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Abstract—An electric-field integral-equation formulation dis- complicated three-dimensional modeling, such as obtained
cretized via the method of moments (MoM) is proposed for ysing the finite-element method. Numerical electromagnetic
thg anaIyS|§ of arbitrarily shaped planar conductlve.layers in a (EM) analysis of these structures can be performed using
shielded guided-wave structure. The method results in a general- | EM hni H ffici f
ized scattering matrix (GSM) for the planar structure and can be & most any. - technique. owgyer, efficient use 9 rr?emory
used with other GSM'’s, derived using this or other techniques, and the ablllty to reuse unmodified EM characterizations in
to model cascaded structures in waveguide. The Kummer trans- iterative design are obtained using the generalized scattering
formation is applied to accelerate slowly converging double series matrix (GSM) approach. In the GSM method, each block is
expansions of impedance matrix elements obtained in the MOM o osented by a matrix that relates the coefficients of forward
solution. In this transformation, the quasi-static part associated . . .
with a singularity of the electric-type Green’s function in the ~@nd backward propagating waveguide modes at the two sides
region of a conductive layer is extracted and evaluated in terms Of each block. These matrices are cascaded to arrive at the
of modified Bessel functions, resulting in a dramatic reduction overall response of a multiblock sequence. The work presented
of terms 'If]‘ a dOUbll.e Se“?s sumr_natlon].c The Pfopose]f’ technique here focuses on efficient formulation of the GSM matrix for
permits the modeling of a variety of conductive frequency- a single planar conductive layer in waveguide. The approach

selective surfaces, including quasi-optical grids and patch arrays . g g L
for application to spatial power combining. is based on an integral-equation formulation (electric field or

. . _ mixed potential) discretized via a method-of-moments (MoM)
Index Terms—Acceleration techniques, electromagnetic analy- . . .
sis, Green’s functions, layered waveguide, method of moments,SOIUtIon for thg electric cur.rent. |r_1duced on the surface Qf
planar conductive layers. planar conductive layers. This eliminates the need to discretize
the entire shielded structure or to discretize the entire volume
of the structure. In this formulation, the planar conductors
are generally discretized into cells and localized (termed
IELDED guided-wave structures are becoming an e$%subdomain”) basis functions are used to model the surface
ential part of millimeter and submillimeter-wave syseurrent density discretization.
tems with the application of micromachining technology as An analysis of a narrow capacitive strip in a waveguide
an alternative to expensive and time-intensive mechanig¢al provided in [3], and later, a variational form for the
machining, and also with the development of waveguidgusceptance was obtained for a wide resonant strip [4] using
based spatial power combining systems [1], [2]. Periodin MoM discretization, yielding a characterization of the
grid structures in waveguides, waveguide-based strip asgrrent distribution and voltages at gaps in the metallization.
microstrip filters, patch arrays, densely packaged passive Bhis makes MoM formulations particularly attractive when
ements and devices of microwave integrated circuits, afiffegrating EM modeling with circuit modeling, as voltage
waveguide-based spatial power combiners are among Hi®l current are used in both modeling domains. Several
structures that can be categorized as planar conductive lay@sgelopments are related to this requirement. A conductive
in a guided—wave environment. The work described in th.tﬁaphragm in a rectangu|ar Waveguide has been ana|yzed by
paper is part of a project to model waveguide-based spatigbM with a dyadic Green's function formulation [5]. Also,
power combiners. These are arranged as cascaded blagksmutual impedance between thin metal probes positioned in
in the transverse plane of the waveguide. Some of theggectangular waveguide has been calculated in [6] using the
blocks can be modeled as planar conductive layers, othgggction concept. Finally, numerical and experimental studies
as sections of open waveguide, while others require mQjg thin metallic posts located in rectangular waveguides is
Manuscript received October 22, 1998. This work was supported by tpé’ovlldeq In [7] basgd 9” the. MoM solution .for the. current
Army Research Office through Clemson University under Multidisciplinardistribution. Piecewise sinusoidal or pulse basis functions were
Research Initiative on Quasi-Optics Agreement DAAG55-97-K-0132. used in all cases for the current discretization.
C()An'nlj'ufer;aélngi?ig‘in%’ La(i?glg\;gﬁng'g;?: L?n?\?grrgi?ﬁ négﬁegﬁ?mgalz?gg& The integral-equation formulation for the unknown electric
7914 USA. current leads to the Fredholm integral equation of the first
M. B. _Steer is with'the Inst_itute _of Microwav_es and Photonics, School ¢§ind with a singular kernel (system of singular integral or
Electronic and Electrical Engineering, The University of Leeds, Leeds LS2 . . . . . . . .
9JT. UK. Integrodifferential equations), which is associated with a pri-
Publisher Item Identifier S 0018-9480(99)06598-9. mary part of a Green’s function in the region of a conductive
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layer (surface of a planar metallization where a point of y
observation and source point are located as a result of a
boundary condition for the electric-field components). The
most common representation of a Green'’s function (the dyadic
Green'’s function components) for guided-wave problems is in
the form of a double infinite series expansion over a complete
system of eigenfunctions of a Sturm—Liouville operator (usu-
ally, Helmholtz differential operator), where a singularity of a
primary part is implicitly introduced in a series expansion.
A singularity of the electric-type Green’'s function is not o o _
integrable in the region of metallization. In most cases, we d}%jéé‘d ;?g;?%vcg gtr‘z';r&?;arb'"ar"y shaped metallization in a shielded
with slowly converging double infinite series, which occur in

the impedance matrix elements as a result of MoM discretiza1], leading to a dramatic reduction of computational time
tion (a Galerkin method for a complete basis). Several attemg{sthe MoM matrix fill. Numerical results are obtained for
have been made to alter the summations and, thus, obtaig@ discontinuities with a complicated geometry showing the
faster converging double series. Transformation of a douldgectiveness of the proposed approach. The work has been
series expansion into a contour complex integral to whiGAcorporated in a GSM modeling scheme, which retains circuit
the residue theorem was applied was developed by Hashepyrts, for the modeling of waveguide enclosed microwave

Yeganeh [8]. This method leads to the computation of a feyyructures, particularly spatial power combiners [14].
single summations of fast converging series. Park and Nam

[9], in considering a shielded planar multilayered structure, Il. THEORY
transformed a scalar Green’s function into a static image series
that was evaluated using the Ewald method. It was pointed ou
that the final form of the Green’s function converges rapidl
with a small number of terms in a series summation. .
To speed up the process of impedance matrix fill, seve%
ﬁ]r;gez\égfe:gxzeg(:genmtagﬁdIr:crgé\ﬂg:,]ng,_;dr:s;%ze%?egag!ected from Etlri dielectric interface in the abs_ence of the
Spectral operator expansion technique was introduced Bt@l surface)er and a sca_:ctered_)igrveflecgid) field due to
Jansen and Sauer [10] for a high-speed EM simulation of thré gucgd ?'eCtY'C cur_renE ' (.E - E ~+ E7). The total
dimensional (3-D) interconnects for microwave integrate ectric field in r§g|onV_2 ‘ivt'th €2 1S represgntc_ed by_the
circuit/monolithic microwave integrated circuit (MIC/MMIC) scattered_ (trans_mltt_e(j) field”. (Note that an_mm_dent field
computer-aided design (CAD). Eleftheriadessal. [11] pio- from r.egu.)nVQ is similarly hapdled.) An arb|tra_r|Iy shaped
neered a procedure that partitions a potential Green’s functi'awtal(l)'zat'ons"“ (Sm C Sa) is located on the interface at
Ip?;(r)t,a\?vk? esémtﬂtgt;g:ﬁgﬁ;cﬁ;f Svginii:eeﬁ'?eré igdadggsin‘?cThe ele_ctric-field integral-qugtion formulation is_ obtained
converging series summation. Basically, the extraction acl?g enforcing a bm_md_ary condition on th_e tangential compo-
evaluation of the static part is associated with a reduction ents of the electric field on the conducting surfae
a singular matrix operator as the analog of a singular integral Jopod X / ﬁ(;’ 7y J(F) dS = 2 x Eim(;) (1)
operator. We found this technique to be the most efficient one Sm
for the computation of the slow converging series occurringhere the integral ove$,,, (after cross multiplication) yields
in the work presented in this paper. In addition, the methabe scattered electric field due to the conduction curdgnt)
is flexible, enabling different basis functions to be used ign the metal surface, anﬁ(;j/) is the electric dyadic
the MoM formulation and without the geometrical restrictiongreen’s function of the third kind [15], obtained for a two-
imposed by the other methods. This idea of extraction of thgered rectangular waveguide.
asymptotic part of the Green’s function and, consequently, The total electric field introduced by the boundary condition
the impedance matrix with its analytic evaluation, has begm) is expressed as a series eigenmode expansion, including
recently implemented by Park and Balanis for antenna ap@th propagating and evanescent TE and TM modes
open microstrip discontinuity problems [12], [13]. ) oo oo
The purpose of this paper is to present an efficient electriB"“(z,y,0) = >~ Y arreh P(z,y) (1 + RTE)

onsider the rectangular waveguide shown in Fig. 1 with
o dielectric layers adjacent to the current-carrying transverse
nterfacesS;. The total electric fieldE in the volumeV; with
Flectric permittivity e¢; is characterized by a total incident
ctric field (direct from an impressed current source and

mnTmn mn

field integral-equation formulation with an MoM discretiza- m=0 mz#n=0

tion, which results in the GSM of arbitrarily shaped planar o oo

metal layers enclosed in a layered shielded environment. +> ) a;})fé,ﬁ]\q(x,y)(lJrR,Tnﬁf) 2)
Electric dyadic Green's functions of the third kind are derived m=1 n=1

and implemented in integral equations for the unknown electidherea’E, o™ are unknown magnitudes of all propagating
current induced on the metal surface. The quasi-static paatsd evanescent TE and TM modes, respectively. The electric
of the Green’s functions and impedance matrix elementsctor functions,,, (x,y) satisfy a unity power normalization

are extracted and evaluated based on the ideas proposedoimdition [16]. The reflection?,,, and transmissiori,,,
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coefficients are determined as the solution of the boundaryFollowing the procedure shown in details in [14], (6) and (7)
value problem for a two-layered waveguide in the absence axe combined via the vector of current coefficiehtsesulting

planar metallization in the generalized reflection coefficients of all propagating
n @ and evanescent TE and TM modes. It should be noted that
R — % this formulation in conjunction with a matrix approach does
Ymn + Ymn not require the calculation of the induced electric current in
9 /%(7121%(37)1 the explicit form in order to obtain the GSM. It serves as an
TEE = o ©) intermediate result in a matrix procedure to relate magnitudes
Ymn + Ymn of incident and reflected modes. A similar procedure has been
TM 61%(3% - 62’)/,(,1% applied to obtain the generalized transmission coefficients.
Ry = m The electr_ic dyadic Green’s_ functions introduced in (1) and
(5) are obtained as the solution of the coupled set of vector
™ 2 61%(32162%(5% wave equations [15]
T " = — 3

mn (2)

€1Ymn + €2Ymn = =
o o ey _ V XV X Gui(7,7") = G (7, 7") = I8(7 = ),
whereyn, (1 = 1,2) is the propagation constant defined as

k2, k>R rren
7 7 TR 7 > c = — = a —- =
Yo = {j\/m B2 < 12 (4) V X V x Goy(7,7) — k3G (7, 7) = 0,
and c CT FeVy eV (8)
mm nw 2m
R2=k 4k k= 0 ky = > ki = /\—0\/@. subject to two sets of boundary conditions. The first set is of

The vector integral equation (1) is now reduced to a couplgée first kind on the surface of a conducting shiéld

set of scalar integral equations in terms of the unknown electric

current components ix Gu (7)) =0, TE€Si=12 ©)
o {/ G (7, 7)o (7 dS The second set describes the mixed continuity conditions for
Sm h the electric Green’s dyadics of the third kind on the interface
. of adjacent layers in the absence of the metal surfageat
+ / Gl (7, 7).y (7) dS’} = Ey(7) i ’ o
s, y =

W o {/ Gym(f,f/)]m(f/) ds’ Z % Gll(:;F/) =ZXx 621(7?,7?/), 7 e Sy
S —

+ / Gy (7 7Y Iy (7) dS’}:E;“C(F). (5)
T . where V; (i = 1,2) are the waveguide regions,; is the
Note that after multiplying by the factofy., the integral surface of the interface at= 0, and# is an outer normal to the

over S’" .represen'is the scatt_ered (reflected and trgnsmltt(as faceS. It should be noted that the location of thesources
electric field £; at+ due to unit surface current density at

#lG = ay) in the above formulation is considered to be in the redipn

Here, development of MoM proceeds by discretizing th%imilarlthhe boundary value problem for the electric Green’s
current.J; using local overlapping piecewise sinusoidal basyadics Gz (7, 7) and Gi»(7,7") can be formulated fop

and testing functions in the coupled set of (5), leading to SPUrces positioned in the regidr. _
matrix system of linear equations Solution of the boundary value problem (8)-(10) yields

nine components of the electric Green’s dyadics expressed in
[Z(w)} ] =[V]. (6) terms of double infinite series expansions over the complete
Here, Z(w) is the impedance matrix of all self and mutuaFyStem of eigenfunctions of.the Helmholtz_ oper_ator. Note that
interactions of the electric-field vector components with tHa&ccording to the system of integral equations, i.e., (5), we are
components of current density vectaf, is the vector of primarily interested only in the transverse components of the
unknown coefficients of the current expansion, dnds the CGreen’s functions calculated on the interfacezat 2’ = 0.
vector of the incident field tested with the and y-directed Due to the continuity equations of (10), the transverse compo-
local functions, respectively. nents of the Green’s functiorG,, (7, 7') and Go (7, 7') are
The magnitudes$™® and XM of TE and TM modes in a equal on the interface, which yields the unique representations
series eigenmode expansion of the reflected electric field at

z = 0 are expressed in the following form [14], [16]: Gij(a, v o) = i i ol (z,y) @l (&) f
k¥ 1 7 & - mn 7 mn 7o mn’
bTE _ E—I—TE(]_ +RTE) m=0 n=0
{lﬁ‘ﬂ } = - / J- {E%‘M(l M } ds N (11)
mn S i ’"T"E B The functionse?? (z,v), (¢, = x,y) represent a complete
+{agrnﬂ }{R%lﬂ } (7) set of orthonormal eigenfunctions of the Helmholtz operator
R satisfying appropriate boundary conditions on the surface of

[SIE

mn mn
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a conducting shields

(pfnn(xvy) = EOrnZOn COS(kx-T) Sln(/i'yy)
a
y €omeon .
ooz, y) = 3 sin(k.z) cos(kyy) 12)
xp-c Xp xp+c xp:,l,c X

with €gm, €0, Deing Newman indexes such thgt = 1 and Fig. 2. Rgctangu_lar cells with the-directed overlapping piecewise sinu-
com = 2,m # 0. The one-dimensional Green’s functions®dal basis functions.
i (z,7') are obtained on the interface at= 2’ = 0 as
the solution of the second-order differential equation forceghd
with a 6(» — 2’) function and satisfying appropriate boundary

and continuity conditions < .
A CRTEENTY

2 _ @) oo
ew _ y ~ YmnTYmn 1 Z (mr) . (mr )COS (n7r /)
mn = - [— m{ — -
(V8 + D) (k2 + k2 — A58 abk3(ertes) “\ D b Y b Y
rY — fyr mm mm . mm
mn mn =] 4(—) COS (— .’L’) SN (— .T/)
_ kpky . Z a a2 : a (16)
(Y + 1Y (B2 + K2 —ASn) o \/ () ()
e a b
k‘2 _ (
,‘I#i, _ - YmnYmn ) (13)
T (Y S (2 + k7 — A Note that the summations are frequency independent, hence,

_ ) ) the quasi-static designation for this part of the Green’s func-
It is known that a double series expansion of Greeng)n The second infinite summation in (15) has been trans-
function components is slowly convergent (even divergefirmed into a fast converging series ff, the zeroth-order
in the region of a metal layer) due to the presence of Aodified Bessel functions of the second kind (details are
singularity of the primary part implicitly involved in the doubleghown in [11]). Similarly, the second infinite summation in

series expansion (11). An efficient technique based on ) is obtained in terms dk7, the first-order modified Bessel
Kummer transformation [17] has been applied to acceleraigctions of the second kind, as follows:

slow convergent series [11] of a vector potential Green’s

. . . . . , . mm mm . mm
function. This technique is applied here to the Green’s function « 4(—) cos (— a:) sin (— a:’)
components, (11), leading to their transformation so that aE ¢ g ¢

quasi-static par{Gy>”) is extracted. The Green's function is m=1 \/(@)2 + (”_”)2
then a b
201 = nw ,
= m;m {KI(T (x — a2 + 2ma))
Gij = (Giyj — G2 +GZ° (14) n /
- KI(T (r 42 +2ma))}.

a7)
WhereGgS captures the asymptotic behavior @f; for large
indexesm and n. As there is symmetry betweef,, and
Gy, componentsz < y,z’ — ¢, a < b), andGy, and Gy,
componentfz « z’,y < ), GZZ and G’ only functions
will be considered from here on. The asymptotic evaluati
of G, and G, components yields

Only a few terms of the series in (17) are required to reach
convergence due to the exponential decayef the modified
Bessel functions. This property, together with the frequency
inependence of the summations, are the key attributes leading
c{o computational speedup.

An MoM procedure in conjunction with the above
transformation results in the following representation for the

G%,S(a:,y;a:’,y’) impedance matrix elements:
1 = ymm\2 mw MoM Qs QS
I S mr mm ZYM(w) = gono| (Zij(w) — 230 +22°]  (18)
COSs 7, 7,
abk3(er + e2) ; ( a ) ( a az) “ Y ! !
dsin (ﬁ U) sin (ﬂ U/> WhererjS,i,j = x,y are the quasi-static impedance matrix
COS( x/) b - b - elements obtained in the integral form for the rectangular
a 1 (M)Q n (H_W)Q cells with thez- and y-directed piecewise sinusoidal basis
a b and testing functions. As an example, rectangular cells with

(15) thez-directed overlapping basis functions are shown in Fig. 2
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and, Z27, the impedance matrix element, is 200 ,
—— Accelerated
190 ¢ .
0s Tpte  puptd/2 zrtc yr+d/2 5 ---- Direct ion
| L ) \
Tp—c Yp—d/2 T, —cC Yr—d/2 170 N

G, y; 2"y VLo (o) da dy da' dy' (19) 160

ey

150

1Z:xx|

with T,,(z) and T,.(z’) being overlapping piecewise sinu-
soidal, locally determined, testing, and basis functions

140
130

120
110

100 *
0

sin[ks(c — |z — zp|)]
dsin(ksc) ’
|z — x| < ¢ [y —yp| < df2.

Twp(x) =

1000 1500 2000 2500 3000

Number of terms

500

A parameterk, = ko/\/€max determines in some SE€NSE&ig. 3. Convergence af... matrix elements for the accelerated and direct
a degree of smoothness of basis functions. Note that thé@seble series summation.
functions are continuous with a discontinuous derivative at

x = z, and, for smallk,c, they approach triangular basis 50 T
functions (sin(ksc) ~ ksc). a5 || — Accdlerated
The other impedance matrix elemett§?, 225, and 22> a0 |l | i S
can be similarly obtained in the integral form for the 5 a5 !
andy-directed basis and testing functions with corresponding 5 20 L.
Green'’s function components. The problem of evaluation of g 1
the quasi-static impedance matrix eleme@8>, given by ;g; 25
(19), together with the quasi-static Green’s functions expres- S 20 L
sion (15) is reduced to the calculation of a double integral & 15 \
over they-domain 1.0 A
0.5 l\\h Bt ENE S
IQS T—
0.0
uotd/2  pyrtd /2 0 500 1000 1500 2000 2500 3000
/ ’ (y y —|—2nb)) Number of terms
up—d/2 Jy—d/2 Fig. 4. Percentage error in the convergenceZgf matrix elements for the

accelerated and direct double series summation.

(y+y' +2nb))}dy’ dy.
(20)

—Ko(

and stored in a table. The outer integral is then calculated
numerically by a Gauss quadrature using tabulated data of the

revious integration. The internal integral with respectrto
(21) yields the zeroth-order modified Bessel function of the
cond kindKy(x). The outer integration is also performed
d[Jmencally, again using a Gauss quadrature.

This integral results from substituting for the basis functio
and replacing the quasi-static part of the Green’s functio
using (15), in (19). A double integral of cosine functlon§;e
with piecewise sinusoidal basis and testing functions oVE
the z-domain is easily evaluated and will not be discusse
here. A similar idea was followed in formulating tkﬁi,?f

impedance matrix element. Calculation of a double integral
over thez-domain is required foz%> involving the integral

zpte
195 = / sin[ks(c— |z — a:p|)}

Ill. DIsScussION

The Kummer transformation applied to the Green’s func-
tions and, consequently, to the impedance matrix elements,
leads to efficient evaluation of the quasi-static part and results
in a dramatic reduction of overall computation time. This
is because it is frequency independent and only need be
calculated once (in a frequency sweep), and this calculation

/:T——:::Q { (T r—x +2ma))
(x+2" + 2ma)) }dx/ dz.
(21)

is fast because of rapid convergence. Also, the frequency-

dependent terms in the representation (U8);(w) — Zi?)

converge quickly as a result of the Kummer transformation.
To illustrate the proposed approach, resonant strip struc-

tures, including a wide resonant strip and patch array structure
Similar evaluations can be derived for th&Z®, Z%° embedded in a rectangular waveguide, have been investigated

impedance matrix elements considering the symmetry propemymerically. In the first example, the convergence and percent-
discussed above. age error of the impedance matrix elements for the accelerated

The internal integral with respect g in (20) is simplified and direct double series summation are demonstrated in Figs. 3
using a change of variable and then precomputed numericalyd 4, respectively, (with geometry shown in the inset of
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Fig. 5. Normalized susceptance of a wide resonant strip in wavegwdqg 7. Magnitude ofS;; and So; for the patch array embedded in a
a=0.41in,b=0.9 in, w = 0.280 in, £ = 0.365 in, y. = b/z rectangular waveguide.
200
I &r r
b a 150 LA
/ i/ 100 Lo
T-YL ﬁ //;f g el
’5‘13 50 AT
’ AX ) Tl
c / = T
/ ff//i/; w 0 It ST
- !
— 2 -5 T
o] HL_,LJ DA g \ -
Ty Ty z ~100
‘ S11 V\\
Fig. 6. Geometry of patch array supported by dielectric slab in a rectangular -150 \I
waveguide:a = 1.0287 cm, b = 2.286 cm, { = 2.5 cm, ¢, = 2.33, :
= 572 = . . = 4 Ty = -200
d =0.4572 cm,c = 0.3429 cm, 7, = 0.1143 cm, 7, = 0.2286 cm. 0 75 8.0 85 9.0 95 10.0
Frequency (GHz)
Flg 5) The convergence error (Flg 4) is calculated for tnﬁg 8. Phase of;; andS2; for the patch array embedded in a rectangular
z-directed current element witk, = a/2 andy, = /2  waveguide.

(the unit cell shown in Fig. 2 has dimensions= 0.2318
cm andd = 0.2371 cm). The relative error is defined as
| Zor — Z22| /1 253 X 100, where Z,... represents the impedance
matrix element either calculated as a direct summation or usingAn electric-field integral-equation formulation in conjunc-
the proposed acceleration technique, &f is the value of tion with the acceleration procedure for a double series sum-
Z.» obtained for a large number of summation temma&nd»  mation has been developed for the efficient analysis of various
in the direct summation. To generate results shown in Fig. &rip discontinuities embedded in layered guided-wave struc-
we usedm = n = 1500 summation terms with the valuetures. The electric-type Green’s function has been derived
of Z2° equal t010.928 3 — 7163.503 3. It is shown that the for a rectangular waveguide with a current-carrying interface
error of 0.5% is obtained for 200 terms used in the acceleratefd adjacent dielectric layers. The Kummer transformation
summation procedure, in comparison with 2500 terms requiradth the evaluation of the quasi-static part of the Green’'s
in the direct double series summation to reach the same erfanction is proposed to accelerate convergence of double
The computation time is almost directly proportional to theeries expansions in the representations for the impedance
number of terms in the summation. Also, it can be difficult tanatrix elements. The numerical analysis of convergence and
determine when sufficient terms have been used with the dirpetrcentage error of/-matrix elements is provided for the
method. Numerical results for the normalized susceptancesplecific example of a wide strip in a rectangular waveguide.
a wide strip agree well with the measured data provided & patch array embedded in a rectangular waveguide has been
[4] (Fig. 5). modeled for applications in high-frequency EM and quasi-

As another example, a resonant patch array supporteddptical systems. The derivations here were incorporated in
dielectric slab in a rectangular waveguide (Fig. 6) is analyzedGSM simulator, which extracts circuit ports where active
for application in high-frequency EM and quasi-optical transdevices would be located [14]. This extraction of circuit
mitting and receiving systems [1], [2]. The structure resonatpsrts enables circuit—field interactions to be handled. The
at 8.6 GHz with a reflection coefficient 626 dB (Fig. 7). work can, therefore, be used to analyze structures consisting
The dispersion behavior of a phase angle is given in Fig. & multiple transverse layers of conductors in a possibly
showing the resonant properties of the structure. overmoded rectangular waveguide.

IV. CONCLUSION
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