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ABSTRACT

The current state-of-the art of oscillator simulation techniques is presented. Candidate
approaches for the next genertion of oscillator simulation techniques are reviewed. The
method is presented which uses an efficient and robust convolution-based procedure to in-
tegrate frequency-domain modeling of a distributed linear network in transient simulation.
The impulse response of the entire linear distributed network is obtained and the algorithm
presented herein ensures that aliasing effects are minimized by introducing a procedure that
ensures that the interconnect network response is both time-limited and band-limited. In
particular, artificial filtering to bandlimit the response is not required.

I. Introduction

Large signal simulation of microwave oscillators is necessary to provide steady-state char-
acterization of oscillator performance. Such quantities as power and harmonic content in-
formation are then readily available. This is particularly important in achieving first pass
successful design of monolithicly integrated oscillators. Circuit simulation of microwave os-
cillators by the method of harmonic balance is reasonably mature with several commercial
products available and used on a regular basis and been adapted to some rather unusual
applications, e.g. [44]. However large signal oscillator analysis in the time domain using
programs such as SPICE [20] enables the build-up of oscillations to be observed. In spite
of being time-consuming and the difficulty of determining the time at which steady state
is obtained, time-domain simulation techniques have the ability to predict the start-up of
oscillation in addition to the frequency of oscillation and non-steady-state behavior. There
a many difficulties in applying transient analysis techniques to distributed circuits but these
are gradually being addressed. The near future will see a rapid development of these tech-
niques and will be used regularly in microwave oscillator simulation. In this paper we review
the current state of microwave oscillator simulation using the harmonic balance approach
and describing function methods. We then consider the current state of transient microwave
oscillator simulation and focus on transient simulation techniques that have potential for
microwave oscillator simulation. We present a new method of transient simulation which
integrates the distributed nature of microwave circuits into a transient simulator by using
convolution of the impulse response of the linear circuit. Particular attention is given to
reducing aliasing effects in deriving the impulse response and in handling of high Q linear
circuits.

II. Harmonic Balance Techniques

The obvious approach to free-running oscillator analysis is to use the harmonic balance
equations developed for the circuit and to include the oscillation frequency as an additional
optimization variable. This method has been used by a number of workers [5], [6]. Generally,

1Keynote talk — Workshop on Nonlinear Microwave CAD, Germany, October 1992.



one of the variables that would be used as an optimization variable in examining a non-
autonomous circuit2 is eliminated, for example, by setting the phase of a voltage or current
to zero. Usually, with this approach, the simulated results tend to converge to a degenerate
solution [7] (e.g. all currents equal to zero is also a solution of Kirchhoff’s current law which
is the basis of the harmonic balance equations.), or else the initial setting of the oscillating
frequency must be very close to the final result [6].

The degenerate solution can be avoided by incorporating additional criteria in the system
objective function. This was done by Sterzer [8], in the early 1960’s, in calculating the output
power of a GaAs tunnel diode oscillator by incorporating the Kurokawa oscillation condition
[9]. Also, in the early 1980’s, Solbach [10] working with a Gunn diode oscillator and Bates [11]
examining an IMPATT diode oscillator, predicted the frequency and output power by solving
multifrequency forms of Kurokawa’s oscillation condition [12] using frequency-domain power-
series analysis techniques. However, the work on single diode oscillator circuits cannot be
directly extended to general nonlinear oscillator circuits as unique characteristics of the diode
or specialized analysis strategies are employed. In recent work from our group we presented
method of autonomous circuit simulation which incorporates the Kurakawa conditions in
a general purpose harmonic balance framework [40]. Kurokawa’s oscillation condition is
coupled with the modified nodal admittance form of the circuit equations to avoid degenerate
solutions. The algorithm has been implemented using both harmonic balance and frequency-
domain spectral balance techniques. A range of possible oscillation frequencies is specified
and a ‘random walk’ frequency search conducted until a convergent starting point was found.
This is an inefficient procedure and has been modified at Compact Software, Inc. [1] to use
an initial linear circuit bifurcation search to obtain a valid initial frequency guess. For low
level oscillations and in simulating high Q oscillator circuits this initial frequency guess is
extremely accurate.

Rizzoli et al. [2], [3] proposed a method (implemented in [4]) based on the harmonic
balance technique for oscillator synthesis. The oscillation frequency is fixed while one cir-
cuit parameter is optimized to ensure that the harmonic balance equations are satisfied at
that frequency. This method is numerically efficient and yields well-defined and accurate
results. However, this method is not directly amenable to free-running oscillator analysis
as the frequency is fixed and a degree of freedom, such as a tuning element or the load
impedance, varied until harmonic balance is achieved. By repeating this process for a num-
ber of frequencies a curve of frequency versus the degree of freedom is obtained. In this
manner oscillators can be analyzed without involving autonomous circuit simulation. This
is particularly advantageous as the time required to simulate the linear subcircuit is typically
much greater than the time required to simulate the nonlinear subcircuit and the frequency
searching approach requires very many linear circuit evaluations. In contrast the synthesis
approach requires a single linear subcircuit evaluation for each steady-state point found.

In a hybrid of the frequency searching and synthesis techniques, Elad, Madjar and Bar-
Lev [42] begin with a nonautonomous harmonic balance analysis of the oscillator circuit
operating under small signal conditions using, as an intial guess, an oscillation frequency
determined from small signal analysis. As the amplitude of oscillations is allowed to increase
the linear circuit is adjusted to prevent the oscillation frequency from deviating from its
small signal value due to small signal effects.

Frequency domain techniques for the simulation of microwave oscillators have most re-
cently been reviewed by Rizzoli, Neri, Ghigi and Mastri [48] where frequency domain oscilla-
tor design approaches and stability analysis techniques are considered and are not considered
here. aspects.

III. Describing Function Techniques

Many workers have implemented noniterative nonlinear analyses of free-running oscil-
lators using describing function techniques [13], [14] (commonly used in nonlinear control
system analysis) and functional expansions (generally based on Volterra series techniques

2A non-autonomous circuit is one in which the frequencies of signals are determined by signal sources.
For example, an amplifier is a non-autonomous circuit.
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[15], [16], [17], [47] but also using specialized functional expansions [18]). In these tech-
niques, the system equations and oscillation criteria are combined to yield a set of algebraic
equations which can be solved recursively. However, these methods are restricted to weakly
nonlinear oscillators. Cheng and Everard [19] used a spectral balance approach to analyze a
microwave FET oscillator. They used a Volterra series technique to generate the harmonic
components but, since they used power series expansions of the nonlinear element charac-
teristics, their technique is not restricted to weakly nonlinear oscillators. In their method
they converted an oscillator into a one-port network by making a break somewhere in the
circuit. This leads to the oscillation criteria that the impedance looking into this port is
zero at the fundamental and at all harmonics. A relaxation algorithm is used to solve for
this condition. The relaxation algorithm, however, has poor convergence properties and the
use of Volterra-series-based nonlinear analysis is restrictive (limiting the analysis to one di-
mensional nonlinearities and, unless power-series-like descriptions are available, to weakly
nonlinear oscillators).

IV. Transient Techniques

All of the above techniques assume that a periodic steady-state solution of the system
equations exist and then proceed to derive it. In contrast, large signal oscillator analysis in
the time domain using programs such as SPICE [20] enables the build-up of oscillations to
be observed [21] as well as chaotic behavior [35]. In spite of being time-consuming and the
difficulty of determining the time at which steady state is obtained, time-domain simulation
techniques have the ability to predict the start-up of oscillation in addition to the frequency
of oscillation and non-steady-state behavior (e.g. chaotic behavior). It is also easier to incor-
porate physical device models (e.g. those described by coupled partial differential equations
or electron statistics) in time-domain simulations [22], [23], [24].

The Kurokawa oscillation criterion was incorporated in the system error function in an
harmonic balance program in which the oscillating frequency is used as an independent
variable¿ The problem was formulated so that the resulting set of equations can be solved
using the Newton method to speed convergence. The method also has good convergence
properties so that the initial setting of the frequency variable need not be very close to the
actual oscillating frequency.

While the steady-state performance of microwave oscillators is of considerable interest and
enables oscillators to be synthesized, an oscillators transient performance is critical as such
as attributes as chaotic behavior, start-up performance can only be predicted via transient
simulation. In some cases it is possible to acquire some measure of performance of some time-
domain based phenomena by approximating the transient behavior with a pulse sequence
which has a Fourier description of manageable size. An example is the analysis of injection
locking behavior in the recent work of number of a number of groups [38], [51], [53], [54], [55],
[56], [52] [57]. Nonlinear simulation of power combiner is a particular case where transient
analysis reigns supreme as prediction of transient and multifrequency behavior is generally of
much greater importance than determining single frequency behavior. An harmonic balance
simulator would to to assume that each oscillator is frequency locked, then searches for
signal amplitudes, phases, and the system oscillation frequency. The derivation of this linear
model should be physically based so that design parameters can be modified to improve
power combiner performance.

York and Compton have studied weakly coupled oscillators [50]. Individual oscillators
were characterized by their free running frequency, free running oscillation amplitude, and the
oscillator external Q. Starting with an equation similar to Adler’s equation, an expression
was derived from which the array oscillation frequency and phase distribution could be
numerically determined. The stability of various phase distributions was investigated. A
simplified example of four identical oscillators was analyzed and it was concluded, for free
space coupling, that the oscillators must be separated by distances equal to multiples of
one wavelength. This spacing is generally undesirable as it produces of radiation pattern
grating lobes and it precludes a high area density of oscillators. Observations were made
that array end effects are significant for small arrays, and that tight tolerances are necessary
to achieve synchronization of weakly coupled oscillators. Experiments were conducted using
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4 × 4 arrays of Gunn diodes and MESFET’s with rectangular microstrip patch antennas.
Synchronization was achieved by use of an open, low Q, rectangular cavity. Modification of
the theory is required to include the effects of the resonator on array behavior.

Stephan has used an analysis similar to Kurakawa’s to derive a set of time domain dif-
ferential equations which describe the behavior of a network of lumped element coupled
oscillators [68]. The nonlinear equations were solved numerically assuming that the active
devices were purely conductive. The results were not extended to distributed circuits how-
ever. Stephan and Young [69] have modeled the mode selection and frequency pulling of two
Gunn diode oscillators which were coupled through direct radiation.

The fundamental difficulty encountered in integrating distributed microwave element
models in a transient circuit simulator arises because circuits containing nonlinear devices or
time dependent characteristics must be characterized in the time domain while transmission
lines and other distributed structures are best simulated in the frequency domain. Djordjevic,
Sarkar and Harrington [25, 26, 29] and Schutt-Aine and Mittra [27, 28] were among the first
to present general techniques for simulating such systems. These methods were based on
developing the impulse response of the linear circuit and incorporating this characterization
in a transient circuit simulation using a convolution operation. The subject described in
these publications is concerned with the simulation of interconnects, particularly coupled
lines, but it does form the basis for a more generally applicable analyses. More recently the
asymptotic waveform evaluation (AWE) method has been developed which approximates the
linear subcircuit by a limited order pole-zero description and so currently has the potential
for handling essentially lumped microwave circuits. Currently much of this work is directed
at the incorporation of transmission lines in high speed digital system simulation.

IV.A Asymptotic Waveform Evaluation

In the special case of no nonlinear devices the entire network can be modeled in the
frequency-domain and the transient (albeit periodic) response of the circuit determined by
inverse Fourier transforming the appropriate voltage and current phasors. However if an
s-domain transfer function is first fitted to the frequency domain response then the response
of an arbitrary network can be incorporated in transient analysis by using the asymptotic
waveform evaluation technique pioneered by Rohrer et al. [66]. The extension of this tech-
nique to arbitrary interconnects was performed by Nakhla et al. [61] [63] [62] and has also
been extended to more general distributed circuits [67]. Nakhla et al. show that given with
the frequency-domain characteristics of the distributed circuit it is a simple matter to auto-
matically generate the transient response function through inverse Laplace transformation
[60]. The inverse Laplace transform operation is segmented in such a way that it can be
incorporated into the modified nodal admittance matrix of the associated discrete circuit
model. Thus very efficient simulation of networks for which only frequency domain informa-
tion is available can be achieved. The accuracy of this method is limited in the first place by
the modeling of the interconnect by a finite number of poles. Unfortunately the response of a
distributed interconnect approximates a pole-zero response only poorly. The big advantage
is that the technique should be marginally faster than other transient analysis techniques as
the response of the distributed network is described by just a few poles and their residues
rather than by 1000 or so discrete frequency values.

IV.B Convolution Techniques

In one of Djordjevic et al’s techniques [29], the frequency-domain admittance (Y) param-
eter description of a distributed network is converted to a time-domain description using a
Fourier transform. This time-domain description is then the Dirac delta impulse response of
the distributed system. Using the method of Green’s function the system response is found
by convolving the impulse response with the transient response of the terminating nonlinear
load. Normally this requires that the impulse response be extended in time to include many
reflections. While this technique can handle lossy coupled networks, a difficulty arises as
the y parameters of a typical multiconductor array have a wide dynamic range. For a low
loss, closely matched, strongly coupled system, the Y parameters describing the coupling
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mechanism approach zero at low frequencies and become very large at high frequencies.
Conversely the transmission and self-admittance Y parameters approach infinity at DC and
zero at resonance frequencies. Both numerical extremes are important in describing the
physical process of reflections and crosstalk. The dynamic range of the time-domain solu-
tion is similarly large and values close to zero are significant in determining reflections and
crosstalk. Consequently, aliasing in the frequency-domain to time-domain transformation
can cause appreciable errors in the simulated transient response.

An alternative formulation that avoids the dynamic range problems is that of Schutt-Aine
and Mittra [28] who use a scattering parameter formulation to consider a parallel coupled
transmission line system. This approach offers good computational stability and efficiency.
If a scattering (S) parameter is small in magnitude, it corresponds to a small coupling,
transmission, or reflection component. If the S parameter is near one in magnitude it cor-
responds to a significant reflection, transmission, or coupling component. Correspondingly,
in the time domain, components with a small magnitude are less significant. Consequently
dynamic range errors in the frequency- to time-domain transformation are not so important.

The Laplace transform-based techniques, and the AWE techniques extend the range of
transient analysis of distributed systems to the high 100’s of MHz. For systems operating
at GHz frequencies and above, convolution-based techniques appear to be the only viable
approaches as they use the frequency-domain characterization of the distributed network
with no modification. Convolution-based techniques inverse transform (e.g., using Fourier,
Hankel or Laplace transformation) the frequency domain characterization of the distributed
network to obtain its impulse response of the network. Transient analysis is achieved us-
ing convolution of this impulse response with the voltages at the terminals interfacing the
interconnect network with the remainder of the circuit. Generally low pass filtering of the
frequency-domain parameters is required to ensure that they are band-limited or else alias-
ing effects may result in non-causal response and numerical convergence problems. As well,
the impulse response derived must be time limited and this is achieved by terminating the
linear network in the average characteristic impedance of the transmission lines in the net-
work. Even with all of these considerations performance has not been completely accurate
as non-causal effects, aliasing , and Gibb’s phenomenon often lead to numerical convergence
problems. The most serious of these problems is non-causal effects which are due to the
artificial filtering required to band-limiting frequency-domain parameters. This is a problem
with all convolution-based techniques proposed to date. The various methods differ in the
way in which the frequency-domain parameters are derived, the attention given to limit-
ing the dynamic range of the response presented to the inverse Fourier transformation, and
actions taken to limiting the time response and band-limit the frequency response of the
network. These are required to minimize aliasing effects upon Fourier transformation or nu-
merical inversion of the Laplace transform. All of the techniques can be adapted to function
with a transient simulator. The techniques develop a green’s function relating the voltage
or current response at one port of the distributed network to the voltages at past times and
at all ports of the network. Djordjevic et al. [64] limit the time response by introducing
a augmentation network to terminate transmission lines in their approximate characteristic
impedance. The inverse Fourier transform of the y parameters of this augmented network is
calculated and the effect of the augmented network removed in transient analysis.

The convolution-based technique presented here uses naturally band-limited parameters

IV.C Shooting Methods

Shooting methods are a specialized form of time-domain analysis applicable to circuits
with strictly periodic excitation [70] [71], [72], [73], [74], [75]. They bypass the transient
response altogether and are advantageous in situations that would require many iterations
for the transient components to die out, if direct integration methods were used. It is assumed
that the nonlinear circuit has a periodic solution and that the solution can be determined
by finding an initial state such that transients are not excited. If x(t) is the set of state
variables obtained by a time-domain analysis, the boundary value constraint for periodicity
is that x(t) = x(t+ T ) where T is the period. A series of iterations at time points between
t and t + T can be performed for a given set of initial conditions, and the condition for
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periodicity checked. Thus in the shooting method the problem of solving the state equations
is converted into the two-point boundary value problem [71, 72]

x(0) = x(T )

x(T ) =
∫ T

0
f(x, τ )dτ + x(0) (1)

where T is the period such that
x(t) = x(t+ T ).

if x(t) is indeed the solution. If x(t) 6= x(t+T ) then a new set of initial conditions can then
be determined using a gradient method based upon the error in achieving a periodic solution.
Once the sensitivity of the circuit to the choice of initial conditions is established in this way,
a set of initial conditions that establishes steady-state operation can be determined; this set
is, of course, the desired solution. This iterative procedure can be implemented using the
Newton’s method iteration

Xk+1(0) = Xk(0)−
[
I− ∂Xk(T )

∂Xk(0)

]−1

[Xk(0)−Xk(T )] (2)

where the superscripts refer to iteration numbers and Xk(T ) is found by integrating the
circuit equations over one period from the initial state Xk(0).

To begin the analysis the period (T ) is determined and the initial state (X(0)) is esti-
mated. Using these values, the circuit equations are numerically integrated from t = 0 to
t = T and the necessary derivatives calculated. Then, the estimate of the initial state is
updated using the Newton iteration or alternative optimization scheme [74] may be used as
calculation of the derivatives required for the Newton iteration can be time consuming for
large problems. This process is repeated until X(0) = X(T ) is satisfied within a reasonable
tolerance.

The computation becomes further complicated when transmission lines are present, be-
cause functional initial conditions are then required to establish the initial conditions at
every point along the line (corresponding to the delayed instants in time seen at the ports
of the line).

Multiple shooting algorithms have been developed which enable a circuit to be partitioned
into two component networks and a different shooting algorithm applied to each part [76].
This algorithm is the basis of the FATE method — FATE being an acronym for Frequency
and Time Evaluation of an oscillators periodic steady state [31], [37] In FATE the resonant
tank circuit is partitioned from the rest of the circuit which now may comprise just the
active device and a few linear, lumped device parasitics. An unrestricted standard shooting
algorithm can be applied to the nonlinear lumped subcircuit but the tank circuit is assumed
to have a single frequency response. The difference between the two sets of waveforms is
then minimized using the Newton method.

IV.D Alternative Methods

There are many other transient analysis techniques that could lend themselves to oscillator
simulation. Work that deserves particular mention is that of Sobhy et al. [33], [36], [32]
who have developed state equation based analysis of distributed circuits. The analysis takes
place using direct integration of the state equations and a method has been developed to
handle distributed elements to some extent. Similarly a traditional time-marching scheme
allows numerical device models to be used in conjunction with restricted distributed circuits.
[24]. [49]

VI. Simulation of a Quasioptical Oscillator
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Figure 2: IMPATT diode model.

An example of the use of convolution-based transient simulation is the analysis of the
quasioptical power combining oscillator shown in Fig. 1. The purpose of this work is to
investigate strange and currently unpredictable phase-locking behavior. Current design and
operation concerns of quasi-optical combining systems largely involve locking behavior. Much
of the concept behind quasi-optical power combining relies on global locking of the various
oscillating elements. However maximizing the power extracted from the system requires
that the elements be placed relatively closely to each other. This increases the nearest
element interactions so that local locking rather than global locking becomes dominant.
However some local locking is required to ensure that the sources initially lock. To model
these effects transient simulation is required. We have used an existing convolution-based
transient simulator [58] and [65] to successfully analyze a simple model of a quasi-optical
cavity oscillator with a single IMPATT diode source. The IMPATT diode model used was
that of Goeller and Kaertner [45], see Fig. 2. For the simulation their parameters were used.
The simulation strategy uses the impulse response of the linear circuitry to interface the
frequency-dependent cavity model to the nonlinear oscillating element model. Interfacing is
achieved through convolution. The major problem of using a convolution based approach is
handling the the cavity. The unloaded Q of the cavity is about 300,000 so special techniques
were developed to permit the cavity to be described by its impulse response. This is described
in the next section.

VI.A Convolution Method Development

In convolution-based analyses the distributed network can be partitioned into a linear
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subcircuit and a nonlinear subcircuit, Fig. 3. Each time-domain y parameter (being the
Fourier transform of the corresponding frequency-domain y parameter) is then the response
of the current with respect to an impulse voltage at one of the ports of the network, i..e.
yij(t) = ii(t)/vj(0). Other parameters such as S parameters have been used principally
because these parameters intrinsicly have a limited range (between 0 and 1). Reflections
in the circuit are reduced by terminating each port in its reference impedance so ensuring
that there are no reflections at the ports of the distributed network. This is illustrated by
considering the augmented network of Fig. 4 with ports terminated in Thevenin equivalent
loads (or sources) each with reference impedance Zm. The procedure follows the devlopment
in [58] and [65].

VI.B Quasioptical Cavity Model

The cavity model is based on an impedance matrix of a dipole array in a quasi-optical
resonator [30]. This model develops an impedance matrix of the cavity with respect to the
diodes in the resonator, see Fig. 5. The impedance matrix is developed by considering the
fields in the cavity and a reflector using the field distribution shown in Fig. 6. The reflector
is described by its reflectance R which is -1 for a perfectly reflecting surface. Typically
there is very little loss at the reflector and the cavity has an extremely high unloaded Q.
In order for us to perform an FFT of the frequency domain data as required in using the
convolution-based transient analysis method we must develop a technique for reducing the
Q of the cavity in the frequency domain description and reconstruct it during transient
analysis. One mechanism for doing this is to introduce an additional port at the reflector as
shown in Fig. 7. So that the previous work on cavity modeling can be reused we develop
the model of the cavity with the additional port by placing loads (i.e. different R values)
at the reflector port and recalculating the impedance matrix of the reflector. This was

implemented by deriving the equivalent impedances of the mirror (=
√
µ/ε(1 + R)/(1−R)
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and then using a standard three load calibration procedure. The dynamic-range-limiting
and band-limiting requirements for the frequency domain parameters necessitates using an
augmentation network at the reflector terminals so that the circuit simulated is as shown
in Fig. 8. The augmentation network is included in the frequency domain characterization
of the cavity and so its effect appears in the impulse response of the circuit. Subsequently
the effect of the augmenting circuit is removed during transient analysis through the use
of a complementary network. Note that the complementary network and reflector surface
element are linear and resistive so that it would seem that they could have been absorbed
into the cavity model. However in effect what we have done is introduce an additional state
variable in the transient analysis which enables the original low loss and high Q nature of
the quasioptical cavity to be reconstructed during transient analysis.

The distance between the flat reflector and the parabolic reflector was 6.02 cm which was
approximately equal to the focal length of the reflector. Simulation of the cavity yields a
very rich set of resonances as shown in the admittance plot with a perfectly reflecting mirror
shown in Fig. 9 Experimentally it has been found that multifrequency oscillation at several
of the modes may occur at high bias levels. Since this is unforseen performing an harmonic
balance analysis on this circuit would not predict this effect.

VI.D Results

The single diode quasioptical cavity was simulated using a simplified distributed model of
the cavity owing to problems in correctly modeling the input impedance of the cavity at DC
and at very low microwave frequencies. After thresholding the impulse response the impulse
response of the cavity essentially consisted of a y11 free space admittance term at time 0 and
a y12 impulse response at 0.1035 ns corresponding to the transit time of the cavity which
after a round trip almost exactly canceled the response at time zero. The current response
is given in Fig. 10.

VII. Conclusion
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A method for modeling arbitrarily complex distributed oscillators was presented. How-
ever the main focus of this work was examining the applicability of time domain analysis
technqiues to the simulation of microwave and millimeter wave oscillators. It appears that
convolution techniques will allow the distributed nature of microwave circuits to be inte-
grated in transient simulation. At this point announcements have been made by to vendors
(Hewlett Packard and Compact Software, Inc.) to release such tools.
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