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Abstract—Both cost and quality are important features when
manufacturing today’s high-performance electronics. Unfortu-
nately, the two design goals (low) cost and (high) quality are
somewhat mutually exclusive. High testing effort (and thus,
quality) comes with a considerable cost, and lowering test ac-
tivities has significant impact on the delivered quality. In this
paper, we present a new structured search method to obtain
the best combination of these two goals. It features a Petri-net
oriented cost/quality modeling approach and uses a Pareto chart
to visualize the results. The search for the Pareto-optimal points
is done by means of a genetic algorithm. With our method, we
optimize a manufacturing process for a global positioning system
(GPS) front end. The optimized process clearly outperformed the
standard fabrication process.

Index Terms—Cost quality tradeoff, genetic algorithm,
high-density packaging (HDP), Pareto chart.

I. INTRODUCTION

I T is a well-known fact that final shipment quality of an elec-
tronic product plays the same important role for customer

satisfaction as the cost of this product. For the customer, the
target is clear: Quality as high and cost as low as possible.

However, both targets are linked adversely: Exhaustive and
expensive testing will lead to a very high quality level, but
also to high final cost per shipped unit. On the other hand,
neglecting a full functional test before shipping yields unac-
ceptable delivery quality. Some rules-of-thumb exist to achieve
a compromise. Fig. 1 outlines the QUALITATIVE relation of
cost and quality, in this case describing testability versus area
overhead [1]. Note that at a certain (system-specific) level, the
cost–quality relation changes its behavior from quasi-linear rise
to asymptotic approximation toward 100% quality. This means
that beyond a certain level, even large investments result only
in very small quality improvement. Whereas the cost–quality
relation is closely monitored, e.g., during integrated circuit
(IC) development to obtain an optimum, similar efforts on the
system level are unknown.

However, cost and quality of a system are highly dependent
on its components and testability concepts, which are usually
defined during the product specification phase. A priori, no
unique optimal concept is available, instead, various options
can be found in an electronics manufacturing process, espe-
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Fig. 1. Typical rules-of-thumb relationship between quality and test cost:
after a quasi-linear start, cost changes pick up speed, and finally, quality
improvements run into saturation.

cially when high-density packaging (HDP) technologies are
involved: For bare-die components, some companies offer
different test levels from untested to known-good dies (KGDs);
the fault coverage varies with the test vector length; during the
assembly process, additional optical inspection or in-circuit
test could be beneficial, etc. All these options translate into a
range of applicable fault coverages and yield numbers.

Therefore, being faced with a specific design problem with its
individual options, for a designer, it is vital to know the QUAN-
TITATIVE cost–quality relation as early as possible in the de-
sign cycle to design a system with achievable cost/quality goals
meeting its specifications.

Existing Solutions: To date, no cost modeling (CM) tool is
able to perform such a concurrent optimization of quality and
cost, simply because in most cases quality aspects are not in-
cluded. Moreover, most of the CM tools are unable to map new
technologies such as system-on-a-chip, integrated passives, etc.
since they are tailored to particular processes. Also, none of
them feature any optimization strategy, which has been done so
far by trial and error.

Dislis [2] uses a spreadsheet to calculate cost and quality for a
specific KGD fabrication setup. Adapting this method to other
processes requires a rewrite of the entire sheet. Moreover, no
tradeoff procedure is available.

Ungar [3] used a similar approach to assess the effective-
ness of automatic versus built-in self-test (BIST) equipment,
claiming that using BIST drives down the repair costs, so even
with a higher number of defective delivered units one can be
more cost effective. This calculation was based on various as-
sumptions on field return costs and early time-to-market gains,
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which are difficult to estimate accurately. Moreover, due to his
spreadsheet calculation model, he sampled only a small part of
all possible combinations.

On the other hand, some quality engineering (QE) approaches
incorporate cost considerations: The total quality cost is consid-
ered to be the sum of all appraisal/evaluation costs, the failure
costs, and the prevention costs [4].

Millman [5] made some analytical elaborations on yield
versus fault coverage, giving strategies, when to invest in yield
and when in fault coverage improvements. His model, however,
incorporates only a general cost factor and is based on a very
simple processing model.

Ng and Hui [6] present a general production-related method
for setting up a quality improvement plan. Since they deal with
“continuous” variables such as lengths, they assume the usual
quadratic quality cost function, which is not appropriate for dis-
crete events such as defective parts. In addition, this type of
method requires an already defined quality goal and does not
help determining it, as desired early in the design cycle.

Birolini [7] calculates, based on given yields and fault cov-
erages, the remaining defect level after final test (the “field
returns”), and imposes a cost penalty for every defective, deliv-
ered unit (failure cost). Changing some of the fault coverages
and yields, thus increasing the prevention costs, he decreased
the total failure costs, winding up with a more cost-effective
solution. This approach has two draw backs: First, optimization
in this simple case was done by “trial-and-error,” which is not
viable for larger production models. Second, it is based on an
assumption of 100% field returns. Recent customer surveys of
electronics contract manufacturers in Germany have revealed
that a significant number of customers, rather than complaining
and returning the product, instead change the supplier without
notice, so field return rates are grossly underestimated [8].
Also, customer satisfaction, i.e., quality and its fulfillment,
have a very high value, and it is very hard to win back a dis-
satisfied customer. Therefore, translating such dissatisfaction
into money can be misleading.

Bukovjan [1] developed an algorithm for test point insertion
during an IC synthesis phase. The concurrent criteria are testa-
bility and area overhead, which are optimized using branch-and-
bound, rendering the generation of a tradeoff front rather com-
putationally intensive. In addition to that, this algorithm focuses
on IC-related tests only, neglecting any manufacturing issues.

Commercial test software allows for local test tradeoffs ne-
glecting the synergistic optimization of design (i.e., yield) and
test effects.

In this paper, we present a test versus cost optimization
strategy for manufacturing electronics, which overcomes
the above listed drawbacks. This strategy provides test/yield
recommendations for the design space to set acceptable and
manufacturable goals for quality and cost. Presenting our
approach, we outline first our concept of quality-enhanced cost
modeling and a way to calculate the metrics cost and quality.
This is followed by the methodology for an automated search
algorithm for tradeoff points. Finally, we illustrate the benefits
of our approach with a case study on manufacturing a global
positioning system (GPS) front end.

II. QUALITY ENHANCED COST MODELING

The final cost of a shipped product is the sum of all costs re-
quired to manufacture it divided by the total number of shipped
devices (1). The main factors contributing to this sum can be
divided into three categories, direct cost (DC) such as compo-
nents, operator cost, test and rework cost, nonrecurring expen-
diture (NRE) consisting of machine depreciation, development
cost, overhead, and reject cost (SCRAP) caused by malfunc-
tioning devices and determined by quality factors such as yield
and fault coverage (2).

The quality of this unit (or 1—Defect Level (DL)) is the
percentage of error-free shipped devices to the total number
of devices (3). The final quality is driven by yield figures of
components and processes and the perfection of test effort
(the so-called test transparency ) throughout the production
process [see (5)]. The test transparency depends on the fault
coverage of preceding test steps and the yield of the
previous manufacturing steps (see [9]). See (1)–(5) at the bottom
of the page.

Instead of using spreadsheet-orientated calculations to cal-
culate (2) and (5) and to simplify their adaptation to a spe-
cific process, we used the different approach of process-oriented
cost–quality modeling.

The rationale of this approach is as follows: In general,
every design/manufacturing process is described as a material
or information flow, Fig. 2(a) shows the example of a mixed
wire bond-SMD assembly. Material enters the flow top left and
changes throughout the flow to an assembled module.

(1)

(2)

(3)

(4)

(5)
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Fig. 2. Modeling an electronic manufacturing process using a Petri-net structure and the MOE graphical user interface.

Formally, a flow can be translated into a Petri net, mapping
all possible routes through the net [Fig. 2(b)]. Single Petri
transitions correspond to typical basic tasks in a manufacturing
process, such as components entering, assembly, testing,
rework/repair, etc. A manufacturing Petri net contains two
types of sinks, “Items to ship,” and “Items to scrap” (the latter
having multiple instances).

The material status within a flow can be described using col-
ored tokens , representing information on components, com-
parable to tags or ID numbers on the factory floor [Fig. 2(c)]. A
colored token is defined as a set of variables (“properties”). In a
HDP production flow we define

(6)

Using specific firing rules, the tokens/components move
through the flow, finally ending either as units shipped or
scrapped. Evaluating the information stored within the tokens
leads to cost and quality, transforming (2) and (5) to (7) and

(8). Equation (7) sums up all the direct cost incurred from the
units that are routed to the sink (i.e., are shipped),
adding the total loss cost from all scrapped units and
the overall NRE. Equation (8) can be seen as the ratio of the
number of units to be shipped containing no errors and the total
number of units in .

(7)

(8)
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TABLE I
ASSIGNMENT OF PETRI NET TRANSITIONS TO BASIC MANUFACTURING FLOW ITEMS

To hide the Petri net complexity from the analyzing designer,
the graphical user interface MOE has been developed [10].
MOE stands for Modular Optimization Environment, is a
process-oriented manufacturing model, and uses the underlying
colored Petri net to compute the equations above. The analogy
of Petri transitions to process elements and their respective
MOE symbol are shown in Table I, a more detailed description
of the Petri process modeling, the firing rules, and MOE can
be found in [10].

Using (7) and (8), we are able to calculate cost and quality
for a manufacturing process using a single specific yield/test
combinations. The next step is to compare the results for various
combinations and to tradeoff the contradictory objectives.

III. MULTIOBJECTIVE OPTIMIZATION, THE PARETO CONCEPT,
AND AUTOMATED SEARCH

Generally, a cost–quality tradeoff can be considered as a mul-
tiobjective optimization problem.

Definition 1: In a general multiobjective optimization
problem, for an -dimensional parameter vector and a target
function vector of dimension , an objective vector has to
be found satisfying the following condition

is called the decision space. the objective space.
“True” Multiobjective or “Quasi-Single” Objective?: For

multiobjective problems hardly any ”true” multiobjective op-
timization technique had been available since recently [11].
What had been done so far was to aggregate multiobjective
problems into single-objective target functions (“quasi-single”).
One example was the use of weighting factors for the specific
objectives [12]. Another way was the dedicated translation of

all objectives into a single one, such as time-to-market to cost
[13] or test escapes to cost [7].

The main advantage of a “quasi-single” optimization is that
various solution techniques for single-objective problems do
exist. Among them are analytical methods, numerical methods,
e.g., linear programming techniques, or heuristic approaches.
On the other hand, the drawbacks when solving a multiobjective
problem using “quasi-single”-objective optimization are also
numerous.

• While setting the weights, implying “decision making be-
fore search” [11], a dedicated knowledge of the search
space is required to generate these weights.

• Aggregating implicitly into a single objective allows
compensation of a specific underperforming objective,
which is often not desired. Consider the case when for
a product low quality comes with a very attractive cost.
Measures preventing this result complicate the optimiza-
tion procedure.

• To obtain more than one solution and to make a tradeoff
decision, several independent runs are necessary where
synergies cannot be exploited. Single results do not permit
a design parameter space exploration to be conducted,
which is one of the main goals of early design analysis.

Especially the last issue makes the case for a “real” multiob-
jective optimization in order to support tradeoff investigations.
Doing so, we need a specific ranking mechanism for multiob-
jective optimizations in order to compare different solutions.

Pareto Optimality and Domination: Whereas in a single-ob-
jective optimization, two feasible parameter vectors, e.g.,
and , can be ranked in a strict order according to a
single objective function , resulting in either
or , for multiobjective problems only partially
ordering schemes are present, as introduced by Wilfredo Pareto
(see [14]): a vector that is at least as good as another vector

in all objectives and superior in at least one objective, i.e.,
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Fig. 3. Interaction between the EA algorithm and the MOE tool. First, a model-specific parameter set is encoded and initialized into a population S .
Every individual is translated into a netdata-file to extract the objective values cost and defect level. Based on these values, fitness assignment is done and the
Pareto set S is updated. If the maximum number of generations has not been exceeded, a new generation is created by means of selection and replication,
and the loop continues with the objective extraction.

, is said to be superior to or dominating . The
“inferiority” condition would be . Howeverm if,
e.g., is only better in some objectives than and worse in
others, they cannot be ordered and are said to be indifferent.
Vectors not being dominated by any other vector are called
“Pareto vectors or points.”

Automated Search: To avoid the drawbacks of a quasi-single
objective optimization, we have chosen a genetic/evolutionary
algorithm (GA/EA). Evolutionary algorithms (EA) are based on
the Darwinist notion of a population development by means of
variation and selection: Due to stochastic deviation of their com-
posites (chromosomes or genes), individuals have a different de-
gree of fitness with respect to their environment. When it comes
to reproduction, usually the fitter individuals are preferred (se-
lected). The interaction between the EA algorithm and the MOE
tool is shown in Fig. 3.

Encoding: One of the core parts in EAs is to find a suitable
encoding of the problem. Our optimization problem belongs to
the class of real parameter optimizations [15], i.e., we have a
given number of parameters (e.g., )
forming our decision vector according to Def. 1. This decision
vector is also called individual in the EA context, and each
parameter can adopt either a value from a given range or from a
set of values [see, e.g., (9)].

(9)

Using (9), each parameter
has been coded as a 3-bit gene, and all genes are lined up to a
single bitstring (“individual”), as shown in Fig. 4.

Fitness Assignment: In a first step, a population’s bitstrings
are decoded to real values and fed into the MOE simula-
tion engine to extract cost–quality data. To produce the next
generation (“the offspring”), parents have to be selected in

Fig. 4. Coding a parameter set as a one-chromosome individual; parameters
are lined in an arbitrary sequence; each parameter is coded by a 3-bit gene
selecting a value from its value list as in (9) (bit values in third line chosen
as example).

a tournament according to their fitness. The selection algo-
rithm has been implemented adopting the Strength Pareto EA
approach (SPEA) [11].

SPEA uses the concept of elitism, where the best performing
individuals (the actual Pareto points of every population) are
stored in an external set . Now, aiming for fitness max-
imization, the fitness of a Pareto individual is the ratio
of population individuals dominated by to the total number of
individuals. The fewer individuals there are in a certain niche,
the better the fitness value. This strategy propels the search into
less explored regions of the decision space.

On the other hand, the fitness of a population individual
is the sum of the fitnesses of all Pareto individuals dominating
it, plus one to make sure all ordinary individuals have a lower
fitness than the Pareto individuals. A high number of Pareto in-
dividuals dominating this ordinary individual reduces its fitness
value. The advantage of this approach is to better maintain the
diversity of the population. An example for the fitness calcula-
tion is given in Fig. 5.

Summary: We are now able to extract cost/quality values
from a given manufacturing specification and to rank different
results with regard to these two objectives. In general, our
method can be used for two different purposes: “tuning” an
existing manufacturing environment and evaluating possible
setups for a future fabrication process. The first one is based on
more fine-grained yield/test data, and an example is given in
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Fig. 5. Fitness calculation of SPEA: the lower the value, the better the fitness F (�). Pareto points dominating more population individuals, e.g., a, b get a worse
fitness value than those covering a less explored region, such as d, f. From the normal population, individuals (k, m) close to those marginal points are promoted
in order to support them to “boldly go where no individual has gone before.”

Fig. 6. Manufacturing of a GPS RF front end.

Section IV. The second application area would explore wider
ranges covering different strategies and equipments. Due to
space restrictions, no example of the second application area is
shown here, the interested reader may refer to [10].

IV. A CASE STUDY: MANUFACTURING A GPS MODULE

A GPS front end converts the incoming signal after external
filtering via intermediate frequencies (IF) to the base band. After
A/D conversion, the signal undergoes the selection in the cor-
relator and the subsequent stages. A schematic can be found in
Fig. 6(a), a more detailed description of the module is given
in [16]. The existing cost/quality values are unsatisfactory, and
improvement is to be sought.

A first analysis of the manufacturing flow identified seven
main parameters to be investigated, incorporating the yield fig-
ures of the IC components, the substrate, a repair process, and
the fault coverages of all present tests. In Fig. 6(b), the MOE
manufacturing model for the GPS front end is depicted. It in-
cludes an RF die and a correlator die. The RF die under-
goes a prescreening with fault coverage , the correlator

is rerouted for flip chip attach and afterwards optically inspected
. In case of an error, this chip can be replaced once with

the success rate . Both dies are attached onto the thinfilm sub-
strate (upper right corner with ), and then the entire system
undergoes a functional test before shipping .

Situation: For simplicity’s sake, we set arbitrary
maximum and minimum values for the parameters

and calculated numerically
intermediate values. The values for the parameters and their
respective cost are shown in Table II. A more elaborate (and
extensive) example showing more realistic yield/fault coverage
values from a technical point of view can be found in [10].
Technically, higher yield and higher fault coverages can be
explained with higher quality components and longer test times.
Since an existing fabrication environment is to be changed,
again for simplicity’s sake in this case study we ruled out
additional investment affecting the NRE cost.

We calculated cost and defect level and found the result of
11 624.90 cents or arbitrary cost units (a.u.) and the defect level
of 0.1114 too high. The idea is now to identify key and marginal
parameters by using our approach, to leverage cost/quality by
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TABLE II
PARAMETER VALUES USED FOR THE GPS FRONT END; FOR EACH MAIN PARAMETER THERE IS A DEPENDENT COST VARIABLE CHANGING

WITH YIELD AND FAULT COVERAGE

improving key parameters while turning down marginal ones
in order to reduce cost. To benchmark the EA search approach
to “simple solutions,” we also included the results of typical
parameter combinations, marked in Table II

low: minimum values from Table II;
existing: the established yield/fault coverage values;
high: maximum values from Table II.

The “low” combination corresponds to low testing efforts
and low-cost low-yield components, giving the highest overall
defect level, possibly at lowest cost. On the other hand, the
“high” value represents the opposite with maximum test effort
and high-quality components, yielding the lowest defect level.
The “low” and “high” combinations are two often undesirable
extremes and correspond with the beginning and the end of the
graph in Fig. 1. In addition, we calculated the cost–quality of
30 000 pure random parameter combinations following Table II,
the same number of solutions as used with the EA (three runs
containing 100 iterations with 100 individuals each), to bench-
mark the EA effectiveness.

Results: Fig. 7 shows the joint results from three runs. As
one can see, the high-existing-low results are situated almost
on a straight line moving toward the process optimum. The
“low”-value (filled circle) is dominated by the existing setup
from Table II (outline square), and both are surpassed by the
“high” parameters (filled square). Although the “high” combi-
nation gives the lowest defect level (while the “low” combina-
tion gives the highest one), lower cost is obtainable at the price
of a small increase in the defect level.

The Pareto front (small filled squares) is located in the
lower left area of Fig. 7(a), and a zoom of this area is shown
in Fig. 7(b). We choose the point as
tradeoff point, marking it with a circle. Thus, compared to
the “high” point with a cost of 10’500 a.u. and a defect level

, we achieve a 16% cost reduction, let alone the
improvement to the previous established setup. Comparing
the tradeoff point to the random run results with similar

cost–quality ranking, we have achieved either a 186% defect
level improvement at the same cost or a cost advantage of 2.5%
choosing the same defect level.

Table III shows the decoded parameters of the Pareto front.
From Table III we can see that high yield values for the RF
die and the correlator IC are mandatory. When
looking back on Table II and comparing the cost penalty for
yield and fault coverage increase, the leverage is best for
these two components. The influence of the rework step
is gradually turned down while the final fault coverage
increases, although the cost penalty is four times higher when
increasing . Obviously, the high component yield together
with good test renders it superfluous to do some repair and
to invest in testing the repaired component again. Also high
substrate yield is imperative. The final test efficiency
increases permanently, driving the defect level down the Pareto
front. An interesting point is that in the higher defect level
regions the low value is first compensated by increasing
the preliminary test due to its better cost/performance ratio,
then the final test comes into play. Thus for some applications,
where only minor defect level improvements are required, a
preliminary test might already suffice to move to an acceptable
defect level.

V. DISCUSSION

In Section IV, we have shown a typical application example
for our proposed methodology, enabling the designer to effec-
tively screen a wide range of parameter values. In this section,
we discuss some other findings.

Analysis of the Pareto Front and Its Parameters: Based on
the simulations, the designer also gets a general understanding
of the problem nature: Notice the two different Pareto shapes
with respect to the population in Figs. 7(a) and 8. In Fig. 7(a), the
min-medium-max vectors are situated on a straight line leading
toward the area of the global optimum, indicating that in general
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Fig. 7. Results for the GPS manufacturing: comparison of the Pareto front to high-existing-low parameter combinations; the defect level varies between 0 and
1 (EA parameters are population size N = 100, Pareto set size N = 10, n = 100 iterations, crossover probability p = 0:8, and mutation
probability p = 0:1).

TABLE III
DECODED PARAMETERS FOR THE PARETO FRONT; TRADEOFF POINT IS MARKED

all types of yield/test improvement will pay off for both cost
and quality. Only a small tradeoff area exists. For the second
case (Fig. 8) however, the min-medium-max line connects the
undesired extremes “low cost/low quality” and “high cost/high
quality.” This means that a continuous tradeoff is required, since
every quality improvement will result in higher total cost.

The analysis of the Pareto front provides such information.
Whereas some parameters are mandatory for a globally optimal
result (e.g., KGD-like components), others drive the tradeoff
point down the Pareto front influencing the optimum locally
(Fig. 8).

Stability: Another concern is the stability of the tradeoff
point (marked with a circle in Fig. 7). We define stability
in this context as variation in the object space
as a result of parameter variations in the decision space

. In real-world
optimization problems using statistical parameters, it is very
probable that some tradeoff points are more stable than others.
To quantify the susceptibility to this parameter variation,
we perform a stability analysis, allowing every parameter
independently to assume the adjacent lower and higher value,
thus creating a subpopulation.

In a second step, we introduce a rectangle enveloping this sub-
population as the stability criterion; the larger the size of this
rectangle, the less stable the point is. For a three-valued objec-
tive space, this criterion would be extended to a box containing
all subpopulation members. The analysis is exemplified using
the tradeoff point from Fig. 7(b).

The stability envelope compared to the previous search space
is shown in Fig. 9(a), a closeup [Fig. 9(b)] shows the relation
to the Pareto front. This envelope has been compared to one of
the neighboring points on the Pareto front (see Table III), which
could have been used as tradeoff candidates. The stability enve-
lope of the originally chosen tradeoff point covers the smallest
area, thus giving the highest stability of all candidates.

Scalability and Effort: One of the method’s advantages is its
applicability to a wide range of fabrication problems including
standard SMD processes as well as more “exotic” processes.
Prerequisite is that the manufacturing description can be broken
down to a chain of basic processes, described by their specific
direct cost, NRE, and yield/fault coverages. Since the computa-
tional effort1 is somewhere between 2 h (the GPS case presented

1With the actual nonoptimized code.
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Fig. 8. Example for a second type of Pareto front.

Fig. 9. Stability of tradeoff points: even taking parameter variations into account, the entire stability region is still a significant improvement to the existing setup
(left). A close-up of the stability region (right) proved that the chosen tradeoff point has a smaller f�c; �DLg than its neighboring points and is thus more robust.

here) to overnight calculations (a more elaborate study on pro-
ducing a smart card), depending on the number of parameters,
the main analysis work remains in the gathering of accurate data.

Outlook: Future work could focus on integration of technical
design options as presented in [17] to the EA algorithm. First
conceptual thoughts have been made about concurrent evalu-
tation of system-on-a-chip versus system-in-a-package manu-
facturing options [10]. The solution could be a built-in model
switch in a chromosome as shown in Fig. 10.

VI. CONCLUSION

In this paper, we have presented a quality versus cost
tradeoff method for electronic systems. The EA-based search
clearly outperforms average parameter combinations and

Fig. 10. Part of a one-chromosome individual similar to Fig. 4: depending on
the actual switch value, a specific submodel would be selected using either an
SOP or an SOC setup (selected branch marked gray).

random searches in finding tradeoff options. It allows effective
screening of a wide range of improvement options, and the
analysis of the overall Pareto type (continuous tradeoff versus
driving toward global minimum) provides valuable insight into
the cost/quality relation of a specific manufacturing problem.
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The methodology has been demonstrated with one case study.
The process-oriented approach is flexible and can be adapted to
a wide range of manufacturing processes. A stability analysis
has been proposed to investigate the sensitivity of such a tradeoff
point to parameter variations. With our methodology, it is now
possible to identify a process setup and a component selection to
achieve an optimal cost/quality combination for a HDP product.
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