
Binary Search Schemes for Fast IP Lookups

Pronita Mehrotra, Paul D. Franzon
ECE Department, North Carolina State University

Box 791 1, Raleigh NC 27695
{pmehrot,paulf]@eos.ncsu.edu

Abstra&Ronte lookup is becoming a very challenging prob-
lem due to the increasing size of routing tables. To determine
the outgoing port for a given address, the longest matching p r e
fir among all the prelises, needs to be determined. This makes the
taskofsearchinginalargedatabasequitedifficnlt. Onrpaperde-
seribes binary search schemes that aUow fast address lookups. Bi-
nary search can be performed on the number ofentries or on the
number of mutually disjoint prefixes. Lookups can be performed
in 0 0 time, where N is number of entries and the amount of
memory required to store the binary database is also 0 0 . These
schemes scale very well with both large databases and for longer
addresses (as in IpV6).

1. INTRODUCTION
Traffic on the Internet doubles every few months [I]. Addi-

tionally, the number of hosts on the Internet have been increas-
ing steadily, forcing a transition from the 32 bit address of IPv4
to the 128 bit addressing scheme of IPv6[2]. With bandwidth
hungry applications like video conferencing becoming increas-
ingly popular, the demand on the performance of routers has
become very high. Tbe most time consuming part in the de-
sign of a router is the route lookup. This paper deals with route
lookup schemes that allow faster lookups (a I0%-20% speed
improvement) when compared to other comparable schemes.

When an IP router receives a packet on one of its input port,
it has to decide the outgoing port packet depending on the des-
tination address of the packet. To make this decision, it has to
look into a large database of destination networks and hosts.
Routing tables store only address prefixes which represent a
group of addresses that can he reached from the output port.
The problem of determining the next hop is equivalent to find-
ing the longest matchingprefir.

The rest of the paper is organized as follows. Section II dis-
cusses some of the previous work done in this field. Section Ill
and Section IV then describe the details of our algorithms. We
evaluated the performance of our schemes on practical routing
tables, the results of which are presented in Section V and we
finally conclude with Section VI.

11. PREVIOUS WORK

Most of the approaches used to solve the longest match-
ing prefix problem, fall under either the "thumb indexing" ap-
proach or binary search approaches [3]. The former approach
does not scale very well with large address sizes (as in IPv6).

Binary schemes on the other hand use searches on either the
number of routing entries or the number of possible prefix
lengths. These schemes would scale better with the higher ad-
dress size of IPv6. Our paper deals with binary search methods
where the search is performed on the routing table entries.

Gupta et al [4] presented a hardware implementation based
on an indirect lookup scheme where the number of memory
lookups required to determine the output port is quite small
(1-2). Degermark et al [5] used compression techniques that
allow a forwarding table to fit on on-chip caches. The hardware
implementation by Huang et al[6] compacts a large forwarding
table of 40,000 entries into 450-47OKB. Still other schemes
[7], [8] have used caching to improve the performance ofroute
lookup. Caching relies on the temporal locality of data and this
may not he very useful for core routers which exhibit very little
temporal locality.

Binary tries use lesser memory to store the forwarding data
bases, however the number of memory accesses required to
evaluate the next hop is much higher. The NetBSD implemen-
tation uses a Patricia Tne [9], where a count of bits skipped
is maintained for one-way branches. This reduces the aver-
age depth of the trie to some extent. The average length of the
search in the Patricia implementation is 1.44 log(N) where N is
the number of entries in the routing table. For large databases
(>30,000), 22-23 memory accesses are still required. Level
Compression (LC) can be used to further reduce the average
depthofthettie [IO].

Other approaches are variations of the binary search. Bi-
nary search by itself can work only with numbers. Prefixes in
the routing tables represent range of numbers and so a straight
implementation of binary search does not work. A few modi-
fications to the binary search have been proposed. The first of
these is the scheme by Lampson et al [I I], where each prefix
is expanded into two entries. The set of these entries is then
processed to compute pointers to help in the search process.
Yazdani et al [121 defined a sorting scheme to sort prefixes of
different lengths and then applied binary search to the sorted
list. However, their scheme leads to an unbalanced tree and
a variable number of memory accesses. Waldvogel et al [I31
suggested a hash based scheme where a binary search is per-
formed on the number ofpossible prefix lengths. Their scheme
scales well with the size of the routing table and at most 5 hash
lookups (for IPv4) are required to determine the next hop ad-
dress. However, as pointed out in [I I], this scheme would not

0-7803-7632-3/02/$17.00 02002 IEEE 2005

mailto:pmehrot,paulf]@eos.ncsu.edu

TABLE I
A SAMPLE ROUTING TABLE WITH PREFIXES AND NEXT HOPS

A
101101* 10111*

Fig. I . Binary Tree Consrmcted f" Table 111

scale well with longer addresses as in IPv6.
Our work focuses on binary searches perforined on the num-

ber of routing table entries. In that sense, it is closest to the
work in [I I] and their scheme (referred to as the LSV scheme)
has been used to compare our results with, in the rest of the
paper.

111. DESCRIPTION OF THE ALGORITHM
To understand the algorithm, we first look at a variahle-

degree tree constructed from the prefixes in Table Ill as shown
in Fig. I . To place prefixes in their relative positions in the tree,
two conditions were used. Using the notation in [12], for two
prefixes, A = al %...a, and B = blbz ... b,,

I) If A C B, then A is a parent of B (where the parent could
he any node along the path from the node to the root of
the tree)

B and A < B, then A lies on a suhtree to the
lefl of B. To compare A and B, if the prefix lengths of
A and B are equal, i.e. n = m, then the prefixes can he
compared by taking their numerical values. However, if
n # m, then the longer prefix is chopped to the length
of the shorter prefix and the numerical values compared.

By applying these conditions to all the prefixes, the tree in
Fig. I can be constructed.

The problem with performing a binary search on variable
length prefixes can now be seen. By simply sorting the prefixes
in some fashion and performing a binary search, it would not

2) If A

TABLE I1
PREFIXES FROM TABLE 111 AFTER SORTING

11 Prefix I NextHop (1

he possible to determine the longest matching prefixes. For in-
stance the prefixes could he sorted using the mles given above
as shown in Table 111. This is equivalent to having performed a
post-order depth-first-search on the binary tree in Fig. I .

Performing a simple binary search for a given address on
the sorted prefixes, would not necessarily lead to the longest
matching prefix. For instance, prefixes 101 loo* and 100'5oth
lie between the entries 011' and 101101* hut both of them
have different longest matching prefixes. In general, the pre-
fix could he any of the parent nodes or the root (default) node.
Therefore, to determine the correct next bop, additional (and a
variable number 00 steps would need to be performed. This
problem arose because the node 101 101 * did not cany any ad-
ditional information ahout its parent nodes. We can avoid this
problem by storing an additional field at all nodes that gives
information about all the parent nodes. This additional field,
which we call the Path Information Field, is a 32 hit entry (for
IPv4) where a 1 in any bit position in the field means that there
is a parent node with a prefix till that hit position. For exam-
ple, for the leaf node of 101101* the Path Information field
would look like 0...101010, i.e. the second hit (correspondjng
to IO'), the fourth hit (corresponding to 101 I*) and the sixth
hit (corresponding to the leaf node itself) are set to I . In ad-
dition, the node would also contain a pointer to a list of next
hop addresses for the corresponding hits in the path informa-
tion field. In this case, the list of next hop addresses would be
2,9,3. Now by looking at the path information field the longest
matching prefix can be determined and the correct next hop
address obtained from the list. The data structure used at the
nodes is shown in Fig. 2. In our implementation, we store the
following information at each ofthe leafnodes: the prefix, pre-
fix mask, the next hop address Corresponding to the leaf node,
the number of internal nodes in the path and a pointer to the
list of next hop addresses corresponding to the internal nodes.
Table Ill shows the relevant information stored with each of
the entries in Table 111. Using the same example, if the ad-
dress 101100* were to be searched for in the list, the search
would point to between the upper and lower entries of 01 1 * and
101 101*, respectively. A match between the address 101 100.

-

2006

Next Hop

Prefix Next Path Information Next Hop List
HOP

and the lower entry 101 101' results in a match ofup to 5 bits.

longer prefix, the prefixes are equal then the shorter prefix is
considered to be the larger ofthe two. Doing this ensures that
in the following step, the child nodes get processed before the
parent nodes.
Step 3: Entries from the sorted list are then processed and
'added in an array, one at a time. Each entry is also tested with
the last array entry to see if it is a subset of the array entry.
Step 30: If it is a subset, then the next hop information corre-
sponding to the array entry is added to the next hop list ofthe
array entry. The path information field of the array entry is up-
dated and so is the field containing the number of nodes. This
step is then repeated for previous entries till the test for sub-
set fails. To see why this is necessary, consider the last prefix
in Table 111. When prefix IO' is compared with the last array
entry (101 I *) , it is added in the next hop list of l o l l * . How-
ever, 10*alsoliesinthepathof10lll*and 101101*andthe
corresponding entries need to be updated as well.

B. Searching the Data Structure

To search for the longest matching prefix, a binary search is
performed on the entries. The search algorithm is summarized
below:
Step I : Binary search of the address is performed on the array
entries which leads to a value behueen two consecutive array

By looking at thebath information field, bit 5 is not set to I .

matching prefix for the given address is lol * and the corre-
sponding next hop address in the next hop list is 9. In this case,
the address needs to he cnmnared with onlY the lower re-

entries.

checked against the path information field. The longest match-
ing Prefix and the next hop address from the
next hop list is picked. If no match is found, the default next

ne next lower bit that is set, is bit 4. Therefore, the longest step 2: The address is then matched with the lower entrymd

at different cases a search can end up in:
I) Between two leaf nodes with a common parent node. In

this case either of the nodes can be used to determine the
next hop address.

2) Between a node and its parent node. In this case, the
parent node is the longest matching prefix and the parent
node is the lower (larger) entry.

3) Between a node connected to the root node and a leaf
nodeofthenextbranch(asin01l'and lOllOl*). Inthis
case, nothing is gained by comparing with the smaller
entry, since it can only lead to the root node (default next

In all possible cases, it suffices to compare the address against
only the lower entry to look for partial matches.

A . Building the Data Structure
Building the data structure is fairly simple and the steps in-

volved are listed below:
Step I : Each entry is read from the routing table and stored in
an array.
Step 2: The entries are then sorted from the smallest to the
highest. To compare prefixes, the rules listed previously are
used. For prefixes of unequal lengths, if after chopping the

hop).

C. Updating the Data Srructure

Inserting or Deleting entries from the data space is equiva-
lent to adding or deleting an entry from an array. To add an
entry,a binary search is performed as outlined in the previous
section, to find the location of the insertion. The entry is then
added into the array, which is an O(N) process. The entry is
also checked against entries above it to see if it is a subset or
not, and the corresponding path information field and next hop
list is updated. Deleting an entry follows a similar procedure.
Updating the data structure, therefore, does not require the en-
tire data Structure to be built from scratch.

Iv. USING DISJOINT PREFIXES FOR BINARY SEARCH
The search space used in the previous scheme can be re-

duced further by using only mutually disjoint prefixes. Two
prefixes are considered disjoint, if none of them is a prefix of
the other. It is easy to see that these correspond to the leaf
nodes of the tree shown in Fig. I . All intemal nodes can be
removed from the search space since the information corre-
sponding to them is already contained in the path information
field and the next hop list of the leaf nodes. The search space
can then be shortened as shown in Table IV.

2007

Routing No of
Table Entries

Fig. 3. Pmfile of routing tables fmm

Binary Binary LSV
Search Search Scheme

From Table I11 and Table IV it might appear that a consid-
erable amount of memory might be wasted in staring internal
nodes a multiple number of times. For instance, next hop ad-
dresses correspondingto nodes 10 I I * and IO' are stored in the
listofnexthops forboth 101101*and 1011l*.Tbisisnotnec-
essarily true. An examination of practical routing tables from
[I41 shows that most of the nodes in fact do not have any inter-
nal nodes and next hop lists to store. Fig. 3 shows the number
of internal nodes for all the leaf nodes for various routing ta-
bles. From the figure, it can be seen that more than 93% of
the leaf nodes do not have any internal nodes in the path to the
root node. Therefore, the overhead in memory to store internal
nodes multiple number of times is actually quite small.

The build and search algorithms need to be modified slightly
to accommodate the changes. The main differences are that in
the build phase, only the leaf nodes are added in the search
space while the internal nodes only affect the path information
field of the leaf nodes. In the search algorithm, the address
needs to be matched against both the upper and lower entries
to determine the better match. During updates, if the entry
tums out to be an internal node, only the next hop lists and the
parent information fields of the-corresponding leaf nodes get
updated.

Prefix

TABLE V
AVERACE SEARCH TIMES FOR DIFFERENT ROUTING TABLES

Next Path Information Next Hop List
HOP

V. RESULTS AND DISCUSSIONS

We ran our algorithms on a Sun Ultra 5 with a 333 MHz
processor and 5lZMB of RAM. The programs were written
in C and compiled with gcc with the compiler optimization
level 3. We also compared our results against the LSV scheme
[l I]. The binary search part of all algorithms were identical.
We used the search time, build time and memory consumption
to evaluate the performance of the schemes. Practical routing
tables from [I41 were used in the experiments.

Average Search ? h i m e Random IP addresses were generated
and a lookup was performed using both schemes. Table V lists
the average lookup times for different routing tables. From Ta-
ble V it can be seen that our scheme which uses all nodes in
the search space results in over 10% improvement in lookup
speeds over the LSV scheme. With internal nodes eliminated
from the search space, an improvement of 15-20% can be ob-
tained.

The time taken to search for an entry is of the order of
log(2N) where N is the number of entries in the routing ta-
ble. Once the binary search is performed, an additional mem-
ory lookup is required (approximately half the time) to obtain
the next hop address. In comparison, the search space inour
schemes is < N . Our schemes therefore, result in 1-2 fewer
memory accesses in just the binary search. After the search
is narrowed down, our schemes, for most of the time does not
require any additional memory lookup to determine the next
bop address. For these reasons, the average lookup time in our
scheme is lower than the lookup time in the LSV scheme.

Build Erne of Data Structure The time required to build the
searchable structure from the routing tables is shown in Ta-
ble V. The time shown does not include the initial time taken
to read enmes from a file and store them in an array. This
means that for all algorithms time starts from sorting the en-
tries and ends when the searchable structure is built. As seen
from the table the time taken to build the searchable space us-
ing LSV scheme is more than two times the time taken to build
ours. A profile of the times taken, using gprof, shows that most
of the difference can be accounted for by the initial sorting of
entries. Since the number of entries in the LSV scheme is more
than twice ours, sorting becomes a fairly expensive operation.

2008

' Routing No of Binary Binary LSV
Table Entries Search Search Scheme

(All (Only
Nodes) Leaves)

TABLE VI1
MEMORY REQUIREMENT FOR DIFFERENT ROUTING TABLES

Routing No of Binary B i n w LSV
Table Entries Search Search Scheme

(All

Build time for the scheme that uses only leaves in its searchable
space is not significantly different from the one that uses all the
nodes. This is due to the fact that most of the entries in these
routing tables, end up as leaves and the overhead in adding in-
ternal nodes is very small.The build time will be particularly
crucial for larger routing tables, because updating entries re-
quires the entire searchable space to be built from scratch in
the LSV scheme. For large routing tables (> 100,000 entries),
this could be serious problem in their scheme.

Memory Consumption Table V shows the memory required
in storing the searchable structure for all schemes. Memory re-
quired for both binary schemes is close to half of that required
for the LSV scheme. This is because each prefix in the LSV
algorithm gives rise to two entries in the binary search table.
Memory requirement for the scheme using only leaves in its
searchable space is not significantly different from the one us-
ing all the nodes, for the reason pointed before.

One potential problem with our schemes is that the path in-
formation field has to be equal to the size of the address. For
IPv4 this means that the path information field has to be 32
bits. For IPv6, this would mean storing a 128 bit field, leading
to higher memory consumption and longer times to process
instructions using this 128 bit field. In comparison, the addi-
tional information that LSV scheme uses are pointers, the sue
of which would depend on the number of entries. For a routing
table of 100,000 entries, the pointers need to be only 18 bits
wide. Storing the high and low pointers in their scheme, would
make the extra memory consumption to 36 bits as compared to
128 bits in our case. However, this could be improved some-

what as we show next. If very long or very short prefixes do
not exist in the routing tables, then the number of bits used in
storing the path information can be reduced. For instance, for
the MaeEast routing table, no prefixes exist for prefix lengths
smaller than 8 bits and larger than 30 bits. The path infor-
mation field, therefore, only needs to have 23 bits to store the
relevant information. We do not have any data for how core
routing tables would look like for IPv6, but we expect to be
able to considerably reduce the number of hits used in storing
the path information.

VI. CONCLUSIONS
We have described methods to adapt binary search to work

with variable length prefixes. By storing information corre-
sponding to parent nodes, we can reduce the time taken to
search for a next hop address. Further improvement in per-
formance can be obtained by using only mutually disjoint pre-
fixes in the searchable space. IO-20% improvement in average
lookup time over the LSV scheme can be obtained. In addition,
reducing the search space to less than half, the amount ofmem-
ory taken by the searchable space is also reduced to about half.
The time required to build the searchable structure is similarly
reduced considerably due to the fewer number of entries.

REFERENCES
[I] "Internet HOSt and Traffic Growh."

(http:iiu?uwcf.columbiaedu/ hpsiint"~owth.hm1).
[2] "lntemd Growth Summay" (h t t p : / i ~ . m i t . ~ ~ - p l ~ m k ~ y i " ~ ~

internet-pwth-summaryhml).
[3] N. MeKeom and B. P r a b h h . '.High Performance Switcher and

Routen: Theory and Practice:' in Hot lmermnnem Tuloriol Slides
(hnp://tiny-lem.sm./Ordedu/ niekn/mlh/inderhn0, Aug. 1999.

[4] P. Gupta, S. Lin, and N. McKmwn, "Routing h k u p s in Hardware at
Memow Access Sweds,'' in P m . IEEE INFOCOM'98,ISa 0 FmcisFo,
CA),&. 1382-1391, 1998.

[5] M. Degemark, A. Brodnik, S. Carlsson, and S. Pink, "Small Fonuarding
tabla for fast muting lookups:' in Pmc. ACMSIGCOMM, vol. 27. pp. 3
14, Oct. 1997.

[6] N.-F. H m g and S.-M. am, "A Novel IP-Routing Lookup Scheme and
Hardware Architecture for Multigigabit Switching Routers:' IEEE Jour-
nolon SeleeredArear in Communieolionr, vol. 17, pp. 1093-1 104, lune
1999.

[7] T. cker Chiueh and P. Pradhan, "High-Performance IP Routing Table
Lookup Using CPU Caching:' in Pme IEEE lNFOCOM'99, pp. 1421-
1428, 1999.

[8] T. cker Chiueh and P. Padhan, T a c h e Memory Design far Network
Processors," in Pmceedings o/Srrh Imernorionnl Symporium on High-
Perjormonce Compuar Anhilecnrre. 2000. vol. HPCA-6, pp. 409418,
_)nm
L w y

191 K. SWower, "A Tree-Based Rowing Table for Berkeley Unii," in Tech-
nical Reporl,(U niversity of California. Berkeley).

[LO] S. N i l w n and G. Karlsson, "IP-Address Lookup Using LC-Ties,"lEEE
Journal on Selecled Ar- in Communicufionr, vol. 17, pp. 1083-1092.
lune 1999.

[I I] B. Lampson. V. Srinivaran, and G. Varghese. "IP Lookups using Mul-
tiway and Multicolumn Search," in Pmc. IEEE INFOCOM'98, vol. 3,
(San Francisco, CA), pp. 1248-1256, 1998.

[I21 N. Yazdani and P. S. Min. "Fast and Scalabc schemes for the IP ad-
dress Lookup Problem," in Pmc. IEEE Con/imence on High Per/oormonee
Swilching ondllouting, pp. 83-92.2000.

1131 M. Waldvogel, G. Varghcse, I. Tumer, and B. Platmer, "Scalabc High
Speed IP Routing Lookups:' in P a . ACMSIGCOMM, vol. 27, pp. 25-
36, Oct. 1997.

1141 "Michigan University and Mefit Network. lntemet Performance Man-
agement and Analysi~ (IPMA) Projen." (http:i/nic.meit.edd ipma).

2009

http://ieeexplore.ieee.org/iel5/8454/26646/iiu?uwcf.columbiaedu
http://ieeexplore.ieee.org/iel5/8454/26646/i/nic.meit.edd

	ieee.org
	Binary search schemes for fast IP lookups - Global Telecommunications Conference, 2002. GLOBECOM '02. IEEE

