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Abstra&Ronte lookup is becoming a very challenging prob- 
lem due to the increasing size of routing tables. To determine 
the outgoing port for a given address, the longest matching p r e  
fir among all the prelises, needs to be determined. This makes the 
taskofsearchinginalargedatabasequitedifficnlt. Onrpaperde- 
seribes binary search schemes that aUow fast address lookups. Bi- 
nary search can be performed on the number ofentries or on the 
number of mutually disjoint prefixes. Lookups can be performed 
in 0 0  time, where N is number of entries and the amount of 
memory required to store the binary database is also 0 0 .  These 
schemes scale very well with both large databases and for longer 
addresses (as in IpV6). 

1. INTRODUCTION 
Traffic on the Internet doubles every few months [I]. Addi- 

tionally, the number of hosts on the Internet have been increas- 
ing steadily, forcing a transition from the 32 bit address of IPv4 
to the 128 bit addressing scheme of IPv6[2]. With bandwidth 
hungry applications like video conferencing becoming increas- 
ingly popular, the demand on the performance of routers has 
become very high. Tbe most time consuming part in the de- 
sign of a router is the route lookup. This paper deals with route 
lookup schemes that allow faster lookups (a I0%-20% speed 
improvement) when compared to other comparable schemes. 

When an IP router receives a packet on one of its input port, 
it has to decide the outgoing port packet depending on the des- 
tination address of the packet. To make this decision, it has to 
look into a large database of destination networks and hosts. 
Routing tables store only address prefixes which represent a 
group of addresses that can he reached from the output port. 
The problem of determining the next hop is equivalent to find- 
ing the longest matchingprefir. 

The rest of the paper is organized as follows. Section II dis- 
cusses some of the previous work done in this field. Section Ill 
and Section IV then describe the details of our algorithms. We 
evaluated the performance of our schemes on practical routing 
tables, the results of which are presented in Section V and we 
finally conclude with Section VI. 

11. PREVIOUS WORK 

Most of the approaches used to solve the longest match- 
ing prefix problem, fall under either the "thumb indexing" ap- 
proach or binary search approaches [3]. The former approach 
does not scale very well with large address sizes (as in IPv6). 

Binary schemes on the other hand use searches on either the 
number of routing entries or the number of possible prefix 
lengths. These schemes would scale better with the higher ad- 
dress size of IPv6. Our paper deals with binary search methods 
where the search is performed on the routing table entries. 

Gupta et al [4] presented a hardware implementation based 
on an indirect lookup scheme where the number of memory 
lookups required to determine the output port is quite small 
(1-2). Degermark et al [5] used compression techniques that 
allow a forwarding table to fit on on-chip caches. The hardware 
implementation by Huang et al[6] compacts a large forwarding 
table of 40,000 entries into 450-47OKB. Still other schemes 
[7], [8] have used caching to improve the performance ofroute 
lookup. Caching relies on the temporal locality of data and this 
may not he very useful for core routers which exhibit very little 
temporal locality. 

Binary tries use lesser memory to store the forwarding data 
bases, however the number of memory accesses required to 
evaluate the next hop is much higher. The NetBSD implemen- 
tation uses a Patricia Tne [9], where a count of bits skipped 
is maintained for one-way branches. This reduces the aver- 
age depth of the trie to some extent. The average length of the 
search in the Patricia implementation is 1.44 log(N) where N is 
the number of entries in the routing table. For large databases 
(>30,000), 22-23 memory accesses are still required. Level 
Compression (LC) can be used to further reduce the average 
depthofthettie [IO]. 

Other approaches are variations of the binary search. Bi- 
nary search by itself can work only with numbers. Prefixes in 
the routing tables represent range of numbers and so a straight 
implementation of binary search does not work. A few modi- 
fications to the binary search have been proposed. The first of 
these is the scheme by Lampson et al [ I  I], where each prefix 
is expanded into two entries. The set of these entries is then 
processed to compute pointers to help in the search process. 
Yazdani et al [ 121 defined a sorting scheme to sort prefixes of 
different lengths and then applied binary search to the sorted 
list. However, their scheme leads to an unbalanced tree and 
a variable number of memory accesses. Waldvogel et al [I31 
suggested a hash based scheme where a binary search is per- 
formed on the number ofpossible prefix lengths. Their scheme 
scales well with the size of the routing table and at most 5 hash 
lookups (for IPv4) are required to determine the next hop ad- 
dress. However, as pointed out in [ I  I], this scheme would not 
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TABLE I 
A SAMPLE ROUTING TABLE WITH PREFIXES AND NEXT HOPS 

A 
101101* 10111* 

Fig. I .  Binary Tree Consrmcted f" Table 111 

scale well with longer addresses as in IPv6. 
Our work focuses on binary searches perforined on the num- 

ber of routing table entries. In that sense, it is closest to the 
work in [I  I ]  and their scheme (referred to as the LSV scheme) 
has been used to compare our results with, in the rest of the 
paper. 

111. DESCRIPTION OF THE ALGORITHM 
To understand the algorithm, we first look at a variahle- 

degree tree constructed from the prefixes in Table Ill as shown 
in Fig. I .  To place prefixes in their relative positions in the tree, 
two conditions were used. Using the notation in [12], for two 
prefixes, A = al %...a, and B = blbz ... b,, 

I )  If A C B, then A is a parent of B (where the parent could 
he any node along the path from the node to the root of 
the tree) 

B and A < B, then A lies on a suhtree to the 
lefl of B. To compare A and B, if the prefix lengths of 
A and B are equal, i.e. n = m, then the prefixes can he 
compared by taking their numerical values. However, if 
n # m, then the longer prefix is chopped to the length 
of the shorter prefix and the numerical values compared. 

By applying these conditions to all the prefixes, the tree in 
Fig. I can be constructed. 

The problem with performing a binary search on variable 
length prefixes can now be seen. By simply sorting the prefixes 
in some fashion and performing a binary search, it would not 

2) If A 

TABLE I1 
PREFIXES FROM TABLE 111 AFTER SORTING 

11 Prefix I NextHop (1  

he possible to determine the longest matching prefixes. For in- 
stance the prefixes could he sorted using the mles given above 
as shown in Table 111. This is equivalent to having performed a 
post-order depth-first-search on the binary tree in Fig. I .  

Performing a simple binary search for a given address on 
the sorted prefixes, would not necessarily lead to the longest 
matching prefix. For instance, prefixes 101 loo* and 100'5oth 
lie between the entries 011' and 101101* hut both of them 
have different longest matching prefixes. In general, the pre- 
fix could he any of the parent nodes or the root (default) node. 
Therefore, to determine the correct next bop, additional (and a 
variable number 00 steps would need to be performed. This 
problem arose because the node 101 101 * did not cany any ad- 
ditional information ahout its parent nodes. We can avoid this 
problem by storing an additional field at all nodes that gives 
information about all the parent nodes. This additional field, 
which we call the Path Information Field, is a 32 hit entry (for 
IPv4) where a 1 in any bit position in the field means that there 
is a parent node with a prefix till that hit position. For exam- 
ple, for the leaf node of 101101* the Path Information field 
would look like 0...101010, i.e. the second hit (correspondjng 
to IO'), the fourth hit (corresponding to 101 I*) and the sixth 
hit (corresponding to the leaf node itself) are set to I .  In ad- 
dition, the node would also contain a pointer to a list of next 
hop addresses for the corresponding hits in the path informa- 
tion field. In this case, the list of next hop addresses would be 
2,9,3. Now by looking at the path information field the longest 
matching prefix can be determined and the correct next hop 
address obtained from the list. The data structure used at the 
nodes is shown in Fig. 2. In our implementation, we store the 
following information at each ofthe leafnodes: the prefix, pre- 
fix mask, the next hop address Corresponding to the leaf node, 
the number of internal nodes in the path and a pointer to the 
list of next hop addresses corresponding to the internal nodes. 
Table Ill shows the relevant information stored with each of 
the entries in Table 111. Using the same example, if the ad- 
dress 101100* were to be searched for in the list, the search 
would point to between the upper and lower entries of 01 1 * and 
101 101*, respectively. A match between the address 101 100. 

- 

2006 



Next Hop 

Prefix Next Path Information Next Hop List 
HOP 

and the lower entry 101 101' results in a match ofup to 5 bits. 

longer prefix, the prefixes are equal then the shorter prefix is 
considered to be the larger ofthe two. Doing this ensures that 
in the following step, the child nodes get processed before the 
parent nodes. 
Step 3: Entries from the sorted list are then processed and 
'added in an array, one at a time. Each entry is also tested with 
the last array entry to see if it is a subset of the array entry. 
Step 30: If it is a subset, then the next hop information corre- 
sponding to the array entry is added to the next hop list ofthe 
array entry. The path information field of the array entry is up- 
dated and so is the field containing the number of nodes. This 
step is then repeated for previous entries till the test for sub- 
set fails. To see why this is necessary, consider the last prefix 
in Table 111. When prefix IO' is compared with the last array 
entry (101 I * ) ,  it is added in the next hop list of l o l l * .  How- 
ever, 10*alsoliesinthepathof10lll*and 101101*andthe 
corresponding entries need to be updated as well. 

B. Searching the Data Structure 

To search for the longest matching prefix, a binary search is 
performed on the entries. The search algorithm is summarized 
below: 
Step I :  Binary search of the address is performed on the array 
entries which leads to a value behueen two consecutive array 

By looking at thebath information field, bit 5 is not set to I .  

matching prefix for the given address is lol * and the corre- 
sponding next hop address in the next hop list is 9. In this case, 
the address needs to he cnmnared with onlY the lower re- 

entries. 

checked against the path information field. The longest match- 
ing Prefix and the next hop address from the 
next hop list is picked. If no match is found, the default next 

ne next lower bit that is set, is bit 4. Therefore, the longest step 2: The address is then matched with the lower entrymd 

at different cases a search can end up in: 
I )  Between two leaf nodes with a common parent node. In 

this case either of the nodes can be used to determine the 
next hop address. 

2) Between a node and its parent node. In this case, the 
parent node is the longest matching prefix and the parent 
node is the lower (larger) entry. 

3) Between a node connected to the root node and a leaf 
nodeofthenextbranch(asin01l'and lOllOl*). Inthis 
case, nothing is gained by comparing with the smaller 
entry, since it can only lead to the root node (default next 

In all possible cases, it suffices to compare the address against 
only the lower entry to look for partial matches. 

A .  Building the Data Structure 
Building the data structure is fairly simple and the steps in- 

volved are listed below: 
Step I :  Each entry is read from the routing table and stored in 
an array. 
Step 2: The entries are then sorted from the smallest to the 
highest. To compare prefixes, the rules listed previously are 
used. For prefixes of unequal lengths, if after chopping the 

hop). 

C. Updating the Data Srructure 

Inserting or Deleting entries from the data space is equiva- 
lent to adding or deleting an entry from an array. To add an 
entry,a binary search is performed as outlined in the previous 
section, to find the location of the insertion. The entry is then 
added into the array, which is an O(N) process. The entry is 
also checked against entries above it to see if it is a subset or 
not, and the corresponding path information field and next hop 
list is updated. Deleting an entry follows a similar procedure. 
Updating the data structure, therefore, does not require the en- 
tire data Structure to be built from scratch. 

Iv. USING DISJOINT PREFIXES FOR BINARY SEARCH 
The search space used in the previous scheme can be re- 

duced further by using only mutually disjoint prefixes. Two 
prefixes are considered disjoint, if none of them is a prefix of 
the other. It is easy to see that these correspond to the leaf 
nodes of the tree shown in Fig. I .  All intemal nodes can be 
removed from the search space since the information corre- 
sponding to them is already contained in the path information 
field and the next hop list of the leaf nodes. The search space 
can then be shortened as shown in Table IV. 
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Routing No of 
Table Entries 

Fig. 3. Pmfile of routing tables fmm 

Binary Binary LSV 
Search Search Scheme 

From Table I11 and Table IV it might appear that a consid- 
erable amount of memory might be wasted in staring internal 
nodes a multiple number of times. For instance, next hop ad- 
dresses correspondingto nodes 10 I I * and IO' are stored in the 
listofnexthops forboth 101101*and 1011l*.Tbisisnotnec- 
essarily true. An examination of practical routing tables from 
[I41 shows that most of the nodes in fact do not have any inter- 
nal nodes and next hop lists to store. Fig. 3 shows the number 
of internal nodes for all the leaf nodes for various routing ta- 
bles. From the figure, it can be seen that more than 93% of 
the leaf nodes do not have any internal nodes in the path to the 
root node. Therefore, the overhead in memory to store internal 
nodes multiple number of times is actually quite small. 

The build and search algorithms need to be modified slightly 
to accommodate the changes. The main differences are that in 
the build phase, only the leaf nodes are added in the search 
space while the internal nodes only affect the path information 
field of the leaf nodes. In the search algorithm, the address 
needs to be matched against both the upper and lower entries 
to determine the better match. During updates, if the entry 
tums out to be an internal node, only the next hop lists and the 
parent information fields of the-corresponding leaf nodes get 
updated. 

Prefix 

TABLE V 
AVERACE SEARCH TIMES FOR DIFFERENT ROUTING TABLES 

Next Path Information Next Hop List 
HOP 

V. RESULTS AND DISCUSSIONS 

We ran our algorithms on a Sun Ultra 5 with a 333 MHz 
processor and 5lZMB of RAM. The programs were written 
in C and compiled with gcc with the compiler optimization 
level 3. We also compared our results against the LSV scheme 
[l  I]. The binary search part of all algorithms were identical. 
We used the search time, build time and memory consumption 
to evaluate the performance of the schemes. Practical routing 
tables from [I41 were used in the experiments. 

Average Search ? h i m e  Random IP addresses were generated 
and a lookup was performed using both schemes. Table V lists 
the average lookup times for different routing tables. From Ta- 
ble V it can be seen that our scheme which uses all nodes in 
the search space results in over 10% improvement in lookup 
speeds over the LSV scheme. With internal nodes eliminated 
from the search space, an improvement of 15-20% can be ob- 
tained. 

The time taken to search for an entry is of the order of 
log(2N) where N is the number of entries in the routing ta- 
ble. Once the binary search is performed, an additional mem- 
ory lookup is required (approximately half the time) to obtain 
the next hop address. In comparison, the search space inour 
schemes is < N .  Our schemes therefore, result in 1-2 fewer 
memory accesses in just the binary search. After the search 
is narrowed down, our schemes, for most of the time does not 
require any additional memory lookup to determine the next 
bop address. For these reasons, the average lookup time in our 
scheme is lower than the lookup time in the LSV scheme. 

Build Erne of Data Structure The time required to build the 
searchable structure from the routing tables is shown in Ta- 
ble V. The time shown does not include the initial time taken 
to read enmes from a file and store them in an array. This 
means that for all algorithms time starts from sorting the en- 
tries and ends when the searchable structure is built. As seen 
from the table the time taken to build the searchable space us- 
ing LSV scheme is more than two times the time taken to build 
ours. A profile of the times taken, using gprof, shows that most 
of the difference can be accounted for by the initial sorting of 
entries. Since the number of entries in the LSV scheme is more 
than twice ours, sorting becomes a fairly expensive operation. 
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' Routing No of Binary Binary LSV 
Table Entries Search Search Scheme 

(All (Only 
Nodes) Leaves) 

TABLE VI1 
MEMORY REQUIREMENT FOR DIFFERENT ROUTING TABLES 

Routing No of Binary B i n w  LSV 
Table Entries Search Search Scheme 

(All 

Build time for the scheme that uses only leaves in its searchable 
space is not significantly different from the one that uses all the 
nodes. This is due to the fact that most of the entries in these 
routing tables, end up as leaves and the overhead in adding in- 
ternal nodes is very small.The build time will be particularly 
crucial for larger routing tables, because updating entries re- 
quires the entire searchable space to be built from scratch in 
the LSV scheme. For large routing tables (> 100,000 entries), 
this could be serious problem in their scheme. 

Memory Consumption Table V shows the memory required 
in storing the searchable structure for all schemes. Memory re- 
quired for both binary schemes is close to half of that required 
for the LSV scheme. This is because each prefix in the LSV 
algorithm gives rise to two entries in the binary search table. 
Memory requirement for the scheme using only leaves in its 
searchable space is not significantly different from the one us- 
ing all the nodes, for the reason pointed before. 

One potential problem with our schemes is that the path in- 
formation field has to be equal to the size of the address. For 
IPv4 this means that the path information field has to be 32 
bits. For IPv6, this would mean storing a 128 bit field, leading 
to higher memory consumption and longer times to process 
instructions using this 128 bit field. In comparison, the addi- 
tional information that LSV scheme uses are pointers, the sue 
of which would depend on the number of entries. For a routing 
table of 100,000 entries, the pointers need to be only 18 bits 
wide. Storing the high and low pointers in their scheme, would 
make the extra memory consumption to 36 bits as compared to 
128 bits in our case. However, this could be improved some- 

what as we show next. If very long or very short prefixes do 
not exist in the routing tables, then the number of bits used in 
storing the path information can be reduced. For instance, for 
the MaeEast routing table, no prefixes exist for prefix lengths 
smaller than 8 bits and larger than 30 bits. The path infor- 
mation field, therefore, only needs to have 23 bits to store the 
relevant information. We do not have any data for how core 
routing tables would look like for IPv6, but we expect to be 
able to considerably reduce the number of hits used in storing 
the path information. 

VI. CONCLUSIONS 
We have described methods to adapt binary search to work 

with variable length prefixes. By storing information corre- 
sponding to parent nodes, we can reduce the time taken to 
search for a next hop address. Further improvement in per- 
formance can be obtained by using only mutually disjoint pre- 
fixes in the searchable space. IO-20% improvement in average 
lookup time over the LSV scheme can be obtained. In addition, 
reducing the search space to less than half, the amount ofmem- 
ory taken by the searchable space is also reduced to about half. 
The time required to build the searchable structure is similarly 
reduced considerably due to the fewer number of entries. 
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