝJ , g′ = W′
J ĝJ (1)

where g, g′ are vectors whose elements are the function
and derivatives values, respectively, at the collocation
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points and ĝJ is the vector of the corresponding coeffi-
cients. J is the maximum subspace level being consid-
ered.

The final linear circuit equation from [1] is

MJ ûJ = sf,J + T1,J iNL,J(x̂J ) (2)

where ûJ is the vector of wavelet coefficients of the
nodal voltages and selected currents, x̂J is the vec-
tor with wavelet coefficients of the state variables of
the nonlinear devices, sf,J is the vector of independent
sources, T1,J is defined in [1] and iNL,J(x̂J ) is the vec-
tor of currents at the nonlinear device ports. The error
function F(x̂J ) is defined as

F(x̂J ) = T2,J ûJ − vNL,J(x̂J ) = 0

where T2,J is a matrix defined in [1] and vNL,J(x̂J )
is the vector of voltages at the nonlinear device ports.
Combining the preceding with Eq. (2),

F(x̂J ) = T2,JM−1
J sf,J

+T2,JM−1
J T1,J iNL,J(x̂J )− vNL,J(x̂J )

which can be expressed as

F(x̂J ) = ssv,J + Msv,J iNL,J(x̂J )−vNL,J(x̂J ) = 0 (3)

Here ssv,J is the compressed source vector (the initial
conditions of the entire linear subcircuit are embedded
in it) and Msv,J is the compressed impedance matrix.
They are defined as

ssv,J = T2,JM−1
J sf,J

Msv,J = T2,JM−1
J T1,J

The system of nonlinear algebraic equations (3) is solved
using globally convergent quasi-Newton methods. The
size of Msv,J is (m− 1)ns × (m− 1)ns, where m is the
number of collocation points. If the time interval to be
simulated requires many collocation points, the nonlin-
ear system to be solved becomes very large. One way
to overcome this problem is to divide the total simu-
lation time interval into smaller windows. Then solve
one time window at a time. The final time sample at
each window becomes the initial condition for the next
and the method is applied for all windows. The ap-
proach becomes thus an hybrid between collocation and
time marching methods. There are two main issues in
solving the nonlinear system. Obtaining a good initial
guess and reducing the number of unknowns. If the cir-
cuit being simulated has a periodic excitation, the time

window size can be chosen equal to the period. Then
the solution for a given time window can be used as a
good guess for the solution at the next window. Un-
fortunately, for some circuits this would imply a time
window too large to be to be handled efficiently. An
adaptive scheme could be used to somewhat reduce the
number of unknowns, but this increases the implemen-
tation complexity and only attenuates the problem of
having to solve for many unknowns at a time.

This wavelet transient formulation (Eq. (3) could
easily be modified to produce a formulation to find the
periodic steady-state of a circuit. The only modifica-
tion is that the equations relating the initial conditions
are replaced by boundary condition equations. Another
alternative formulation is to express the nonlinear er-
ror function in terms of the wavelet coefficients of the
port voltages. This yields a similar error function where
vNL,J(x̂J ) must be transformed from the physical to the
coefficient space (using W−1

J ). At first, this approach
would seem to be less efficient, since the resulting com-
pressed matrix is not sparse in general and it requires
the implementation of ‘inverse’ transformation. Never-
theless, this approach would allow the reduction of the
linear system size if some coefficients of the port volt-
ages are known to be zero, which can not be done in the
physical space. These alternatives will not be developed
here.

A. Initial Conditions in the State Variables

For each state variable, the wavelet coefficients are
not completely independent. There is a constraint im-
posed by the initial condition. Therefore, the first trans-
form coefficient is excluded from the unknowns. Given
the initial condition x0 and the remaining coefficients
x̂, it is possible to obtain the rest of the samples x as
follows

x = (Wr −
wc0

w0,0
wr0)x̂ +

wc0

w0,0
x0 (4)

where Wr is equal to W reduced by the first row and
column, wc0 and wr0 are the first column and row of
W, respectively, excluding the first element w0,0.

A similar expression can be obtained for x′, namely

x′ = (W′
r −

w′c0
w0,0

wr0)x̂ +
w′c0
w0,0

x0 (5)

Higher order derivatives were not used in the present
work.
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B. Other Transformation Types

The formulation in Eq. (3) is quite general, and can
be applied not only with wavelet transformations, but
with other transformations as well. In particular, some
implicit time marching methods can be implemented.
As an example, when using the following set of matrices,

W =

[
1 0
1 1

]
(6)

and

W′ =

[
0 1
0 1

]
(7)

the formulation uses the backward Euler method. In
this case the linear system to be solved is twice as large
as the original MNAM (because the transformations
matrices are 2 × 2) and the size of the nonlinear sys-
tem resulting from Eq. (3) is equal to the number of
state variables. Multi-step time-marching schemes can
also be implemented by choosing the adequate W and
W′ and introducing some minor variations in the for-
mulation. However, it is in general not practical to use
the formulation of Eq. (3) in those cases because sim-
pler and more efficient formulations exist as it will be
shown elsewhere.

For comparison purposes, the wavelet transient anal-
ysis in Transim was modified to use W and W′ as de-
fined in Equations (6) and (7), respectively. The result-
ing analysis is the backward Euler state variable tran-
sient used to perform the simulations presented in the
following section.

III. Simulation Results

A. Nonlinear Transmission Line

Consider the modeling of the 47-section nonlinear
transmission line described in [1]. Since the method
considered here is a time domain method, the trans-
mission lines are modeled using RLGC sections. The
attenuation factor in the following simulations is thus
frequency-independent.

Figure 1 compare the simulated voltage of the diode
near the load using wavelet transient, backward Eu-
ler and Spice3f5. The small difference in the response
between wavelets and Spice is due to slightly differ-
ent treatments of the diode model in Transim and
Spice. The difference between the solution obtained us-
ing wavelets and backward Euler integration is due to
the numerical attenuation introduced by the integration
method. A large number of time windows was needed

in the wavelet simulation to reduce the number of un-
knowns to be solved simultaneously. Since the results
using wavelets and Spice are very close, we can conclude
the wavelet analysis (at least in this simulation) behaves
like a time-marching scheme, possibly due to fact that
the circuit was analyzed using small time intervals at a
time.
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Fig. 1. Comparison of the voltage of the diode close to the load
(diode 47) of the nonlinear transmission line.

B. Grid Amplifier

Transim is used in this section to model the nonlin-
ear performance of a 2 by 2 quasi-optical grid amplifier
system described in Reference [7]. The grid structure
was modeled using a MOM field simulator [8] to gen-
erate the multi-port admittance matrix and excitation
currents for the grid structure. Further processing is re-
quired to use this data in a time domain analysis such as
wavelet or backward Euler transients using a Pole-Zero
approximation.

The transient simulation of the grid amplifier us-
ing convolution was presented in Reference [2]. Even
though it is time consuming, the simulation of this ini-
tial power-on transient is essential to ensure initial sta-
bility. The initial transient is given in Fig. 2. The mi-
crowave excitation is applied at t = 2 ns. Note the two
different convolution results. If the convolution analysis
is performed using the pole-zero model of the grid, the
agreement with the other transient simulations is much
better. We can conclude that the pole zero modeling
must be improved.

A comparison of the run times for this and other sim-
ulations of the grid amplifier is given in Table I. Con-
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TABLE I

Comparison times of the different simulation methods

Description Convolution Wavelets Backward Euler
(h:m:s) (h:m:s) (h:m:s)

Bias-on (12 µs) 16:15:00 00:00:37 00:00:20
Bias + Excitation (4 µs) - 18:24:00 01:55:00
Bias + Excitation (4 ns) 00:09:34 00:04:40 00:00:10
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Fig. 2. Transient response at one of the MMIC output

volution transient is always the slowest method. Nev-
ertheless, this method can potentially achieve the best
accuracy. Transient based on wavelets is faster than
convolution, but it is always slower than backward Eu-
ler transient. For very long transient simulations, the
only viable alternative to perform the transient analy-
sis seems to be the approximation of the grid network
parameters using rational functions.

IV. Conclusions

Transim is, to the knowledge of the authors, the most
advanced wavelet-based nonlinear circuit simulator de-
veloped to date. The simulation examples presented
here are the most complex circuits ever simulated us-
ing wavelets. The simulation results show that time
marching transient is faster than wavelet transient with
fixed resolution. There are clear tradeoffs involved. In
wavelet transient analysis the error is minimized over a
time interval and there are many more unknowns than
when the error is minimized at a single time point. How-
ever since error is minimized over a range and because
of the O(h4) convergence rate of the wavelet basis used,

where h is the time step, there are generally fewer time
points than required in a Spice-like analysis. Our fi-
nal conclusion is that circuit simulation techniques us-
ing wavelets still require more research before they can
achieve the same efficiency as time marching techniques.
In particular the implementation of dynamic variation
of resolution including variable resolution at different
circuit nodes is required.

References

[1] C. E. Christoffersen and M. B. Steer, “State-variable mi-
crowave circuit simulation using wavelets,” submitted to
the IEEE Microwave and Guided Waves Letters, Septem-
ber 2000.

[2] C. E. Christoffersen, S. Nakazawa, M. A. Summers, and M.
B. Steer, “Transient analysis of a spatial power combining
amplifier”, 1999 IEEE MTT-S Int. Microwave Symp. Dig.,
June 1999, pp. 791-794.

[3] D. Zhou, N. Chen and W. Cai, “A fast wavelet colloca-
tion method for high-speed VLSI circuit simulation,” 1995
IEEE/ACM ICCAD Symp. Digest, pp 115-122, 1995.

[4] D. Zhou, X. Li, W. Zhang and W. Cai, “Nonlinear circuit
simulation based on adaptive wavelet method,” 1997 ISCAS
Symp. Digest, Vol. 3, pp. 1720-1723, 1997.

[5] C. E. Christoffersen, U. A. Mughal and M. B. Steer, “Object
Oriented Microwave Circuit Simulation,” Int. J. of RF and
Microwave Computer-Aided Engineering, Vol. 10, Issue 3,
2000, pp. 164–182.

[6] V. Rizzoli, A. Lipparini, A. Costanzo, F. Mastri, C. Ceccetti,
A. Neri and D. Masotti, State-of-the-Art Harmonic-Balance
Simulation of Forced Nonlinear Microwave Circuits by the
Piecewise Technique, IEEE Trans. on Microwave Theory
and Techniques, Vol. 40, No. 1, Jan 1992.

[7] M. A. Summers, C. E. Christoffersen, A. I. Khalil, S.
Nakazawa, T. W. Nuteson, M. B. Steer and J. W. Mink,
“An integrated electromagnetic and nonlinear circuit sim-
ulation environment for spatial power combining systems,”
1998 IEEE MTT-S Int. Microwave Symp. Dig., June 1998,
pp. 1473-1476.

[8] T. W. Nuteson, H. Hwang, M. B. Steer, K. Naishadham,
J.W.Mink, and J. Harvey, “Analysis of finite grid struc-
tures with lenses in quasi-optical systems,” IEEE Trans. Mi-
crowave Theory Techniques, pp. 666-672, May 1997.


