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Abstract—An electric-field integral-equation formulation dis-
cretized via the method of moments (MoM) is proposed for
the analysis of arbitrarily shaped planar conductive layers in a
shielded guided-wave structure. The method results in a general-
ized scattering matrix (GSM) for the planar structure and can be
used with other GSM’s, derived using this or other techniques,
to model cascaded structures in waveguide. The Kummer trans-
formation is applied to accelerate slowly converging double series
expansions of impedance matrix elements obtained in the MoM
solution. In this transformation, the quasi-static part associated
with a singularity of the electric-type Green’s function in the
region of a conductive layer is extracted and evaluated in terms
of modified Bessel functions, resulting in a dramatic reduction
of terms in a double series summation. The proposed technique
permits the modeling of a variety of conductive frequency-
selective surfaces, including quasi-optical grids and patch arrays
for application to spatial power combining.

Index Terms—Acceleration techniques, electromagnetic analy-
sis, Green’s functions, layered waveguide, method of moments,
planar conductive layers.

I. INTRODUCTION

SHIELDED guided-wave structures are becoming an es-
sential part of millimeter and submillimeter-wave sys-

tems with the application of micromachining technology as
an alternative to expensive and time-intensive mechanical
machining, and also with the development of waveguide-
based spatial power combining systems [1], [2]. Periodic
grid structures in waveguides, waveguide-based strip and
microstrip filters, patch arrays, densely packaged passive el-
ements and devices of microwave integrated circuits, and
waveguide-based spatial power combiners are among the
structures that can be categorized as planar conductive layers
in a guided-wave environment. The work described in this
paper is part of a project to model waveguide-based spatial
power combiners. These are arranged as cascaded blocks
in the transverse plane of the waveguide. Some of these
blocks can be modeled as planar conductive layers, others
as sections of open waveguide, while others require more
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complicated three-dimensional modeling, such as obtained
using the finite-element method. Numerical electromagnetic
(EM) analysis of these structures can be performed using
almost any EM technique. However, efficient use of memory
and the ability to reuse unmodified EM characterizations in
iterative design are obtained using the generalized scattering
matrix (GSM) approach. In the GSM method, each block is
represented by a matrix that relates the coefficients of forward
and backward propagating waveguide modes at the two sides
of each block. These matrices are cascaded to arrive at the
overall response of a multiblock sequence. The work presented
here focuses on efficient formulation of the GSM matrix for
a single planar conductive layer in waveguide. The approach
is based on an integral-equation formulation (electric field or
mixed potential) discretized via a method-of-moments (MoM)
solution for the electric current induced on the surface of
planar conductive layers. This eliminates the need to discretize
the entire shielded structure or to discretize the entire volume
of the structure. In this formulation, the planar conductors
are generally discretized into cells and localized (termed
“subdomain”) basis functions are used to model the surface
current density discretization.

An analysis of a narrow capacitive strip in a waveguide
is provided in [3], and later, a variational form for the
susceptance was obtained for a wide resonant strip [4] using
an MoM discretization, yielding a characterization of the
current distribution and voltages at gaps in the metallization.
This makes MoM formulations particularly attractive when
integrating EM modeling with circuit modeling, as voltage
and current are used in both modeling domains. Several
developments are related to this requirement. A conductive
diaphragm in a rectangular waveguide has been analyzed by
MoM with a dyadic Green’s function formulation [5]. Also,
the mutual impedance between thin metal probes positioned in
a rectangular waveguide has been calculated in [6] using the
reaction concept. Finally, numerical and experimental studies
of thin metallic posts located in rectangular waveguides is
provided in [7], based on the MoM solution for the current
distribution. Piecewise sinusoidal or pulse basis functions were
used in all cases for the current discretization.

The integral-equation formulation for the unknown electric
current leads to the Fredholm integral equation of the first
kind with a singular kernel (system of singular integral or
integrodifferential equations), which is associated with a pri-
mary part of a Green’s function in the region of a conductive

0018–9480/99$10.00 1999 IEEE



KHALIL et al.: EFFICIENT MoM FORMULATION 1731

layer (surface of a planar metallization where a point of
observation and source point are located as a result of a
boundary condition for the electric-field components). The
most common representation of a Green’s function (the dyadic
Green’s function components) for guided-wave problems is in
the form of a double infinite series expansion over a complete
system of eigenfunctions of a Sturm–Liouville operator (usu-
ally, Helmholtz differential operator), where a singularity of a
primary part is implicitly introduced in a series expansion.
A singularity of the electric-type Green’s function is not
integrable in the region of metallization. In most cases, we deal
with slowly converging double infinite series, which occur in
the impedance matrix elements as a result of MoM discretiza-
tion (a Galerkin method for a complete basis). Several attempts
have been made to alter the summations and, thus, obtain a
faster converging double series. Transformation of a double
series expansion into a contour complex integral to which
the residue theorem was applied was developed by Hashemi-
Yeganeh [8]. This method leads to the computation of a few
single summations of fast converging series. Park and Nam
[9], in considering a shielded planar multilayered structure,
transformed a scalar Green’s function into a static image series
that was evaluated using the Ewald method. It was pointed out
that the final form of the Green’s function converges rapidly
with a small number of terms in a series summation.

To speed up the process of impedance matrix fill, several
endeavors have been made in dividing a matrix operator
into frequency-dependent and frequency-independent parts.
Spectral operator expansion technique was introduced by
Jansen and Sauer [10] for a high-speed EM simulation of three-
dimensional (3-D) interconnects for microwave integrated
circuit/monolithic microwave integrated circuit (MIC/MMIC)
computer-aided design (CAD). Eleftheriadeset al. [11] pio-
neered a procedure that partitions a potential Green’s function
into an asymptotic (frequency independent) part and dynamic
part, where the asymptotic part was converted to a rapidly
converging series summation. Basically, the extraction and
evaluation of the static part is associated with a reduction of
a singular matrix operator as the analog of a singular integral
operator. We found this technique to be the most efficient one
for the computation of the slow converging series occurring
in the work presented in this paper. In addition, the method
is flexible, enabling different basis functions to be used in
the MoM formulation and without the geometrical restrictions
imposed by the other methods. This idea of extraction of the
asymptotic part of the Green’s function and, consequently,
the impedance matrix with its analytic evaluation, has been
recently implemented by Park and Balanis for antenna and
open microstrip discontinuity problems [12], [13].

The purpose of this paper is to present an efficient electric-
field integral-equation formulation with an MoM discretiza-
tion, which results in the GSM of arbitrarily shaped planar
metal layers enclosed in a layered shielded environment.
Electric dyadic Green’s functions of the third kind are derived
and implemented in integral equations for the unknown electric
current induced on the metal surface. The quasi-static parts
of the Green’s functions and impedance matrix elements
are extracted and evaluated based on the ideas proposed in

Fig. 1. Geometry of a planar arbitrarily shaped metallization in a shielded
layered guided-wave structure.

[11], leading to a dramatic reduction of computational time
in the MoM matrix fill. Numerical results are obtained for
strip discontinuities with a complicated geometry showing the
effectiveness of the proposed approach. The work has been
incorporated in a GSM modeling scheme, which retains circuit
ports, for the modeling of waveguide enclosed microwave
structures, particularly spatial power combiners [14].

II. THEORY

Consider the rectangular waveguide shown in Fig. 1 with
two dielectric layers adjacent to the current-carrying transverse
interface . The total electric field in the volume with
dielectric permittivity is characterized by a total incident
electric field (direct from an impressed current source and
reflected from the dielectric interface in the absence of the
metal surface) and a scattered (reflected) field due to
induced electric current , . The total
electric field in region with is represented by the
scattered (transmitted) field . (Note that an incident field
from region is similarly handled.) An arbitrarily shaped
metallization , is located on the interface at

.
The electric-field integral-equation formulation is obtained

by enforcing a boundary condition on the tangential compo-
nents of the electric field on the conducting surface

(1)

where the integral over (after cross multiplication) yields
the scattered electric field due to the conduction current
on the metal surface, and is the electric dyadic
Green’s function of the third kind [15], obtained for a two-
layered rectangular waveguide.

The total electric field introduced by the boundary condition
(1) is expressed as a series eigenmode expansion, including
both propagating and evanescent TE and TM modes

(2)

where , are unknown magnitudes of all propagating
and evanescent TE and TM modes, respectively. The electric
vector functions satisfy a unity power normalization
condition [16]. The reflection and transmission
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coefficients are determined as the solution of the boundary
value problem for a two-layered waveguide in the absence of
planar metallization

(3)

where is the propagation constant defined as

(4)

and

The vector integral equation (1) is now reduced to a coupled
set of scalar integral equations in terms of the unknown electric
current components

(5)

Note that after multiplying by the factor , the integral
over represents the scattered (reflected and transmitted)
electric field at due to unit surface current density at

, .
Here, development of MoM proceeds by discretizing the

current using local overlapping piecewise sinusoidal basis
and testing functions in the coupled set of (5), leading to a
matrix system of linear equations

(6)

Here, is the impedance matrix of all self and mutual
interactions of the electric-field vector components with the
components of current density vector, is the vector of
unknown coefficients of the current expansion, andis the
vector of the incident field tested with the- and -directed
local functions, respectively.

The magnitudes and of TE and TM modes in a
series eigenmode expansion of the reflected electric field at

are expressed in the following form [14], [16]:

(7)

Following the procedure shown in details in [14], (6) and (7)
are combined via the vector of current coefficients, resulting
in the generalized reflection coefficients of all propagating
and evanescent TE and TM modes. It should be noted that
this formulation in conjunction with a matrix approach does
not require the calculation of the induced electric current in
the explicit form in order to obtain the GSM. It serves as an
intermediate result in a matrix procedure to relate magnitudes
of incident and reflected modes. A similar procedure has been
applied to obtain the generalized transmission coefficients.

The electric dyadic Green’s functions introduced in (1) and
(5) are obtained as the solution of the coupled set of vector
wave equations [15]

(8)

subject to two sets of boundary conditions. The first set is of
the first kind on the surface of a conducting shield

(9)

The second set describes the mixed continuity conditions for
the electric Green’s dyadics of the third kind on the interface
of adjacent layers in the absence of the metal surfaceat

(10)

where are the waveguide regions, is the
surface of the interface at , and is an outer normal to the
surface . It should be noted that the location of thesources
in the above formulation is considered to be in the region.
Similarly, the boundary value problem for the electric Green’s
dyadics and can be formulated for
sources positioned in the region .

Solution of the boundary value problem (8)–(10) yields
nine components of the electric Green’s dyadics expressed in
terms of double infinite series expansions over the complete
system of eigenfunctions of the Helmholtz operator. Note that
according to the system of integral equations, i.e., (5), we are
primarily interested only in the transverse components of the
Green’s functions calculated on the interface at .
Due to the continuity equations of (10), the transverse compo-
nents of the Green’s functions and are
equal on the interface, which yields the unique representations

(11)
The functions represent a complete
set of orthonormal eigenfunctions of the Helmholtz operator
satisfying appropriate boundary conditions on the surface of
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a conducting shield

(12)

with being Newman indexes such that and
. The one-dimensional Green’s functions

are obtained on the interface at as
the solution of the second-order differential equation forced
with a function and satisfying appropriate boundary
and continuity conditions

(13)

It is known that a double series expansion of Green’s
function components is slowly convergent (even divergent
in the region of a metal layer) due to the presence of a
singularity of the primary part implicitly involved in the double
series expansion (11). An efficient technique based on the
Kummer transformation [17] has been applied to accelerate
slow convergent series [11] of a vector potential Green’s
function. This technique is applied here to the Green’s function
components, (11), leading to their transformation so that a
quasi-static part is extracted. The Green’s function is
then

(14)

where captures the asymptotic behavior of for large
indexes and . As there is symmetry between and

components , and and
components , and only functions
will be considered from here on. The asymptotic evaluation
of and components yields

(15)

Fig. 2. Rectangular cells with thex-directed overlapping piecewise sinu-
soidal basis functions.

and

(16)

Note that the summations are frequency independent, hence,
the quasi-static designation for this part of the Green’s func-
tion. The second infinite summation in (15) has been trans-
formed into a fast converging series of , the zeroth-order
modified Bessel functions of the second kind (details are
shown in [11]). Similarly, the second infinite summation in
(16) is obtained in terms of , the first-order modified Bessel
functions of the second kind, as follows:

(17)

Only a few terms of the series in (17) are required to reach
convergence due to the exponential decay of, the modified
Bessel functions. This property, together with the frequency
independence of the summations, are the key attributes leading
to computational speedup.

An MoM procedure in conjunction with the above
transformation results in the following representation for the
impedance matrix elements:

(18)

where are the quasi-static impedance matrix
elements obtained in the integral form for the rectangular
cells with the - and -directed piecewise sinusoidal basis
and testing functions. As an example, rectangular cells with
the -directed overlapping basis functions are shown in Fig. 2
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and, , the impedance matrix element, is

(19)

with and being overlapping piecewise sinu-
soidal, locally determined, testing, and basis functions

A parameter determines in some sense
a degree of smoothness of basis functions. Note that these
functions are continuous with a discontinuous derivative at

and, for small , they approach triangular basis
functions .

The other impedance matrix elements , , and
can be similarly obtained in the integral form for the-
and -directed basis and testing functions with corresponding
Green’s function components. The problem of evaluation of
the quasi-static impedance matrix elements , given by
(19), together with the quasi-static Green’s functions expres-
sion (15) is reduced to the calculation of a double integral
over the -domain

(20)

This integral results from substituting for the basis functions
and replacing the quasi-static part of the Green’s function,
using (15), in (19). A double integral of cosine functions
with piecewise sinusoidal basis and testing functions over
the -domain is easily evaluated and will not be discussed
here. A similar idea was followed in formulating the
impedance matrix element. Calculation of a double integral
over the -domain is required for involving the integral

(21)

Similar evaluations can be derived for the ,
impedance matrix elements considering the symmetry property
discussed above.

The internal integral with respect to in (20) is simplified
using a change of variable and then precomputed numerically

Fig. 3. Convergence ofZxx matrix elements for the accelerated and direct
double series summation.

Fig. 4. Percentage error in the convergence ofZxx matrix elements for the
accelerated and direct double series summation.

and stored in a table. The outer integral is then calculated
numerically by a Gauss quadrature using tabulated data of the
previous integration. The internal integral with respect to
in (21) yields the zeroth-order modified Bessel function of the
second kind . The outer integration is also performed
numerically, again using a Gauss quadrature.

III. D ISCUSSION

The Kummer transformation applied to the Green’s func-
tions and, consequently, to the impedance matrix elements,
leads to efficient evaluation of the quasi-static part and results
in a dramatic reduction of overall computation time. This
is because it is frequency independent and only need be
calculated once (in a frequency sweep), and this calculation
is fast because of rapid convergence. Also, the frequency-
dependent terms in the representation (18)
converge quickly as a result of the Kummer transformation.

To illustrate the proposed approach, resonant strip struc-
tures, including a wide resonant strip and patch array structure
embedded in a rectangular waveguide, have been investigated
numerically. In the first example, the convergence and percent-
age error of the impedance matrix elements for the accelerated
and direct double series summation are demonstrated in Figs. 3
and 4, respectively, (with geometry shown in the inset of
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Fig. 5. Normalized susceptance of a wide resonant strip in waveguide:
a = 0:4 in, b = 0:9 in, w = 0:280 in, ` = 0:365 in, yc = b=2:

Fig. 6. Geometry of patch array supported by dielectric slab in a rectangular
waveguide:a = 1:0287 cm, b = 2:286 cm, ` = 2:5 cm, �r = 2:33;
d = 0:4572 cm, c = 0:3429 cm, �x = 0:1143 cm, �y = 0:2286 cm.

Fig. 5). The convergence error (Fig. 4) is calculated for the
-directed current element with and

(the unit cell shown in Fig. 2 has dimensions
cm and cm). The relative error is defined as

where represents the impedance
matrix element either calculated as a direct summation or using
the proposed acceleration technique, and is the value of

obtained for a large number of summation termsand
in the direct summation. To generate results shown in Fig. 4,
we used summation terms with the value
of equal to It is shown that the
error of 0.5% is obtained for 200 terms used in the accelerated
summation procedure, in comparison with 2500 terms required
in the direct double series summation to reach the same error.
The computation time is almost directly proportional to the
number of terms in the summation. Also, it can be difficult to
determine when sufficient terms have been used with the direct
method. Numerical results for the normalized susceptance of
a wide strip agree well with the measured data provided in
[4] (Fig. 5).

As another example, a resonant patch array supported by
dielectric slab in a rectangular waveguide (Fig. 6) is analyzed
for application in high-frequency EM and quasi-optical trans-
mitting and receiving systems [1], [2]. The structure resonates
at 8.6 GHz with a reflection coefficient of 26 dB (Fig. 7).
The dispersion behavior of a phase angle is given in Fig. 8,
showing the resonant properties of the structure.

Fig. 7. Magnitude ofS11 and S21 for the patch array embedded in a
rectangular waveguide.

Fig. 8. Phase ofS11 andS21 for the patch array embedded in a rectangular
waveguide.

IV. CONCLUSION

An electric-field integral-equation formulation in conjunc-
tion with the acceleration procedure for a double series sum-
mation has been developed for the efficient analysis of various
strip discontinuities embedded in layered guided-wave struc-
tures. The electric-type Green’s function has been derived
for a rectangular waveguide with a current-carrying interface
of adjacent dielectric layers. The Kummer transformation
with the evaluation of the quasi-static part of the Green’s
function is proposed to accelerate convergence of double
series expansions in the representations for the impedance
matrix elements. The numerical analysis of convergence and
percentage error of -matrix elements is provided for the
specific example of a wide strip in a rectangular waveguide.
A patch array embedded in a rectangular waveguide has been
modeled for applications in high-frequency EM and quasi-
optical systems. The derivations here were incorporated in
a GSM simulator, which extracts circuit ports where active
devices would be located [14]. This extraction of circuit
ports enables circuit–field interactions to be handled. The
work can, therefore, be used to analyze structures consisting
of multiple transverse layers of conductors in a possibly
overmoded rectangular waveguide.
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