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Frequency-Domain Spectral Balance Using
the Arithmetic Operator Method

CHAO-REN CHANG, MICHAEL B. STEER, MEMBER, IEEE, AND
GEORGE W. RHYNE, MEMBER, IEEE

Abstract — A frequency-domain spectral balance method for the simula-
tion of nonlinear analog circuits with multidimensional nonlinearities is
presented. The method is coupled with a combination of Shamanskii and
block Newton iteration schemes to produce an efficient general-purpose
simulator. The technigue is verified with measurements of a MESFET
amplifier with single-tone and two-tone excitations.

I. INTRODUCTION

ICROWAVE circuit designers have traditionally re-
Mlied on the use of experimental modifications to
ensure that their designs meet required specifications. This
practice, however, is becoming increasingly impractical as
circuit dimensions shrink and circuit complexity increases.
Thus there is an increasing interest in the computer-aided
design of microwave circuits. A frequency-domain spectral
balance method is developed here for the evaluation of the
current /voltage relation of multidimensional nonlineari-
ties (e.g., current through a nonlinearity being a function
of two or more voltages in the circuit). This is coupled with
a combination of Shamanskii and modified Newton itera-
tion schemes to yield an efficient and accurate simulator
for the analysis of nonlinear circuits having multifrequency
excitations.

Although the methods for analyzing nonlinear circuits
are varied, they are all based on solving a set of nonlinear
differential equations resulting from application of Kirch-
hoff’s voltage law and Kirchhoff’s current law using the
constitutive relations (i.e., the element characteristics). The
methods fall into three groups according to the way in
which the nonlinear elements are treated: time-domain
methods, hybrid (harmonic balance) methods, and fre-
quency-domain methods. The work we report here is of the
frequency-domain type; that is, it avoids explicit time-
domain calculations. This is accomplished through expan-
sion of the input—output characteristics of the nonlinear
elements in a set of basis functions of which there are three
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basic types: Volterra series {1]-[6], algebraic functional
expansion [7]-[9], and power series. With frequency-
domain spectral balance analysis, power-series-based tech-
niques are proving to be the most general methods for the
analysis of nonlinear circuits with multifrequency large-
signal excitations. This approach has been investigated by
a number of researchers as the basis for hand calculations
as well as for computer-based simulations [10]-[17]. We
continued the development of this type of series [18],
resulting in the form (called a generalized power series)!

00 K-1 "
Y, = > awq.n{l: > xk(l_Tk)] } (1)
n=0 k=0 wq
where Y, is the frequency-domain system output at ra-
dian frequency w,, n is the order of each power series
term, a,,, , is an w, and n dependent complex coefficient,
7, is a time delay that depends on the input frequency w,,
x(t) is the independent variable, and the notation
{f(x)},, represents the phasor form of the w, component
of the time-domain function f(x). A complex power series
with frequency-dependent time delays can simply incorpo-
rate many memory effects, and only a few terms of the
series expansion may be required. Therefore, a much larger
class of systems can be mathematically modeled by a
generalized power series (GPS) expansion than by a con-
ventional power series expansion. For most microwave
applications, circuits are typically made up of only a few
circuit elements so that simulation can proceed without
using complex coefficients. Time delays can be included by
phase shifting of the input signal.

With the GPS description of the nonlinear system, alge-
braic formulas for the system output when the input is a
sum of sinusoids have been developed [18]-[20]. This
method uses an input/output transform table (the inter-
modulation product descriptions) and is more accurately
referred to as generalized power series analysis using the
table method (GPSA-TM) to differentiate it from the
extension developed here. The formulas used in GPSA-TM,
however, are complicated and difficult to understand. In
addition, using the transform table in this method pro-
duces many repetitive calculations which degrade the cir-
cuit analysis efficiency.

' The nomenclature has been changed slightly for compatibility with the
work presented here.
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GPSA-TM is practically restricted to one-dimensional
(1-D) nonlinearities. It has been extended to two-dimen-
sional (2-D) nonlinearities but the formulas are even more
complicated [21] and its computer implementation is ex-
pected to be inefficient. In Section III, a newly developed
frequency-domain spectral balance technique, the general-
ized power series analysis using the arithmetic operator
method (GPSA-AOM) is presented. GPSA-AOM is
straightforward, easy to implement, and handles multidi-
mensional nonlinearities. It is also considerably faster than
the GPSA-TM for single dimensional nonlinearities.

II. DEVELOPMENT OF CIRCUIT EQUATIONS

One approach used to solve the system of nonlinear
equations is to formulate the nonlinear problem so that a
Newton iteration scheme can be used. In this section we
develop a block matrix formulation of the nonlinear circuit
equations and combine this with a Newton iteration scheme
which uses a combination of full Newton iteration, block
Newton iteration, and chord iteration [22] to obtain a fast
nonlinear analog circuit simulator. In the formulation of
the nonlinear circuit equations, no explicit separation of a
circuit into linear and nonlinear subcircuits is made.

A. Circuit Equations

If K different frequency components exist in an analog
nonlinear circuit, computer-aided analysis in the frequency
domain solves a system of nonlinear equations:

M(x)x=y

)

where

(3)

Here T indicates the transpose and x_, is the variable
vector to be solved which contains the necessary node
voltages and edge currents at radian frequencies w,; the
source vector y, which includes all the independent sources,
is similarly defined as x in (3); and the x-dependent
matrix M(x), the modified nodal admittance matrix [23],
is the circuit matrix of the analog nonlinear network.

Solution of the nonlinear circuit equations (2) is based
on the process of successive approximations. After each
iteration i, a new approximation of the variable vector, ‘x,
produces an induced source vector y('x):

T
— [T T T
x*[xmo X1 xm(Kﬂ)] .

M(x)x = y(x). (4)
Newton’s method, or a variant of it, forms the basis of
most iterative procedures in nonlinear circuit analysis. This
method is based on the general relationship

f(x)=0

where f(‘x) is a vector with the same dimension as the
variable vector x. It is composed of the absolute values
of the corresponding entries of the difference vector be-
tween the independent source vector y and the induced
source vector p('x). The iteration formula for Newton’s
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method is

Tl=— U %) f(x),  i=0,1,2,---  (5)
where J('x) is the Jacobian matrix of f in the ith iteration
and J~'('x) is its inverse.

Fortunately, in solving the nonlinear circuit equations
(2) using iterative procedures (5), the whole circuit matrix
M('x) need not be calculated. Both the Jacobian matrix
J('x) and the induced source vector y('x), which forms the
error function f('x), can be obtained partiaily from the
linear part of the circuit matrix M and partially from the
variable vector 'x using nonlinear circuit analysis tech-
niques either in the frequency domain (power series analy-
sis) or in the hybrid domain with Fourier transform tech-
niques (harmonic balance method).

B. Circuit and Jacobian Matrices

The circuit matrix M(x) in (2) can be viewed as a
matrix composed of K by K block matrices:

M(x)

Mo,o(x) MO.I(x) MO,K—](x)
Ml,()(x) Ml,l(x) Ml,K-l(x)
MK—I.,O(x) MK—I.vl(x) Mk—l.;@l(x)

(6)
Each block matrix M, ,(x) is a matrix with input fre-
quency index k and output, or objective, frequency index
g, and has the same m X m where m is the dimension of
the corresponding vector x,, In (3). Reducing x,,, to its
minimum required size will always reduce the size of the
matrix M(x) and decrease the complexity in circuit analy-
sis. The minimum required variables of x,, include all the
node voltages of the admittance-type nonlinear elements,
all the edge currents of the impedance-type nonlinear
elements in the circuit, and any node voltages or edge
currents of interest for the final results.

Entries in each matrix M, ,(x) may not be x-dependent
because they are generated from all the elements of the
circuit. In most cases, linear elements of the circuit create
entries in M, , (x) which are independent of the variable
x, and nonlinear elements add x-dependent values to some
of the entrics. However, by using the modified nodal
admittance matrix, some nonlinear elements, such as non-
linear inductors, will create x-independent entries as well.
If M;p, i Tepresents the modified nodal admittance ma-
trix generated from all the linear elements of the circuit
plus those x-independent entries generated from all the
nonlinear elements of the circuit, we have

Mq,k(x) = MID(q,k) + MD(q.k)(x)
where the x-dependent matrix My, ,,(x) derives from the
nonlinear elements, and matrix M;;, ,, is always a zero
matrix if ¢ is not equal to k. )
Similarly, the Jacobian matrix J('x) in (5) has the same
structure as M(x) in (6). Each block matrix J, ,('x) repre-
sents the block Jacobian matrix for input frequency w,

and objective frequency w, and has the same size as
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M, ,(x). As before, each block Jacobian matrix J, (x) is
a combination of two matrices:

(7)

I 1 (%) =Iipgiy + Ipig iy (x).
The matrix Jjp, 4 in (7) is x-independent, and
g 0= MID(q,k)'

For efficient calculations, each complex independent vari-
able X, of x,, can be separated into real and imaginary
parts, and each complex entry Y, ; in matrix Jyp, ) can
also be represented by a 2X2 matrix of real entries:

Re{V,,} ~Im{Y,}

Ui lm(y,) Re(v)| ®

Since Jyp, ) is iteration number i independent, it can
be calculated just once. However, the x-dependent Jaco-
bian matrix Jp, (%) can only be obtained using nonlin-
ear analysis and must be reevaluated if a new Newton
iteration is required.

In addition to the Jacobian matrix J('x), solution of the
circuit equations (2) using the iterative procedures (5) also
requires calculation of the induced source vector y(x) for
each iteration i. Asstming that y, q(’x) is the component
vector of y(‘x) at radian frequency w,, the calculation of
Y.,q(x) can be performed as

k=g (9)

where yy; (., q)('x) represents the induced source vector of
all the nonlinear elements at radian frequency o,. Both
Ipigin(x) in (7) and Pnr(oq(X) in (9) can be obtained
using nonlinear analysis techniques.

ywq(ix) = MlD(q,k)iqu + yNL(wq)(ix)’

C. Block Newton Iteration

Equation (5) is frequently used in nonlinear circuit anal-
ysis to minimize the objective function because of its
asymptotic rate of convergence. However, evaluation of
the whole Jacobian can be time consuming. In a nonlinear
circuit the major coupling between currents and voltages is
when the components are at the same frequencies. Conse-
quently a modified form of Newton’s method [24] (block
Newton) can be used.

If the number of frequencies considered in the circuit
analyzed is K and the size of each J, ,(x) is m X m, the
dimension of the full Jacobian matrix J(x) is mK X mK.
For a complete Newton’s method, J~'(x) f('x) must be
calculated. For either type of matrix factorization, PLU or
QR, the arithmetic cost of the calculation on matrix J('x)
is always proportional to (mK )3. However, from (7), the
x-independent matrix J, 4, is a nonzero matrix only if
g = k. For most microwave nonlinear analog circuits, the
values of those derivatives in the diagonal blocks Jp, ,,(*)
are normally larger than those values in the off-diagonal
blocks Jp, 4(x), g # k. Therefore, by calculating only the
diagonal blocks of the Jacobian matrices J, q(’x) (g=
0,1,---, K —1), the cost of matrix calculation will be K*
times lower than the cost for calculation of the full Jaco-
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NEWTON METHOD

BLOCK

NEWTON METHOD k<1

R<1

CHORD METHOD

R<1

Fig. 1. The algorithm used to determine the method to be used in
finding the present iterate value of x. R is the ratio between the
current converged error and the previous converged error.

bian form. That is, to solve K separate iterative procedures
simultaneously,

g =Ty = I s (%) £,, (%) (10)

where ¢ =0,1,- - -, K —1. This method uses only the diag-
onal blocks of the full Jacobian matrix.

Both the Newton and the block Newton method can be
combined with the chord method to obtain further compu-
tational improvement. The chord method uses the previous
J for the present iterative process, regardless of the method
used in the previous iteration. This can save considerable
Jacobian matrix calculation time and eliminates the need
for matrix inversion. The convergence algorithm just de-
scribed is summarized in Fig. 1.

III. GPSA ARITHMETIC OPERATOR METHOD

The GPSA arithmetic operator method (GPSA-AOM) is
based on direct complex multiplications and additions. It
is similar to the approach taken by Haywood and Chow
[25]. However, instead of using the spectrum convolutions,
a simple spectrum mapping function is used for each
spectral multiplication.

If we consider the system output y(z) to be a function
of two independent variables x(¢) and z(?),

N N
x(1)= Y x,(1)= X |X,lcos(w,t +9,)
n=0 n=0
and

2(t)= Y z,(t)= X |Z,lcos(w,t +86,)

m=0 m=0

the generalized power series for the output Y, at the

objective radian frequency w, is expressed as

v,-% % {[ 3 x,,(z—m]

n=0

m=90

zm(t—Am)] } (11)
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where «, is the objective frequency, o and p are the orders
of the power series terms, 4, , , are complex coefficients
in the frequency domain, and 7, and A, are time delays
that depend on the indexes of the input frequency compo-
nents. The spectrum of x can be represented as a vector:
2X, X. 0 Xex]”

w w

(12)

where X,, = X*_, and “*” indicates the complex conju-
gate. The spectrum vector for z(¢) is similarly defined. For
analysis purposes, we may simplify (11) to be an ordinary
two-variable-dependent power series by using phase shift-
ing of the spectra of x(1), z(f), and y(t) to eliminate time
delays and complex coefficients:

y(1)= 3 T ag,x(0)22(1).

0=0p=0

—wl

1
SX=E[X7M( .. X

(13)

The output spectrum s, for the basic operation y = xz
can be found from the product of s, and s]. Let S, be the
matrix of the product of s, and s

(14)

Then each element of S, represents a component of the
spectrum of the signal y, and has the value X, Z,; and
frequency w, + «;. By combining the same frequency en-
tries, Sy can be converted into a vector form s,

— < <T
S, =s5,5;.

2%, Youx] ™. (15)
The contributions of higher order cross products of s, and
s, can be obtained using the recursive application of 14
and (15).

Implementation in the Newton iteration process requires
derivatives of the value in each entry of vector s, with
respect to all the different independent variables X and Z.
These derivatives of each entry in s, can be obtained by
using the chain rule and complex multiplications and
additions.

The calculations for system outputs presented in (14)
and its derivatives are basic components of GPSA-AOM.
Some techniques can also be used to modify this method
to obtain increased computational efficiency.

1
s, = 5[ Y _ sk

A. Spectrum Limiting

Equation (14) shows that the spectrum vector s, of the
dependent variable y(¢) for y(#) = x(#)z(t) can be created
from the product of the two spectrum vectors s, and s, of
the two independent variables x(¢) and z(). However, not
all of the entries in s, are required as objective frequen-
cies, and some of the rest are useful for the higher order
calculations only. Calculating those undesired entries will
consume much computer computation time and contribute
little to the final results. Therefore, if the number of
objective frequencies considered in a system is large enough
to describe the system nonlinearities, the frequency com-
ponents of the spectrum of y can be limited to contain
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Xui Z.;
1 k; j k;
0 +1 1 +1
1 +1 0 +1
2 -1 3 +1
3 +1 2 -1
4 -1 5 +1
5 +1 4 -1
5 -1 6 +1
6 +1 5 -1
(@ (b)

Fig. 2. An example of spectrum mapping for GPSA-AOM. (a) A map-
ping function used for the objective frequency w;. (b) The required
complex multiplications for the objective frequency w; using the map-
ping defined in (a).

these frequencies only. Any additional frequencies which
are created by the product of s, and s, can be eliminated
from s,.

B. Spectrum Mapping

To evaluate the nonlinear system output y(t) = x(t)z(t)
with spectrum limiting on all the dependent and indepen-
dent variables, some complex multiplications are dis-
carded. These redundant multiplications will also consume
much time in frequency searching operations. To avoid
this redundancy, a mapping function can be used. This
results in considerable computation time reduction when
the frequencies under evaluation are poorly correlated.

The spectrum mapping function relates the components
of the output spectrum to the spectra of two inputs where
the output is the product of the two inputs. Fig. 2 is an
example. Assume two sinusoidal signals of 3 GHz and 3.05
GHz are applied to a nonlinear system, and the considered
frequencies include all the first- and second-order inter-
modulation products. For second-order intermodulation
product IF(f,) = 50 MHz, assuming RF(f,) =3 GHz and
LO( f;) = 3.05 GHz, the mapping function of y = xz can
be set as shown in Fig. 2(a). In Fig. 2(a), i and j represent
the frequency indexes used in each multiplication and k
being “—1” indicates that the indicated component of X
or Z is to be complex conjugated. For instance, if i =3,
k,=+1, j=2, k;=—1, the complex multiplication for
this combination is X_;Z2. Since all the dependent and
independent variables are spectrum limited to the same
length, the same spectrum mapping function can be used
for the product of any two different variables if the consid-
ered objective frequency is the same. Moreover, the same
function can be used in derivative calculations. Fig. 2(b)
illustrates the usage of spectrum mapping to insert all the
results of the required complex multiplications of X,,; and
Z,,; yielding the entry Y,;.

C. Power Series Factoring

Factoring of the power series can be used to reduce the
amount of computation. Consider a one-dimensional non-
linearity defined by

(16)

This requires (N —1) spectral multiplication operations.

y=ag+ax+axi+ - +ayx”.
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Fig. 3. Circuit used to model the MESFET which includes linear as

well as nonlinear elements. Nonlinear elements include C,,, Cy5, Gy,
and I, where I, is a function of both intrinsic voltages V,; and V.

Factoring the power series, the maximum order of x in
(16) can be reduced to half,

y= (b0+b1x+ +bN/2)cN/2)2
+(co+clx+ +c(N/2)_1x(N/2)’l) (17)
if N is even, or
y=a0+x[(d0+d1x+ +d(,\,,1)/2x”""1)/2)2
+(e0+e1x+ +e(N,3)/2x(N’3)/2)] (18)

if n is odd. Now N/2 (or (N +1)/2) operations are needed
for (17) (or (18)). Each operation involves many floating
point calculations, and the amount of computation re-
quired to factor the power series is relatively small. If N is
large, factoring the power series once can result in up to 50
percent reduction in computer time.

IV. DEevVICE CHARACTERIZATION

The arithmetic operator method was compared to mea-
surements using a medium-power GaAs MESFET, Avan-
tek AT8250, and the transistor model of Fig. 3. In the
equivalent circuit, C,, C,,, and C, were taken to be
one-dimensional nonlinear elements. The procedure used
to determine the model parameters is described in [19],
and yielded the linear element values of Table I. With the
linear element values fixed, the model of Fig. 3 was opti-
mized to match the measured s parameters at each bias
setting, resulting in nonlinear element values as a function
of bias voltage. A least-squares technique was used to fit
power series to these data. The power series descriptions of
the capacitances (C,,, C,,, and C,,) are shown in Table II
and their optimized values are compared to their power
series representations in Figs. 4 and 5.

The nonlinear element 7, is a function of both intrinsic
V,, and V, (i.e., the voltages across C;, and C,, respec-
tively) and has a bivariate power series description as
shown in Table III. Fig. 6 shows the optimized values of
the transconductance G, compared to the values calcu-
lated from the bivariate power series expansion. Fig. 7
shows the values of I, with respect to intrinsic V,, and V,
calculated from this power series. The valid range of this
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TABLE 1
THE LINEAR ELEMENT VALUES USED
IN THE MODEL OF THE AVANTEK
AT-8250 GaAs MESFET

[

I Element Value 1
Cq 0.1386 pF
L, 0.69414 nH
Cya 0.30707 pF
Ry 2.9 Q
R, 24 Q
L, 0.00323 nH
Ra 5.3 Q
Ly 0.41143 nH
Caz 0.09012 pF
Ca 0.00341 pF
R, 10
T 6.56 pS

TABLE 11

THE POWER SERIES COEFFICIENTS USED IN THE MODEL OF THE
AVANTEK AT-8250 GAAs MESFET

Power Series Coeflicients for Nonlinear Elements
Element
Order Cqs (PF) Cys (PF) Cqaa (pF)
0 0.286 0.62039 0.34697
1 —0.022345 0.792475 —0.33135
2 0.0043288 —0.02648 0.1576
3 —0.0003038 —0.22036 —0.032687
4 0.0024389
1.0 T T T T T
0.80— -
o
0.60— -
o
K=
%
© 0.40- .
0.20— —
0.0 | | | | |
-1.0 -0.50 0.0 0.50
Vgs (V)

Fig. 4. Optimized values of the gate—source capacitance C,, as a func-
tion of gate-source voltage. The points are the omimizeé values and
the curves are the power series representations.

power series description is from V,, = —1.7 V to ¥, = 0.75
Vand V,, =04V to V, =5V, corresponding to an input
power of about 10 dBm.

V. RESULTS AND DISCUSSION

GPSA-AOM has been implemented in a C language
program called FREDA2 (for FREquency Domain Analy-
sis). This is a net-list-based program and can handle arbi-
trarily large nonlinear analog circuits. Results of simula-
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0.5 T T T 0.30

0.25
i o
e e
3 8
[&] [&]

0.20

0. 1 | 1 | 0.15

0.0 1. 2. 3. 4. 5.

Vdg(Vas) (V)

Fig. 5. Optimized values of the drain—source capacitance C,; as a
function of drain-source voltage and the gate—drain capacitance C,,
as a function of drain-gate voltage. The points are the optimized
values and the curves are the power series representations.

120,

Gm (m siemens)

0.0 1.00

2.00
Vas (V)

Fig. 6. The transconductance as a function of intrinsic drain-source
voltage. Optimized values (points) are compared to the values calcu-
lated from the bivariate power series expression for intrinsic gate-source
voltages of —0.8, —0.6, —04, —0.2, -0.1,0.0 and 0.1 V.

tions using FREDA2 and the two-dimensional circuit
model of Fig. 3 are compared to measurements in Figs. 8
and 9 for single-tone and two-tone excitations. The simu-
lated results (curves) are in good agreement with the
experimental results (points). Computer run time for the
single-tone test is presented in Table IV for various num-
bers of frequencies considered. Times are given for differ-
ent input powers (—10, 0, and 10 dBm) with zero initial
guess, and for a sweep of the input power from —10 dBm
to +10 dBm with 0.5 dB step size. (While sweeping the
input power, the initial guesses of the variable values in
each power step are based on the final values of the
previous step.)

The primary advantage of the arithmetic operator
method in frequency-domain spectral balance, compared
to the earlier reported table method, is the 2-D model
simulation capability. Even with this extended capability,
AOM is about ten times faster than TM [19], [26]. AOM

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 37, NO. 11, NOVEMBER 1989

100.

80. -

60. —

lgs (MA)
!

40. | —

20.

0.0
0.0 1.00 2.00

Vas (V)

3.00 4.00 5.00

Fig. 7. The drain-source current as a function of intrinsic drain-source
voltage for the Avantek AT-8250 GaAs MESFET. The values are
calculated from the bivariate power series expression for intrinsic
gate—source voltages of —0.8 V to 0.5 V in 0.1 V steps.

20. T T T
% 0.0
= =
i ot
3 Zt s e
& .20 + (% .
= T 4 a
z s
5 s
(] a 4

-40. [x a 4 -

-60. 1 | i

210, -5.0 0.0 5.0 10.

INPUT POWER (dBm)

Fig. 8. The results of the single-tone test for the Avantek AT-8250
using a 3 GHz fundamental. Shown are the simulated (curves) and
measured values (points) for the power output at the fundamental, the
second harmonic, and the third harmonic as a function of input power.

has good convergence properties and simulation can be
achieved with large input powers and zero initial guess.
However, if a sweep of the input power is required, it is
more efficient to use the results of the previous lower input
power simulation as an initial guess of the circuit variables.
We attribute the good convergence properties to the use of
analytic derivatives rather than numerical derivatives. The
analytic derivatives need to be calculated to double preci-
sion to obtain convergence at the higher input power levels
if the system nonlinearities are modeled with high-order
power series. This level of precision cannot readily be
obtained by taking derivatives numerically.

As mentioned in Section II, a mix of the Newton, block
Newton, and chord methods is used in the simulation to
obtain an efficient simulator. This iteration scheme greatly
enhances the speed of FREDA2. For almost every case in
the single-tone and two-tone test, one or two block New-
ton methods followed by several chord methods are enough
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TABLE III

THE BIVARIATE POWER SERIES COEFFICIENTS USED FOR /,  IN THE MODEL OF THE

AVANTEK AT-8250 GAAs MESFET

1687

Order of Order of Vg, Term
| Ve Term 0 1 2 3 4 5 6 7
o —0.00001156555 | 0.07625879 | —0.1056094 | 0.07761516 | —0.0313192 | 0.007058957 | —0.0008327161 | 0.00004002119
1 —0.00006103041 | 0.3069145 | —0.4733609 | 0.3675621 | —0.1555473 | 0.03641407 —0.00442661 0.0002179638
2 0.002515452 0.3476555 | —0.6445519 | 0.5434066 | —0.2414711 | 0.05823406 | —0.007202639 | 0.0003578266
3 0.01210829 —0.2693955 | 0.4357904 | —0.3522143 | (0.1566408 | —0.03871469 | 0.004976994 | —0.0002589956
4 0.01565735 —0.8516739 1.804808 —1.620442 0.7466659 —0.184505 0.0232377 —0.001171287
5 —0.004989491 | —0.2561477 { 0.7083704 | —0.6889429 | 0.3238367 | —0.07946468 | 0.009787713 —0.0004777891
6 —0.02538143 0.6769809 | -1.477119 1.344364 | —0.6245825 | 0.1552918 —0.01966353 0.0009961386
7 —0.01847188 0.6183949 | -1.461959 1.367254 | —0.6390305 | 0.1582496 —0.01984881 0.0009928612
8 —0.004226292 0.1523607 | —0.3733957 | 0.3534024 | —0.1655718 | 0.04091728 —0.005108844 | 0.0002540126
20. T T T using a mix of Newton, block Newton, and chord meth-
ods, GPSA-AOM is suited to the analysis of nonlinear
analog circuits. The technique is straightforward and can
E ool _ handle two-dimensional nonlinear elements in the fre-
2 quency domain. The simulation of a MESFET amplifier
§ with single-tone and two-tone inputs was compared to
© % measurements to verify the method.
= ' a
2 a
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