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Abstract—A full-wave moment-method technique developed for
the analysis of quasi-optical (QO) systems is used to model finite
grid structures in a lens system. This technique incorporates an
electric-field dyadic Green’s function for a grid centered between
two lenses. This is derived by separately considering paraxial
and nonparaxial fields. Results for the driving point reflection
coefficient of a 3� 3 and 5 � 5 grid in the lens system are
computed and compared with measurements.

Index Terms—Green’s function, moment methods.

I. INTRODUCTION

QUASI-OPTICAL (QO) techniques provide a means for
combining power from numerous solid-state millimeter-
wave sources without the use of lossy metallic inter-

connections. Power from the sources in an array is combined
over a distance of many wavelengths to channel power pre-
dominantly into a single paraxial mode, see Fig. 1. Progress
toward large, high-powered, efficient arrays is hampered by
the relatively crude state of design technology including the
lack of suitable computer-aided engineering (CAE) tools. In
particular, the many unit active circuits in a large array cannot
be individually optimized for efficiency and stability. This is
because no process has been developed to model impedances
and simulate the dynamic behavior of a finite array where most
of the array elements see different circuit conditions.

The QO modeling approach pioneered by the authors
[1]–[5], uses a full-wave moment-method technique and
an electric-field QO dyadic Green’s function. A series
of developments [1]–[3] culminated in a straightforward
methodology for developing a novel Green’s function of a
QO system. The electric-field dyadic Green’s function of
a QO system is derived in two parts: one part describing
the effect of the QO paraxial fields and the other part
describing the remaining fields. This form of the dyadic
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Fig. 1. QO lens system configuration with a centered amplifier array.

Green’s function is particularly convenient for QO systems
because of its relative ease of development. It did, however,
necessitate the development of an advanced method of
moments (MoM) approach combining spatial-domain and
spectral-domain techniques to model a QO open-cavity
resonator [4]. With this formulation, the field solver can be
conveniently used in the development of circuit-level models
of QO systems.

In this paper, the authors present the derivation of the
electric-field dyadic Green’s function for the lens system
shown in Fig. 1 and incorporate it into the moment-method
routine developed in [4]. Simulations and measurements of a
unit cell, a 3 3 grid, and a 5 5 grid, all on dielectric
substrates and placed in the lens system, are performed to
verify the Green’s function. Results for finite grid structures
in free space were presented in [5].

II. DYADIC GREEN’S FUNCTION OF LENS SYSTEM

The approach used in [2], [3] to develop a dyadic Green’s
function for a QO open-cavity resonator is used here to
develop a Green’s function for the system shown in Fig. 1.
As usual, the electric field

(1)

where is the electric-field dyadic Green’s function and
is the electric-current density source used to excite the

fields, the primed notation denotes the
source coordinates and the unprimed notation
denotes the observation coordinates. The special insight in
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Fig. 2. Cross section of the lens system showing the test field.

the technique discussed here is the derivation of in the
following two parts:

(2)

where and refer to the nonmodal and modal fields,
respectively. Thus, the paraxial fields (QO modes), which are
largely responsible for distant interactions in the QO system
and the corrected free-space (nonmodal) interactions respon-
sible for near neighbor interactions, are separately considered.
The derivation of these parts is described below.

A. Modal Component—

In the lens system, the modal electric fields are approx-
imated as the superposition of Hermite–Gaussian traveling
wavebeams, (given in [1], [4]). The first step in deriving
the modal component of the Green’s function is to
introduce a test field in the system which is excited by a single
wave-beam mode with unit amplitude at as shown in
Fig. 2. The test field

(3)

where the coefficients are determined by the boundary con-
ditions at each lens in terms of transmission and reflection
coefficients. At the first lens the transmission and
reflection coefficients are and , respectively.
and are the corresponding coefficients for the second
lens at .

Fig. 3. Cross section of the lens system showing the source field.

The next step in the derivation is to introduce a source. The
source field excited by a current density source ,
as shown in Fig. 3, is

(4)

being the superposition of all QO modes. The coefficients in
(4) are determined using the same transmission and reflection
coefficients used in the test-field solution. For the source field,
there are five equations and six unknowns so the solution is
found in terms of , which in turn, is found using the
Lorentz reciprocity theorem. For this problem, the Lorentz
reciprocity theorem is stated as follows:

(5)

where the surface bounds the volume . The
magnetic source and test fields, and , are determined
by making a TEM approximation which is valid near ,
since the phase fronts are flat here. Thus

(6)

A similar result is obtained for a -directed current source.
Combining (1) and (4), the modal Green’s function is as shown
in (7) at the bottom of the page, where is the transverse

(7)
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Fig. 4. Fields excited by a current element in free space.

Fig. 5. A 5� 5 QO grid along with the cell subdivision used. The dotted
box indicates the extended unit cell modeled and the dashed box indicates
the 3� 3 grid modeled.

Fig. 6. Technique for measuring the driving point reflection coefficient of
the finite grid array.

unit dyad, and .
Techniques for computing and are given in [2]. The
modal Green’s function contains no cross terms due to the

(a)

(b)

Fig. 7. Driving point reflection coefficient. (a) Magnitude and (b) phase of
the unit cell: solid line, simulation; dashed line, measurement.

orthogonal properties of the Hermite–Gaussian wavebeams.
Also note that is described in the spatial domain where
it is most conveniently represented.

B. Nonmodal Component—

The nonmodal component is found by removing the paraxial
components from the open space (i.e., free space or

dielectric slab) dyadic Green’s function, (see Fig. 4)

(8)

is just the paraxial (modal) component in (7) but with the
lenses removed ( , and
). Spectral-domain representation of the dielectric slab
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(a)

(b)

Fig. 8. Driving point reflection coefficient. (a) Magnitude and (b) phase of
the 3� 3 grid: solid line, simulation; dashed line, measurement.

Green’s function (obtained here by using the con-
ventional immittance approach [6]) is required to avoid the
singularity that would otherwise occur when the source and
observation points are co-located.

C. Final Expression

The final dyadic Green’s function is evaluated in two parts,
, where represents

the contribution of the QO modes and represents the
free space or dielectric slab (direct radiation) contribution.
(This reorganization of the Green’s function from that in
(2) is required to separate the spatial domain, , and
spectral domain, , formulations.) The moment-method
technique developed in [4] uses a mixed spectral-domain and
spatial-domain formulation and was used here to implement

.

(a)

(b)

Fig. 9. Driving point reflection coefficient. (a) Magnitude and (b) phase of
the 5� 5 grid: solid line, simulation; dashed line, measurement.

III. COMPUTED AND EXPERIMENTAL RESULTS

Measurements and simulations were performed in the lens
system of Fig. 1 for the grid structures illustrated in Fig. 5.
The convex lenses were made of Rexolite 1422 ( )
with a diameter of 45.72 cm, focal length of 58.74 cm, and
were spaced at twice the focal length. The grids were on a
dielectric substrate with and thickness 9.5 mm.
The driving point reflection coefficient measurements were
done using the technique shown in Fig. 6 with an HP 8510C
network analyzer. The center conductor of a semirigid cable
is soldered to one side of the gap and a wire conductor is
soldered to the other side of the gap and outer conductor
of the cable. Measurements show that this transition from
the unbalanced coaxial line to the balanced twin lead line
results in a small discontinuity. The calibrated reference plane
is located some distance down the line from the transition
(see Fig. 6) and the measurements were deembedded, taking
into account the length of the line from the reference plane
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Fig. 10. A 3� 3 QO shorted grid along with the cell subdivision used.

to the gap, and the attenuation loss of the line over this
distance. The discontinuity from the transition was neglected.
The cable was perpendicular to the grid with an absorber
placed around the cable to avoid interference with the fields
from the grid.

The driving point reflection coefficient was computed and
measured at the node and with all the other
gaps left opened and is shown in Figs. 7–9 for the extended
unit cell, 3 3 grid, and 5 5 grid. The extended unit cell
was used instead of a standard unit cell to match resonant
frequencies with the 3 3 and 5 5 grids. The unit
cell or extended unit cell has no meaning on its own and
is only used here for comparison with the other grid arrays.
From these results, one can observe that there is mutual
coupling between the grid elements, which is nonexistent in
the extended unit cell. The difference between the 33 and
5 5 grids is small, but more mutual coupling is noticed in
the latter. The simulations were efficient requiring 50 s per
frequency point and 5 Mbytes for simulations of the 55
grid.

To illustrate edge effects of finite grids, simulations and
measurements for the grid shown in Fig. 10 were performed
for the center and corner gaps with all the other gaps in the
grid shorted. The results are shown in Fig. 11 for both cases.
The measurements are less accurate for the edge and corner
gaps due to the symmetry lost in the structure since a balun is
not used. The results indicate that the input impedance of edge
and corner gaps differ from that of the middle gap due to the
finite extent of the grid. This variation, as well as the direct
coupling between cells, is not incorporated in unit-cell-based
modeling of QO systems [8]. The unit-cell approach assumes
the grid array to be infinitely periodic. With this assumption,
the grid structure is modeled by only considering the unit cell
with magnetic- and electric-wall boundary conditions applied
to the outer edges of the unit cell to emulate an infinite grid
array. Therefore, the coupling that is considered is a result
of these boundary conditions and does not account for direct
coupling from nearby unit cells. Due to the differences in

(a)

(b)

Fig. 11. Driving point reflection coefficient magnitude. (a) Middle gap and
(b) corner gap of the 3� 3 shorted grid: solid line, simulation; dashed line,
measurement.

the unit-cell formulation and the finite grid formulation, it
is difficult to show a direct comparison between the two
methods.

IV. CONCLUSION

A full-wave moment-method implementation has been de-
veloped for the analysis of finite grid structures in a QO
lens system. This implementation includes the derivation of
a dyadic Green’s function for this system and a moment-
method scheme utilizing both spatial and spectral domains for
efficient and numerically stable computation of the moment
matrix elements. As a verification of the moment method,
simulated results have been shown to compare favorably with
measurements. The significance of the modeling work is that:
1) finite sized grids are considered and 2) it is broadband
(from dc to any frequency) as required in CAE. From a
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system development point of view, the design of each element
in the array can be individually optimized to achieve an
optimum global solution in terms of stability, output power,
and efficiency.

The moment-method simulator is currently being used to
find the multiport parameters from a finite grid array. In this
analysis, each unit cell in the grid array is characterized as a
four-port network with the ports defined to be at the terminals
of the gap with respect to a common reference terminal.
The 5 5 grid array presented in this paper is represented
as a 100-port network with coupling considered between all
ports. The port matrix, computed with the moment-method
simulator, is converted to a nodal admittance matrix, which is
then incorporated into a microwave circuit simulator such as
harmonic balance.
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