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Abstract —The problem of extracting a physically based equivalent
circuit model for a HBT transistor from S-parameter measurements is
solved with a new formulation of simulated annealing. The physical
model necessary for an accurate representation of the HBT leads to an
extraction problem with many local minima. A satisfactory minimum
can be found by conventional gradient-based techniques only with con-
siderable expert guid The proposed algorithm finds equivalent
circuits as good as those from conventional techniques but without
human intervention. It is more efficient than the conventional stochastic
simulated annealing because it accumulates a probability density of
good equivalent circuits which it subsequently uses to refine its statisti-
cal search for the best equivalent circuit.

I. INTRODUCTION

S QUANTITATIVE accuracy in the design phase

becomes critical, it becomes increasingly important
to develop accurate transistor equivalent circuit models.
Although the equivalent circuit characterization tech-
nique is widely used, the lack of a general-purpose global
optimization scheme has prevented the application of
realistic, physically based equivalent circuits and the in-
corporation of physical insight into the optimization pro-
cess.

Gradient descent algorithms are most commonly used
in parameter extraction, but even when these algorithms
are restarted from several randomly chosen initial points,
results are seldom satisfactory. Measurement error cou-
pled with the large number of elements of a physically
based equivalent circuit leads to an error function (the
difference between the S parameters calculated for the
equivalent circuit and those measured) with many non-
physical local minima in addition to the global minimum.
The number of additional minima grows rapidly as the
number of elements of the equivalent circuit is increased,
and gradient-based algorithms generally terminate in one
of these. Expert consideration of the equivalent circuit at

Manuscript received August 14, 1989; revised June 28, 1990. This
work was supported in part by a National Science Foundation Presiden-
tial Young Investigator Award (Grant ECS-8657836) to M. B. Steer.

The authors are with the High Frequency Electronics Laboratory and
the Center for Communications and Signal Processing, Department of
Electrical and Computer Engineering, North Carolina State University,
Raleigh, NC 27695-7911.

IEEE Log Number 9038474.

a local minimum with respect to the actual physics of the
device can be used to estimate a superior starting point
for another gradient-based optimization. This process is
painstaking but can result in realistic equivalent circuits
for the HBT transistor.

An alternative to gradient descent has recently been
proposed by Vai et al. [1], who used simulated annealing
(SA), a near global optimization technique, for the pa-
rameter extraction of an eight-element equivalent circuit.
In SA, a current equivalent circuit is perturbed and the
new error for the candidate is calculated. If its error is
smaller, this candidate circuit replaces the current circuit
as in a descent-algorithm-based parameter extractor. But,
sometimes, in distinction to descent-based procedures, a
candidate with a larger error may be accepted in accor-
dance with a precise probabilistic criterion which becomes
less tolerant of “bad” moves at late stages of the algo-
rithm. The success of this approach depends on generat-
ing moves that are neither always accepted nor always
rejected [2]. Designing a generator that maintains this
balance can become more difficult as the dimension of
the error function increases: for continuous optimization
this difficulty can become insurmountable at five to ten
dimensions [3]. This difficulty arises when the error func-
tion is “highly anisotropic” in the vicinity of important
minima [3]. Another difficulty with the perturbative ap-
proach to simulated annealing is when the error function
is “too irregular” and has many deep local minima, or
“gopher holes,” as they have been called in the literature
of circuits and devices [4]. Many circuit optimization prob-
lems, including parameter extraction, have error functions
with many gopher holes and so are ill suited to perturba-
tive simulated annealing [4].

We report here a parameter extraction procedure which
tolerates gopher holes. As such it can be adapted to many
circuit optimization problems. However it was specifically
developed for the extraction from measurements of the
parameters of microwave transistors. This is one of the
most difficult optimization problems, as the measured
data are corrupted by measurement uncertainties and the
assumed lumped element equivalent circuit can only ap-
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proximately model an actual active device. The algorithm
is a variation of simulated annealing and uses a familiar
data structure (a binary tree) to record previous moves
and uses this information to optimally generate subse-
quent candidates. This information optimally represents
both anisotropy and irregularity when it is practical to
collect this information by sampling the error function.
Because of the binary tree, we call the algorithm tree
annealing (TA).

Because of the novelty of simulated annealing in mi-
crowave engineering, we begin our discussion with an
overview of this technique and a qualitative comparison
with gradient descent optimization algorithms. We then
present our tree annealing theory, followed by the extrac-
tion of the parameters of a HBT using a physically based
equivalent circuit model and measured data from 45 MHz
to 26.5 GHz.

II. SIMULATED ANNEALING IN COMBINATORIAL
AND CoNTINUOUS OPTIMIZATION

Simulated annealing was introduced by Kirkpatrick
et al. [5] in 1983 and is a smart random search technique
which is often more efficient than exhaustive search yet
more robust than gradient descent. Its behavior is con-
trolled by an externally specified parameter, usually called
temperature, T, with the same units as the error function.
When T is larger than the extreme range (maximum to
minimum) of the error function, SA explores the entire
parameter space using a uniformly generated random
walk and with no preference for lower error. As T gets
smaller, this undirected exploration changes. When T is
small enough, SA becomes a descent algorithm. At inter-
mediate values of T, SA moderates its behavior between
these two extremes: it is random but “prefers” lower
error in a precise way. By gradually decreasing T, the
search is systematically concentrated into regions likely to
contain a global minimum, but is still random enough to
escape most local minima. In some cases convergence to
the global minimum is provable [6], [7].

Instead of directly minimizing the objective function
E(x), Kirkpatrick et al. considered maximizing the related
probability density, p,(x)axexp(— E(x)/T). Since the
exponential function is monotonic, this does not change
the problem and would not facilitate its solution except
that p, is now amenable to the powerful Metropolis
sampling procedure [8] (described later in this section).
The modes of p; coincide with the minima of E at all T,
and at low enough values of T, p;(x) is so sharply
peaked at the lowest values of E(x) that virtually no
other points contribute to the distribution. (The normal-
ization factor is a function of T.) Unfortunately the
convergence time of the Metropolis procedure can be
exponentially long for low 7. Kirkpatrick et al. reported a
solution in 1983. They observed that large crystals could
be grown most rapidly by gradually cooling a melt. Since
the Metropolis procedure simulates the same physical
statistics that govern crystal growth, they suggested that
sampling at low T equilibrium could be done most rapidly
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Fig. 1. Qualitative description of the search conducted by a simulated
annealing algorithm in the minimization of an error function. A
one-dimensional slice through a higher dimensional error space is
shown here. Also shown are the concentrations of accepted samples
generated by SA or TA at several temperatures. The ellipses indicate
that the mode is actually a surface of approximately equal error in the
parameter space. At the lowest temperature, 74, only the lowest
minimum is still surrounded by a ring of samples.

by “annealing” or gradually reducing T from a high initial
value. Thus, instead of directly minimizing the error, SA
maximizes the probability of sampling low error states.
This is often a much easier problem to solve.

SA, as well as TA, is understood in terms of averages of
random processes instead of a single efficient descent
down a locally optimal trajectory. In combinatorial opti-
mization, even the Lin-Kernighan algorithm, a sophisti-
cated descent procedure with backup, has been described
as “bottom-crawling” compared with SA, which was con-
trasted as “floating across the upper or middle regions of
the larger valleys” [9]. Only gradually does this average
level float down toward the lowest values of the objective.

These concepts are illustrated in Fig. 1, where the error
on a one-dimensional slice through a higher dimensional
parameter space is plotted. A descent procedure would,
terminate in one of the three minima, depending on
initialization. SA concentrates its search on points that
have an error value that is roughly proportional to a
power of the temperature. So SA, while seeking a good
solution, encircles each minimum with samples having
comparable errors. In Fig. 1, these rings are indicated for
a sequence of four temperatures: 71>72>T3>T4. As
the temperature is reduced each shell contracts and by
T2 has split into two rings, each centered at a local
minimum. Below T3, the ring around the shallower valley
on the left has become depopulated, leaving only states
surrounding the lowest minimum. In this way, shallow
valleys tend to be eventually discarded but not before the
sides of the valley are explored by the shrinking ring. SA
is effective when deep minima have wide rims. SA fails
when the global minimum occurs in a gopher hole, which
is too steep and narrow to be discovered by sampling at
higher temperatures [4].

SA is widely used in combinatorial optimization but
less commonly in continuous optimization [2]. However,
Vai et al. have recently applied SA to the continuous
optimization problem of estimating the parameter values
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of a seven- or eight-element equivalent circuit for a
MODFET [1]. In SA a current state x is randomly per-
turbed into a candidate state y. The candidate is either
accepted or rejected by the Metropolis criterion [8], that
is, with the probability of accepting y given x of

if PT(Y) > PT(X)

otherwise.

1
alylx) = {pr(y)/pr(x)

That is,
a(ylx) =min(1, p(y)/pr(x)). (1)

If the candidate is accepted, it replaces the current state
in the next time step; otherwise the current state persists
and the candidate is discarded. The resulting sequence of
states is guaranteed to asymptotically sample the density
Pr-

Vanderbilt and Louie [3] have reported that SA gener-
ally becomes inefficient for continuous optimization as
the number of unknowns increases. The principal compli-
cation is that the optimal magnitude and direction of
steps are not known in advance. Steps that are too small
result in unacceptably slow optimization. However, if steps
are too large, important minima may not be detected as
the search procedure almost always finds candidates with
unacceptably large errors. If the minimum of the error
function lies in a highly anisotropic valley, the straightfor-
ward algorithm suffers the worst of both inefficiencies. As
the dimension of the search increases, the effect of this
anisotropy worsens. Vanderbilt and Louie improved the
efficiency of their version of SA enough to optimize
functions of ten continuous unknowns by keeping track of
the parameter covariances. However Vanderbilt and Louie
report some persistent difficulties with deep isolated min-
ima. We have experienced numerical difficulties manipu-
lating the covariance matrices when the number of di-
mensions is higher than about 10, whereas physically
based equivalent circuits require more than ten elements.

1II. TREE ANNEALING THEORY

We have developed a reformulation of SA that can
robustly extract a 14-parameter transistor equivalent cir-
cuit from data. Our reformulation generates candidates
from a global approximation of p,(x) rather than by
perturbation of the current state. We call this global
approximation g(x) because it is used to generate candi-
dates. We call our algorithm tree annealing because we
maintain g in a multidimensional binary tree (or more
precisely, a k-d trie data structure [10]) which also allows
us to conveniently sample from g. This can be compared
to Vanderbilt and Louie’s multivariate Gaussian model,
which they used to accumulate a distribution and to
subsequently sample it. However our tree-based algo-
rithm is superior in two ways. One is that it makes weaker
assumptions about the error function which can now have
several isolated minima without compromising the under-
lying quadratic model in Vanderbilt and Louie. The other
is that we employ a powerful modification of the
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Metropolis acceptance criterion which permits optimal
and unrestricted exploitation of any approximation to the
error function. Like the familiar Metropolis procedure,
ours can be shown [11] to asymptotically sample p,(x)
but it requires an unfamiliar form of the Metropolis
criterion [12].

Like Vanderbilt and Louie’s Gaussian model, our tree
is used both to record the density of previous samples and
also to generate candidates for future samples consistent
with that recorded density. We call the recorded density
g(x) and the correct density p,(x). The density g is not
assumed to coincide with p; in fact, the recorded density
changes slowly with decreasing temperature so that it is
always slightly incorrect for the current temperature.
However if care is taken to ensure that g never vanishes,
any error in g can be rigorously compensated for by a
modification of the Metropolis acceptance probability [11].
In the usual Metropolis procedure, candidates are sam-
pled from a uniform distribution g and these samples are
converted to samples of p, by accepting each with proba-
bility (1) and rejecting the rest. In our procedure, g is not
uniform, but samples from it can be converted to samples
from the true p; by accepting each y with probability

(2

g(x)pr(y))
“g(y)pr(x)

a(ylx) = min (1

where x is the current state. This corrects the familiar
ratio of desired densities, p7(y)/p,(x) in (1) by dividing
out the ratio g(y)/g(x) where the values of g(y) and
g(x) are the numerical probabilities of generating y or x.
The ratio is the bias toward y relative to x and intuitively
makes y less likely to be accepted if it is more likely to be
regenerated.

Convergence to the correct stationary distribution is
guaranteed even when g(x)+ p(x), although efficiency
is reduced by a poor g. Because of this correctness, we
can accumulate the sampled x’s to improve a poor g and
raise subsequent efficiency. Furthermore, in the final
stages of the algorithm, these samples can be used to
estimate the precision with which the optimal values of x
have been determined.

The highest level flow of control in tree annealing can
be seen in Fig. 2. After root is initialized at level zero
with the limits lo and hi of the entire search space and T
is initialized, an initial candidate circuit x is randomly
drawn. The main loop is then entered and a candidate
circuit y is generated. The circuits x and y are compared
probabilistically and y is usually accepted as a better
candidate if its fit error (defined as the sum of the
squares of the differences between each S parameter
calculated for x and those measured) does not exceed the
fit error of x by more than 7. If y is accepted, it
overwrites x. Whichever circuit survives is used to adjust
the tree. The temperature is then reduced slightly and the
loop is repeated until T is low enough (i.e., the fit error is
below some specified tolerance).
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Fig. 2. Top level flowchart of the TA algorithm.

The essential algorithmic difference between this pro-
cedure and the usual simulated annealing technique [7] is
that our candidate y is generated from root rather than
directly from the current state x. In our algorithm, x
influences generation only indirectly through the action of
ADJUST TREE. Our acceptance of y involves the entire
tree in addition to the usual y, x, and T. This is because
(2) requires the numerical values of g at x and y. These
numerical values must of course agree with the actual
probability of generating the corresponding points. This is
easy to do with a binary tree. In each node of the tree, we
maintain the total count of samples that historically origi-
nated in each half of the space assigned to that node, if
any samples have originated from that particular node. If
so, the node also maintains pointers to two children nodes
which divide the space just as the counts are divided. In
the generation process, we randomly chose a left or right
child in accordance with the counts of previous samples.
In the numerical evaluation of the probability for a point
y, we retrace the path to y and along the way accumulate
the product of the probabilities from the root to the leaf
containing y. Since it is a continuous density and not a
discrete distribution, we must divide by the volume of the
parameter space associated with the leaf containing y (if
the leaf is large, any particular point in it is less likely).
Thus our modified Metropolis procedure samples p(x)
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Flowchart describing the growth of the tree in the TA algo-
rithm.

Fig. 3.

by probabilistically accepting samples generated from
g(x), which is kept in a tree.

IV. EXAMPLE

We will describe the operation of our TA algorithm for
the simple one-dimensional problem of minimizing E in
Fig. 3(a). On the left-hand sides of parts (b)-(d) in Fig. 3,
the solid curve is p, at temperature T, which here
reduces with each addition to the tree. The shaded region
indicates g, the current estimate of p,. The right-hand
sides show the growth of the tree. The heights of the bars
on the left-hand side are the numerical probabilities dis-
cussed in the preceding paragraph. The goal is to find the
global minimum of E in the search space S, which here is
the interval (0, L) assigned to the root node of the tree.
Initially, the root node is the only node in the tree and
GENERATE returns an initial x. Then a first candidate
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Alg COLLECTOR

EMITTER
Fig. 4. Equivalent circuit of an HBT.

y (from a uniform distribution on (0, L)) is generated so
that g(x)= g(y)=1/L as in Fig. 3(b). Since T is initially
high, p;(x)= p;(y) and (2) is nearly unity and almost
any y is accepted as the new x. The root node maintains
counts of samples from each half of its parameter space,
in this one-dimensional case the subintervals (0,1/2L)
and (1/2L,L).

As this process is repeated, T gradually falls low enough
that many y’s from the high E, i.e., low p,, regions of the
search space are rejected by the Metropolis procedure
when the current x is from the “better” side. This bias is
recorded in the counters n, and n,,, which are pro-
portional to the averages of p, on the corresponding
subintervals. At low enough T, these rejections become
wasteful.

Before the efficiency falls too low, further rejections
can be reduced by allocating children for the leaf (which
is initially also the root) as in the next panel, Fig. 3(c).
Each child is assigned half of its parent’s search and now
GENERATE chooses the left half of S with probability
Pieit = Miery /(Myer + R igy) and otherwise the right half. At
the new leaf, y is still drawn uniformly but from a smaller
region, so that g(y) for a sample on the left is 2p ., /L.
In the figure, g(y) is higher on the right so that the ratio
g(x)/g(y) is no longer always unity, but by construction
this ratio is, on average, the same bias of the true distri-
bution so that the acceptance probability of (2) is, on the
average, unity. So once again every y returned by GEN-
ERATE is usually accepted as the new x, but now the y’s
are more likely to come from the “better” side, as in
Fig. 3(d).

As before, T eventually falls low enough to disturb this
balance again, but, as before, the leaves have recorded
the bias by this time. Each leaf that is visited frequently
enough to justify further refinement divides its space
between two children and thereafter randomly chooses
between them with the current bias. Every Metropolis
sample, whether it is a newly accepted candidate or a
persistent previous circuit, is counted at every node on its
path from root to leaf and used to keep biases current. As
the algorithm progresses, the tree tends to grow into
regions from which samples most frequently come. Each
additional level of the tree doubles the resolution with
which it can model the parameter search space S. Each
drop in T tightens the acceptance criterion and without
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TABLE 1
VALUES AND STANDPARD DEVIATIONS OF OPTiMIZED ELEMENTS
(STANDARD DEvVIATIONS BEING FOR 10% FRACTIONAL
ERRORS IN THE MEASURED § PARAMETERS)

PARAMETER | PARAMETER | OPTIMIZED | STANDARD
i BOUNDS VALUE DEVIATION
Lpp 20, 80 pH 414 pH 3.2pH
Rp, 30,120 Q 50.2 O 410
Cs 250 , 750 fF 575 fF 4.5 fF
Rgp 10,30 18.0 0 1.1 9Q
Rg 1,39 211 Q 0.24 Q
Cg 35, 115 {F 72.0 fF 12.3 fF
Reg 1,30 2.73 0 0.20 §2
A(0) 0.9,1.0 0.973 <0.005
T 0.4, 1.2 ps 1.07 ps 0.10 ps
Cc 10, 30 fF 24.7 fF 1.7 {F
Ro 12, 36 kQ 30.8 k2 3.8 k2
Rc 2,690 3.70Q 0.54 @
Le 30, 90 pH 63.2 pH 10.2 pH
Crc 20 , 60 fF 37.4 fF 1.5 fF

this additional resolution would lead to more rejections
and more wasted evaluations of the objective function. In
higher dimensions, the tree grows and the counts adjust
so as to reflect whatever anisotropies and irregularities
are important in p;. Theoretically, for N dimensions the
computation time is of the order of 2V if an exhaustive
search is required. However, in the problems we have
looked at, the computation increase is better than
quadratic (< O(N?)), presumably because optimization
problems tend to have unequal complexity in each dimen-
sion.

V. PARAMETER EXTRACTION

The TA optimization algorithm was used to extract the
parameters of the HBT transistor of Mishra er al. [13]
using the physically based equivalent circuit of Fig. 4 and
de-embedded scattering (S§) parameter measurements
from 45 MHz to 26.5 GHz. In the transistor model the
current gain

A0
1+ jf/F

e~ i2mfre
where A(0) is the dc current gain, 7/ is the carrier transit
time through the base, f is frequency, and F accounts for
the variation in the base width and is the frequency at
which the magnitude of the internal current gain is down
to 0.707 of its low-frequency value. F cannot be measured
directly and is determined from the measured unity cur-
rent gain frequency f, and the time constants in the
equivalent circuit as [14] F =1/Qw7;), where 7, =71, —
(1¢+ RgCp+ RCo + R:Cp) and 7,=1/Q2xf).

The extracted model element values are listed in Table
I together with the element bounds used. The calculated
S parameters are virtually indistinguishable from those
measured. A more sensitive comparison is given in Fig. 5,
where the measured stability factor, k£, and maximum
available gain, G,,,,, are compared with those evaluated
from the equivalent circuit. The agreement is excellent,
indicating an accurate parameter extraction.
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Fig. 5. Comparison of calculated stability factor, k, and maximum

available gain, G, , with those measured.

Also given in Table I are the standard deviations (o) of
the optimized element parameters for a 10% variation of
the S parameters. Small o implies that the error function
is sensitive to variations in this element and so the ele-
ment value is determined to a tight tolerance. The provi-
sion of error estimates indicates the importance of an
element to the objective function minimization and pro-
vides useful information to device and circuit designers.
This is particularly important in the tolerancing of MMIC’s
as it directs effort toward the control of elements with
small o which have most effect on external characteris-
tics.

Various combinations of the elements of a transistor
equivalent circuit are closely correlated, as shown in Table
II. In this table the cross-correlation coefficients of the
optimized elements are shown for a 10% variation from
measured S parameters. These statistics are immediately
available in the TA procedure. It can be seen that the dc
current gain A(0) is precisely determined and, as ex-
pected, Rz and Ry are tightly correlated. Also most of
the capacitors are tightly correlated. A high correlation
coefficient indicates that the associated elements cannot
be adequately resolved. If it is important to distinguish
them, additional or independent measurements are re-
quired.

VI. DiscussioN

The TA parameter extraction procedure as imple-
mented by us requires that the upper and lower limits of
the element values be specified by the user. Otherwise no
human intervention is required. To date the TA parame-
ter extraction procedure has never failed to identify the
global minimum (as far as can be determined). In Table
III the TA results are compared with multiple restart
gradient descent data. Also shown are the mean square
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S-parameter errors, defined as
c M|2
I/Nzall frequencies Zi,j= 1.2|Sij - Sij |

where the superscripts C and M refer to, respectively, the
S parameters calculated for the equivalent circuit and to
those measured; the frequency summation is from 45
MHz to 26.5 GHz calculated at 45 MHz intervals to 450
MHz and then from 500 MHz every 2 GHz; and N is the
number of frequencies. The multiple restart gradient de-
scent results were obtained by beginning with the previ-
ously optimized element values of the equivalent circuit
of a similar device. Typically three to seven restarts were
required to obtain a quality solution. Between each restart
the physical merit of the extracted equivalent circuit was
examined to determine the starting point for subsequent
gradient optimization. Of course with more restarts we
are more likely to find the global minimum but the high
cost of human intervention practically limits the number
of restarts that can be tried. Nevertheless, this approach
proved to be the most successful of the commercially
available gradient-descent-based approaches. (Applica-
tion of Levenberg-Marquardt [16], [17] codes consider-
ably improves the performance of gradient-based parame-
ter extractors [18] although entrapment in local minima
can still be a problem.) The robustness of the TA parame-
ter extraction procedure is not free. TA is more computa-
tionally intensive than gradient-based algorithms and we
have found that five to ten times more CPU time is
required to extract equivalent circuits of comparable qual-
ity. However the major cost of gradient-based algorithms
is the engineering time required to examine the extracted
circuit, decide on its merits, and to choose physical start-
ing points.

The distinctive features and heuristics of TA can be
compared to those of SA and gradient descent algorithms
as follows. Simple descent algorithms terminate at the
first local minimum encountered from a particular start-
ing point. If there is only one minimum or if the global
minimum can be estimated, descent is the method of
choice for optimization. If there are not too many local
minima, descent algorithms can be conveniently restarted
from many different (often randomly chosen) initial points
and the best solution taken as the approximation of the
global minimum. SA differs from descent algorithms by
continually accepting some proportion of random moves
up the error surface. SA is more efficient than random
multistart descent algorithms if the local minima tend to
be shallow and if the error surface is not dominated by
deep winding grooves or valleys, so that a feasible propor-
tion of uphill and downhill moves can be generated. TA
goes a step further than SA by accumulating a record of
accepted moves. Since the error function is generally
smooth, good equivalent circuit candidates will tend to
cluster, so that the neighborhood of an earlier good
solution is an efficient place to randomly select a new
candidate. Since there could be more than one cluster of
good circuits and since the shape of the error function
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TABLE 11
CORRELATIONS OF CALCULATED EQUIVALENT CIRcuIT ELEMENTS FOR 10% FRACTIONAL ERRORS
IN THE MEASURED § PARAMETERS

Lpg Ry Cs R Rg Cg Rgg A(0) 1 Cc Ro R¢ L¢ Cgpe
Lgg | 1.00
Rsy |-0.21 1.00
Cs -0.50 0.15 1.00
Rp -0.15 0.06 0.49 1.00
Rg 0.26 -0.28 0.02 0.23 1.00
Cg 0.35 0.07 -0.47 -0.24 -0.19 1.00
Rpg | -0.24 -0.29 0.19 -0.15 -0.35 0.05 1.00
A(O) -0.07 0.14 0.12 0.02 0.08 0.04 0.12 1.00
T -0.28 0.01 -0.01 -0.23 0.03 -0.14 0.33 0.01 1.00
Cc -0.24 -0.24 0.59 0.49 0.10 -0.60 0.15 0.14 -0.00 1.00
Ro -0.17 -0.38 0.20 0.01 -0.11 -0.20 0.40 -0.07 0.05 0.30 1.00
Re 0.21 0.36 -0.16 0.03 -0.09 0.27 -0.41 -0.08 -0.32 0.27 -0.35 1.00
L¢ 0.10 0.26 -0.45 -0.36 -0.08 0.46 -0.14 -0.07 0.05 0.68 -0.32 0.13 1.00
Cgc | 0.04 0.24 -0.40 -0.35 -0.09 0.26 -0.08 -0.18 0.15 0.80 -0.19 0.20 0.24 1.00
TABLE 111 VII. CONCLUSION

COMPARISON OF OPTIMIZED PARAMETER VALUES OBTAINED WITH TREE
ANNEALING, TREE ANNEALING WITH SUBSEQUENT GRADIENT
OPTIMIZATION, AND GRADIENT OPTIMIZATION
WITH MULTIPLE RESTARTS

PARAMETER | ANNEALED | MUTLI-START | ANNEALED /
DATA GRADIENT GRADIENT
DATA (GR)
Lpp 41.4 pH 39.5 pH 1.05
Rp; 50.2 58.3 O 0.86
Cs 575 fF 563 fF 1.02
Rp 18.0 Q 182 0 0.99
Rg 2.11 9 224 Q 0.94
Ck 72.0 {F 7.1 {F 0.93
Reg 2.73 0 2.44 Q 112
A(0) 0.973 0.974 1.00
T 1.07 ps 0.80 ps 1.34
Ce 24.7 {F 21.4 {F 1.15
Ro 30.8 k2 25 kQ2 1.23
R¢ 3.70 Q 3.88 0 0.95
L¢ 63.2 pH 59.9 pH 1.06
Cpc 374 {F 37.4 fF 1.00
ERROR 0.0220 0.0255

Also shown is the ratio of the optimized values obtained with TA with
subsequent gradient optimization and those obtained with multiple-
restart gradient optimization. The error is the mean square-error of the
scattering parameters from 0.045 MHz to 26.5 GHz calculated at 50 MHz
intervals to 450 MHz and then every 2 GHz.

near the centers of the clusters is not necessarily spherical
or isotropic, an enormous amount of information may
have to be stored to record all of the random samples.
However this information can be maintained efficiently in
a binary tree and used efficiently by a modified Metropo-
lis procedure. By storing this information many good
solutions can be examined in the event that the global
optimum is not physically correct. The preferred ap-
proach, however, is to incorporate additional physical
insight into the error function. In the example presented
here the measured unity current gain frequency is used
with this effect.

Since we developed TA for the parameter extraction
problem, we have run TA with a variety of cooling sched-
ules and on other problems. We find its behavior similar
to SA, except TA “jumps barriers” between deep minima
and TA rejects fewer candidates at low temperatures.

Good results were obtained from the parameter extrac-
tion technique, and the ability of tree annealing not to get
trapped in local minima allowed a many-element physi-
cally based equivalent circuit model to be used. Tree
annealing is essentially a smart random search technique
and so requires many more functional evaluations than do
gradient-based minimization algorithms. However, no
user-supplied starting guess is required and the bounds
on parameter values can be widely separated with little
effect on optimization time. The initial trial solution is
determined randomly within user-specified parameter
bounds.
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