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ABSTRACT

A state variable implementation of harmonic
balance circuit analysis for spatially distributed
systems is developed. The equations are formu-
lated with the minimum number of unknowns and
error functions starting from the modified nodal
admittance matrix of the linear part of the circuit.
The program uses advanced numerical techniques,
such as automatic differentiation to calculate the
Jacobian of the system and it is compatible with
port-based network descriptions which occur with
electromagnetic modeling.

INTRODUCTION

Steady state (harmonic balance) analysis contin-
ues to be the dominant approach to the simulation
of nonlinear RF and microwave circuits. Devel-
opment efforts are currently being directed at ex-
tending the approach to accommodate a very large
number of tones, improve robustness, and devel-
oping iterative matrix-free methods to handle very
large problems without explicit storage of the Ja-
cobian. One system that is of particular concern
is the simulation of quasi-optical power combin-
ers with hundreds of active devices with significant
thermal effects and distributed over an electrically
large region. This exacerbates the problem of ro-
bustness and of model development. Electromag-
netic analysis is essential in modeling electrically
large structures and this results in a characteriza-
tion in terms of ports.
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search Projects Agency (DARPA) through the MAFET
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This paper develops a robust harmonic balance
procedure compatible with a port-based network
description.

Model development is greatly simplified using a
novel implementation of automatic differentiation
technology.

NONLINEAR EQUATION FORMULATION

In this section the harmonic equations are for-
mulated with the minimum number of unknowns
and error functions starting from a modified nodal
admittance matrix of the linear part of the circuit.
This approach has the advantage that the flexi-
bility of the modified nodal admittance matrix is
kept together with the robustness advantage given
by the state variable approach.

The formulation of the system equations begins
with the partitioned network of Fig. 1, with the
nonlinear elements replaced by variable voltage or
current sources [2]. For each nonlinear element one
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Fig. 1. Network with nonlinear elements.

terminal is taken as the reference and the element is
replaced by a set of sources connected to the refer-
ence terminal. Clearly, the state of the element can
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be determined considering only the current of the
sources, or the voltages across the sources, or some
combination of the voltages and currents. Identify-
ing the local element reference eliminates one po-
tential state variable and one error function term
that would otherwise be considered if all of the
nonlinear element terminals were treated equally.
For example, in a conventional voltage-current for-
mulation the voltage and current associated with
the reference node need not be considered in the
nonlinear formulation. With the three-terminal el-
ement in Fig. 1, terminal 2 is chosen as the refer-
ence node and only two voltages, Vi = (V1 — V3)
and Vi = (V3 — V3), and two currents, I3 and I3,
are needed.

Using the state variable concept, let X be the
state variable vector. Each element of X is a vec-
tor with all the frequency components of the same
state variable, thus

T1,70 T1,f1  T1,f2 T1,fm
T2,f0 T2,f1  X2,f2 T2,fm

X — ! 1 y (1)
Tn,fo mnvfl Tn,f2 Zn,fm

We denote X; as the 7 th row of the matrix, i.e., all
the frequency components of the ¢ th state variable.

Now the equations can be formulated. Unlike[1],
here the equations are formulated in the frequency
domain. The current and voltage at the ¢ th ter-
minal of each nonlinear device are

Vi =
I;

Vi(Xky .-+, X1)
Li(Xk,..., X))

(2)
3)

where the element under consideration depends
only on the k& th to I th components of the state
variable vector. Since the state variable approach
is used, both the current and the voltage of the
nonlinear elements are needed for developing the
error function of the network.

Since the nonlinear elements are replaced by
sources, the modified nodal admittance matrix
(MNAM) of the entire circuit can be written for

each frequency:

MyiVsi = 5p: (4)
The source vector Sy; is composed of the fixed
sources present in the circuit and the state variable-
dependent sources due to the nonlinear elements.
For simplicity, assume that all the nonlinear
devices are replaced by current sources. Let
Ing 7i(X) be the vector with the currents of all
the nonlinear elements at frequency f;. These cur-
rents are ‘applied’ to the linear circuit. Then, the
source vector can be written as:

Sti = Sfixed,si + WINL,7i(X) (5)

Where W is a matrix that maps the nonlinear cur-
rents to the proper place in the source vector. This
matrix is composed only of zeros, ones and minus
ones, and it is the same for all frequencies since it
only contains topology information.

Provided that the MNAM is not singular, we can
calculate the voltages at the linear circuit given the
values of the state variables X:

V = M7 Sted i + M7 Winz i(X) (6)
We denote Unp, £i(X) the vector with the voltages
of all the current sources due to the nonlinear ele-
ments at frequency f; (port voltages of the nonlin-
ear elements). The error function is formulated by
comparing the port voltages of the nonlinear ele-
ments Unp,5:(X) with the port voltages at the lin-
ear circuit Ug ;(X). In order to obtain Ur s;(X),
we need to perform differences between the nodal
voltages of the current source’s terminals. This can
be accomplished by multiplying the nodal voltage
vector V by a matrix T such that the result are
the desired port voltages. It can be shown that W
is the transpose of T so that:

Up,si(X) = TM7] Sgixed, i + TM7 T vz, 1i(X)
(7)

The first term in this sum is a constant vector,
and the second is a constant matrix multiplied by
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a function of X. Then,

-1
= T™™ fi Sﬁxed, fi
™ 17

(8)
(9)

Sev,i 18 the state variable source vector, and the
matrix My, ¢; is the state variable impedance ma-
trix. )

The solution of the problem is achieved by find-
ing the zero of each error function

Ssv,fi
Msv,fi =

Fri(X) = U, si(X) = Un,;(X)=0  (10)

The complete system of equations is then

F(X) =
Ssv,50 + Moy, soINL,50(X) — Unr,50(X)
Ssv.f1 + Moy, 11INL 1(X) = Unr,1(X)

S sv,fm T - --
=0 ( 11)
The resulting system of equations is composed of
m + 1 systems each with n equations. If fp is de-
noted as being DC, then the dimension of the sys-
tem (and the number of unknowns) is (2m + 1),
since for each state variable a real component is
needed for DC, and a real and imaginary com-
ponent for each alternating frequency. This is
the minimum number of unknowns that can be
achieved, and it only depends on the nonlinear el-
ements and the frequencies considered.

After solving (11), the value of the state variable
vector is known, so finding the voltages (and the
current of the ideal voltage sources) for the entire
network is straightforward using (6).

Note that the entire analysis was performed in
the frequency domain. All the frequency mixing is
performed in the functions of (2), i.e., inside the
nonlinear devices. The particular method used to
calculate the currents and voltages from the state
variables in the frequency domain is not relevant
here.

IMPLEMENTATION

The goal in designing the program was to al-
low speed in development, to use “off the shelf”
advanced numerical techniques, and to allow easy
expansion and testing of new models and numerical
methods.

A. Modified nodal admittance matriz representa-
tion

For the MNAMs, the package Sparse 1.3 [5] is
used. It is a flexible package of subroutines writ-
ten in C that quickly and accurately solves large
sparse systems of linear equations. It also provides
utilities such as MNAM reordering, etc. There is
one sparse matrix per frequency. The linear system
solving capability is used to calculate the matrices

in (8) and (9).

B. Frequency-time conversion

Each nonlinear element has a function that given
the value of its state variables in the frequency do-
main, returns the phasors of the currents and volt-
ages at its ports. The actual calculation is per-
formed in the time domain, using the FFT to con-
vert between time and frequency domain. Multi-
tone analysis is supported by using artificial fre-
quency mapping [6]. This approach is more effi-
cient than the multidimensional Fourier transform,
and it is simpler to implement.

C. Solution of the nonlinear system

The nonlinear system is solved using the library
NNES [3]. It is written in Fortran and it provides
Newton and quasi-Newton methods with many op-
tions, such as the use of analytic Jacobian or for-
ward, backwards or central differences to approxi-
mate it, different quasi-Newton Jacobian updates,
two globally convergent methods, etc.

D. Automatic differentiation

The analytic Jacobian is calculated in the rou-
tine using Adol-C [4]. This is a software package
written in C and C++ that performs automatic
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Fig. 2. Layout for 2x2 quasi-optical grid amplifier with
bias inductors shown.

differentiation. The numerical values of derivative
vectors are obtained free of truncation errors at
a small multiple of the run time and randomly
accessed memory of the given function evaluation
program.

SIMULATION OF A QUASI-OPTIcAL GRID

The system modeled is shown in Figure 2 [7].
The input is a normally incident, horizontally po-
larized wave and the output is normal but verti-
cally polarized. The quasi-optical grid was mod-

eled by a multi-port admittance matrix [8] derived .

from a electromagnetic simulator.
The simulated and measured output power is
shown in Fig. 3.

CONCLUSIONS

An state variable-based harmonic balance anal-
ysis was developed for the simulation of spatially
distributed circuits, especially for quasi-optical cir-
cuits. The equation formulation used allows the
simulation of quasi-optical systems transparently,
without ground problems and redundancies pre-
sented by other formulations.
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