
Abstract-- This paper formulates a simple matrix-based solution to estimate the voltage-dependent
capacitance of a weakly nonlinear device at microwave and millimeter wave frequencies.  Unlike
other approaches, which rely on the direct capacitance measurement at different bias voltages, the
proposed technique generates a large signal model for the capacitance  directly from the frequency
domain measurement and the known I-V characteristic. The resulting capacitance versus voltage
characteristic can be incorporated as a simulation model into a microwave system design for
harmonic balance simulation. Measurement of the capacitance of a highly nonlinear device using this
approach agrees with the results of harmonic balance simulation for microwave and millimeter
wave frequencies.

I. INTRODUCTION
At an operating frequency above W-band, the nonlinear capacitance of a device can critically affect  the
system performance. For example, a nonlinear device with a zero-biased capacitance of 1pF will not be
operational in the absence of any bias.  Knowledge of the capacitance-versus-voltage characteristic of a
device can help in understanding the correct bias voltage that makes the device functional at certain
frequencies.

The frequency dependent behavior of the device is normally characterized as a nonlinear capacitance or
nonlinear inductance connected in parallel with the nonlinear conductance. Rough measurement of
capacitance-versus-voltage characteristic can be conducted with a commercial C-V meter at a frequency
below 1 Ghz. In most situations, however, the zero-biased capacitance can be no more than a hundred
femto-farads. Data obtained from the C-V meter will not yield any reliable  model for high frequency
circuit analysis.  In this paper, a novel matrix-based method is derived to characterize the nonlinear
capacitance directly from the frequency domain.  The proposed method of solution is based on the
theories discussed in [1,2,3], but the algorithm proposed in this presentation is tailored for nonlinear
capacitance modeling.  Unlike other approaches, which rely on direct capacitance measurement at
different bias voltages, the proposed technique generates a large signal model for the device capacitance
directly from the harmonic distribution and the known I-V characteristic. Experimental characterization
of a highly abrupt device is then given to substantiate the presentation

II. ANALYTICAL TREATMENT

Fig. 1 illustrates the schematic of an experimental setup for measurement of a nonlinear device. The
nonlinear device is excited by a single tone signal Vs  through the source impedance Rs  and the
transmission line T1 . Multiple harmonics generated by the nonlinear device DUT are measured at the
output using a spectrum analyzer or power meter. Measurement of the device nonlinearity involves two
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steps: a) resolving the spectral balances of the device by de-embedding the measurements  taken from the
spectrum analyzer; b) resolving the nonlinearity of the device with the given harmonic voltages and
currents.  What follows is an analytical description of these two steps.
c) Resolving the spectral balances of the device:   By de-embedding the circuit shown in Fig. 1, the m th
harmonic of the device current can be expressed as follows:
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where m  is the index representing the harmonic number and V sm

 is zero for m ≠ 1 . Similarly, the m th

harmonic of the voltage across the device, vdm
, can be expressed as:
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For a device without any analytic region,  the nonlinear current and capacitance can be respectively
expressed as
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, where V is the time-domain variable of the total voltage across the intrinsic nonlinear element of the
device. When the device is excited by a very weak signal, with only the fundamental component being
measurable at the output, it can be reasonably assumed that all the second or higher order effects can be
truncated. Under this condition, the nonlinear intrinsic elements of the device can be approximated to the
first order and readily extracted, i.e.

I a a Vg ≈ +0 1 ,  and    C Cd o≈

(5)  and  (6)
for Vk → 0 when k ≠ 0 1,  .  Then, the overall impedance of the DUT in Fig. 1 becomes:
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where vd1

and id1
, as obtained from equationEquation (1) and (2), respectively represents the

fundamental voltage and current in the device. Ls  from equationEquation (7), which represents the



parasitic series inductance attached to the bond pad of the device, can be simultaneously resolved together
with the other variables C0 and a1 , given that measurements for at least three different frequencies are

available.  In the forthcoming analysis, it is assumed that the parasitic such as the lead inductance Ls can

be isolated using equationEquation (7), when the device is under a sufficiently weak excitation.

b) Resolving the nonlinearity of the device:  Differentiating the charge accumulated in the device with
respect to time gives the reactive current as:
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The time domain expression of the total current I  in the device can be obtained by adding (3) and (8)
together. That is,
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The voltage V  across the device is a time-domain superimposition of all the harmonic components across
the device, as and can be expressed as follows:
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where vdm

can be measured with help of equation Equation (2).  The exponential form of equation

Equation (10) can be rewritten as:
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with  V v jm dm m= exp( ) /ψ 2 . In a similar manner, the exponential form of the current, for the rest of

this presentation, can be I I jm tm
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or,
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with  the coefficients Ak n, being complex in quantity and given as  A k
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Instead of using multinomial expansion to solve equationEquation (14),  however, Ak n,  can be more

efficiently resolved by using the following algorithmroutine:-

for  (r=1; r<=N; r++)
for (i=-(r-1)*M; i<=(r-1)*M; i++)

for (j=-M;j<=M; j++)
Ar i j, + = Ar i j, + + Ar i− 1, *V j

(15)
Here, N stands for the maximum order of the nonlinearity and M the number of the data points.
Substituting equationEquation (14) into equationEquation (9) gives the expression for the total current
as:-
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Following some algebraic re-arrangements on equationEquation (13), the expression for the total current
can be written as:
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Although the phase reference of each harmonic is not clear at this stage, each harmonic current must be
90o leading its respective harmonic voltage vector. Hence, we can still use the magnitudes of each vector
variable to resolve equationEquation (17):
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Equation (19) is valid regardless of the phase angle of each harmonic voltage or current. In other words,
regardless of whatever the phase differences among the harmonic components, the magnitude of the
harmonic current remains I k  for the k  th harmonic. It follows that each harmonic current/voltage pair

can be related as:
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where ζ n can be resolved by equating the real part of the equationEquation. Ck ’s of equationEquation

(20 represent the coefficients of the power series (or equationEquation 4) expressing the nonlinear
capacitance, and can be  resolved by gaussian elimination, as long as both the I-V characteristic and the
frequency-domain measurements are given.

III. MEASUREMENTS

To validate the frequency domain solution of voltage-dependent capacitance, a series of measurements
based on the previously described method have been conducted on a highly nonlinear two-terminal
resonant tunneling device. The I-V characteristic of this resonant tunneling device is given in Fig. 2 (a).
The measurement setup was implemented according to Fig.1 and the whole characterization process
carried out by a software written in C, which resolves  the problem in two stages: a) de-embedding the
linear element and the  parasitic attached to the device using equationEquation (7); b) application of
equationEquation (19) to derive the capacitance-versus-voltage model.  Table 1 is an example set of data
taken from frequency domain and the resulting capacitance model as characterized using the proposed
method is graphically illustrated in Fig. 2 (b).

According to Fig. 2 (b), the zero-biased capacitance together with the parasitic capacitance to the ground
is around 1.5 pF in this measurement, while the zero-biased capacitance by vector network analyzer
measurement was around 1.36 pF.  The tunneling device has the negative differential resistance regions at
+/- 0.5 volts, corresponding to what the model-predicted thresholds +/- 0.5 volts in Fig. 2 (b), where the
nonlinear capacitance rapidly drops with voltage.  The capacitance model has been tested in harmonic
balance simulation and was found to be accurate enough to predict the conversion performance of a
microwave mixer operating at 20 Ghz and a fifth-order harmonic generator having output at 104 Ghz.

IV. CONCLUSIONS

This paper has presented a simple technique to estimate the nonlinear capacitance of a device from the
frequency domain. The extracted C-V model of the device has been validated by experiment and by
harmonic balance simulation at millimeter-wave  frequencies.
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 Fig 1. Experimental Setup For Nonlinear Measurement
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Fig. 2.    a) I-V characteristic of the resonant tunneling device, with device diameter = 10 microns. b)
Frequency-domain Modeled C-V characteristic

Table 1. Frequency domain measurement taken from the spectrum analyzer. (Power Input from the
source, Vs , = 5.77 dbm)

Frequency (Ghz) Power (dbm)
2.054 2.13
4.160 -46.17
6.220 -32.00
8.240 -49.33
10.29 -37.83
12.34 -47.67
14.40 -42.50




