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High Frequency Loss and Electromagnetic Field
Distribution for Striplines and Microstrips
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Abstract—A new three-component measured equation of in-
variance (MEI) boundary condition is developed and applied to
the hybrid edge/nodal vector finite element method. The electric
field distribution on the cross section of various lossy trans-
mission lines is calculated. The propagation constant of a lossy
transmission line with coated conductor strip is also calculated.
The three-component MEI boundary condition simulates the
field distribution on the artificial boundary for electromagnetic
field excited by the surface charge density and the three vector
components of the electric current density. Numerical experi-
ments are performed to test the method by comparing calculated
transmission loss with the measured data.

Index Terms—Finite element method, measured equation of
invariance, microstrip, multichip module, package design, prop-
agation mode, triplate strip.

I. INTRODUCTION AND MOTIVATION

W ITH rapid improvement in transistor switching speeds,
the interconnections within and between integrated

circuits (IC’s) are increasingly limiting the performance of
very large scale integration (VLSI) systems [1]. These fine
interconnect lines are often complex structures containing
multiple layers of dielectric and/or conductor materials. For
example, many multichip module (MCM) technologies use
clad copper interconnect structures, cables often use gold-
coated conductors, and even IC interconnects are becoming
heterogeneous.

Unfortunately, no current electromagnetic modeling tech-
nique can handle multilayer conductors. Computer-based mod-
eling techniques are essential if we wish to evaluate multiple
technology alternatives and to produce simulation models. In
this paper, we extend the measured equation of invariance
(MEI) boundary condition to handle such structures.

In order to calculate the electromagnetic field distribution
accurately with limited computer resources, it is very impor-
tant to choose an efficient numerical method with a suitable
boundary condition to truncate the infinite space. The loss from
the strip conductor in an MCM causes the electric field to be
induced in the axial direction. Therefore, the field distribution
for a wave propagating along a transmission line in an MCM
is affected by the surface charge and axial electric field. The
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hybrid edge/nodal vector finite element method (VFEM) is
designed to handle the lossy microstrip in an MCM, but its
perfect conductor boundary condition which just assigns zero
field on the boundary was used for this numerical method.
There is no other boundary condition being used with the
hybrid edge/nodal VFEM because the eigenvalue equation
from hybrid edge/nodal VFEM is not compatible with the
global boundary condition or any local boundary conditions
other than perfect conductor boundary condition.

The MEI boundary condition is a simple local boundary
condition. It is based on a linear finite difference equation
for determining the electric field distribution on the boundary
element. Because the MEI boundary condition incorporates
the conductor geometry into the finite difference equation,
the boundary condition can be placed very close to the
conductor surface without sacrificing accuracy. The small
calculated area for the numerical method with MEI boundary
condition will reduce the size of the matrix equation for
the calculation. Therefore, the current density distribution on
the cross section contour of the conductor can be calculated
with limited computer resources. But, prior to this work, the
MEI boundary condition was used only for calculating two-
dimensional (2-D) scattering of TE or TM waves [2], [3].
In this work, the theory of the MEI boundary condition is
extended to the boundary condition for the hybrid edge/nodal
VFEM for calculating the electric field distribution of a
propagating wave in a transmission line in MCM.

This paper is organized as follows: The theory and the
application of the three-component MEI boundary are dis-
cussed in Section II. The application of the three-component
MEI boundary condition for the hybrid edge/nodal VFEM is
explained in Section III. The calculated results are compared
with measured results in Section IV. Finally, our conclusions
are offered in Section V.

II. THEORY AND MODELING

The MEI boundary condition is based on a finite difference
equation to describe how the electromagnetic field distribution
on a boundary element relates to the field distribution on the
neighboring elements. The finite difference equation is given
as

(1)

where corresponds to the boundary element and
correspond to the neighboring elements.
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Fig. 1. The boundary cells for nodal field calculation.

Let and the coefficients are determined
by applying distributions (called metrons) [2] of surface
current density on the conductor. The field distribution on the
boundary element is determined by equation (1) instead of by
the mesh equation from finite element method. The theory of
MEI boundary condition is based on three postulates:

Postulate 1: The coefficients of (1) are location dependent.
Postulate 2: The coefficients of (1) are geometry specific.
Postulate 3: The coefficients of (1) are approximately in-

variant with excitation.
Postulates 1 and 2 explain why we can use MEI boundary

to replace the whole outer space. Postulate 3 enables us to
replace the outer boundary of FDM/FEM mesh cells by MEI
cells as shown in Fig. 1.

Outside the conductor, the electric field in the axial direc-
tion is induced by the current inside the conductor, and the
transverse electric field is mainly due to the surface charge
on the conductor. In order to reduce the complication of the
eigenvalue calculation for the propagation modes, we calculate
the boundary condition of electric field in the axial direction
independent with the electric field in the transverse direction.

A. MEI Boundary Condition for the Electric
Field in the Axial Direction

In order to calculate the field distribution on the boundary
nodes of the FEM mesh, eight-node cells are used as shown
in Fig. 1. The axial component of the electric field outside
the conductor is related to the electric current density in the

conductor by the following relation:

(2)

with

(3)

where is the cross section of the conductor, is the free
space permeability, and is the Green’s function.

The direction of the electric field on each node is perpendic-
ular to the cross section plane of the strip conductor, and the
electric field on the nodes of a boundary cell is calculated by
the axial component of the current density distribution in the
conductor. By using a finite difference equation to represent
the relationship of the field distribution on the nodes in a MEI
cell, the field distribution on the boundary node is determined
by the field distribution on its neighboring nodes.

For the eight-node MEI cells shown in Fig. 1, the axial
component of electric field on node 0, , is determined by
the following finite difference equation:

(4)

where are the coefficients of the finite difference
equation, and the values must be calculated for each MEI cell.
The variables are the axial components of electric
field on the nodes in a MEI cell, and their values are calculated
by the axial component of current density distribution in the
conductor. By using the equivalence principle [5], the effect
of the current density distribution inside the conductor can
be replaced by a current density distribution on the conductor
surface. For an assigned current density distribution (metron
) on the surface of the conductor, the axial component of

electric field distribution on node is

(5)

where is the contour of the conductor, is the surface
current density ofmetron at point on the surface of the
conductor, and is the Green’s function. For the infinite
transmission line, the Green’s function is the Hankel function
of zero order and second kind [3].

Seven metrons are needed to derive the coefficients
in (4). The electric field distribution on node 0,

node node 7 is calculated by (5) for each assigned
metron. After substituting the electric field on the nodes in (4)
by applying seven different metrons,metron metron6
on the conductor surface, we get 7 equations as

(6)

where calculated by (5), is the electric field intensity on
node due to metron

The coefficients can be determined by Solving
the linear equations in (6). Therefore, the electric field distri-
bution on node 0 is determined by (4), and this boundary
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Fig. 2. The positionl on the periphery of the strip conductor.

condition is used to truncate the infinite space outside the
calculated area.

In order to solve the coefficients, to in (4), seven
different metrons of current density distribution on the con-
ductor surface are needed. We define the length of the cross
section contour of the conductor strip asand the point on
the cross section contour of the strip isas shown in Fig. 2.
Because the metron and the space derivative of the metron
must be continuous functions [4], the seven distributions of
surface current density in the axial direction are assigned as
sinusoidal distributions

(7)

The axial current density on the conductor surface can be
approximated by a summation of Fourier series

(8)

The residuals of the MEI boundary equations for the the
current distribution of the sinusoidal components in (8) are
zero because we use these terms to evaluate the finite dif-
ference equation for the boundary condition. The use of the
geometry specific Green’s function for the metrons to calculate
the coefficients of the finite difference equation makes the use
of additional terms unnecessary. Meiet al. [2] have shown
that the residuals of the boundary equations are almost zero
for additional higher-order terms in the summation of (8).

B. MEI Boundary Condition for Transverse Electric Field

The boundary condition for the electric field due to the
surface charge density is modeled using the MEI cells with
perpendicular-edge elements, and the boundary condition for
the electric field due to the surface current density on the
transverse plane is modeled using MEI cells with parallel-edge
elements as shown in Fig. 3 because the MEI boundary can be
placed very close to the conductor surface. On the transverse
plane, the electric field outside the conductor is determined
both by the surface charge density on the conductor and the

Fig. 3. The boundary cells for edge field calculation.

surface current density perpendicular to the axial direction. On
the surface of the conductor, the direction of the electric field
vector due to the surface charge density is perpendicular to
the conductor surface, and the electric field due to the surface
current density is parallel to the conductor surface. The edge
elements of the numerical mesh in the dielectric are used to
define the two orthogonal field components: the electric field
perpendicular to the artificial boundary, and the electric field
parallel to the artificial boundary.

For a perpendicular-edge MEI cell in Fig. 3, the electric
field on the perpendicular-edge element 0 is determined
by the following finite difference equation:

(9)

where the coefficients, are calculated by applying
7 metrons on the surface of the conductor. The value of the
metron for surface charge density on the cross section contour
of the conductor in Fig. 2 are assigned as

(10)

where is the metron number.
The electric field intensity on perpendicular-edge element

in Fig. 3 is due to the surface chargemetron as

(11)

where is the electric potential on the perpendicular-
edge element is the electric charge density on the
conductor surface formetron is relative permittivity,
is the permittivity in free space, and is an unit vector on
edge whose direction is toward the artificial boundary.
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After seven metrons in (10) are applied to the finite dif-
ference equation (9) for a perpendicular-edge MEI cell, the
coefficients of the MEI cells can be solved as described
in Section II-A. By the same argument for eight-node MEI
cells, the electric field on the perpendicular-edge element 0
is determined by the finite difference equation (9) for the
perpendicular-edge boundary condition. The electric field on
each perpendicular-edge element on the artificial boundary is
determined by the finite difference equation calculated from
the MEI cell of this boundary element instead of the mesh
equation from FEM.

For the parallel-edge MEI cells in Fig. 3, the parallel-edge
element 0 is determined by the following finite difference
equation:

(12)

where the coefficients, are calculated by applying
7 metrons of transverse current density on the surface of the
conductor. The metrons of the surface current density on the
cross section of the conductor in Fig. 2 are assigned as

(13)

where is the metron number.
The electric field intensity on the parallel-edge element

from a metron is calculated by

(14)

where is the unit vector on edge whose direction is coun-
terclockwise and parallel to the artificial boundary, and
is the conductor surface current density on the transverse plane
for metron

After seven metrons in (13) are applied to the finite differ-
ence equation of the parallel-edge MEI cell, the coefficients
of the MEI cells can be solved as described in Section II-
A. Therefore, the electric field intensity on the parallel-edge
element 0 is determined by (12) for the parallel-edge boundary
condition. The electric field on each parallel-edge element on
the boundary is determined by the finite difference equation
calculated from the MEI cell of this boundary element instead
of the mesh equation from FEM.

III. H YBRID EDGE/NODAL VFEM WITH

THREE-COMPONENT MEI BOUNDARY CONDITION

In a source-free lossy medium, the homogeneous vector
Helmholtz’s equation for the electric field is

(15)

where the wave number is a complex number for the
conducting region

(16)

where is the relative permeability of the region of interest,
is the complex relative permittivity of the region of interest,
and are the permeability and permittivity in free space.

Substituting (16) into (15), we get the vector Helmholtz’s
equation

(17)

where is the wave number in free space, and it equals to

For a conductor, the electric field and the magnetic field are
related according to the time-harmonic Maxwell’s equation

(18)

where is the density of the conduction current, is the
conductivity of the conductor, and is the radian frequency.
In order to simplify (18), we define the complex relative
permittivity of a conductor as

(19)

and for a lossy dielectric it can be written as

(20)

where is the relative permittivity of the dielectric, and
is the loss tangent. For a lossless dielectric, the loss tangent
is zero. The VFEM functional of the Helmholtz’s equation on
the 2-D cross section is given by

(21)

where is the calculated area on the cross section plane, and
the superscript means the complex conjugate.

In order to apply VFEM to the field calculation, we assign a
number of hybrid edge/nodal triangular cells to cover the cross
section of the strip conductor, and the partition is illustrated
in Fig. 4. The edge elements, of the VFEM cell on
the right-hand side of Fig. 4 are and The
node elements, of the cell are and The
distribution of the electric field in the and directions
for the enclosed area of each cell is determined by the field
strength of the edge/node elements in the cell as

(22)

where and are the shape-function sets for the edge
elements, is the shape-function set for the node elements,

is the transpose operator for the vector, andis the square
root of 1. The factor is used to time the shape function
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Fig. 4. The 2-D cross section of a stripline with triangular cells for VFEM calculation.

of node elements, because the field in the axial direction is
perpendicular to the field in the transverse direction.

In order to get the electric field distribution on the finite
element edges, we substitute (22) into (21), and minimize the
VFEM functional by

(23)

where is the total number of edges. This results in the
following matrix equation:

(24)

Separating the electric field strength into transverse and ax-
ial components in (24), we get the following matrix equations:

(25)

(26)

Eliminating the axial component from these two matrix equa-
tions, we get the following equation which is used to obtain
the propagation constant

(27)

A. Applying Vector MEI Boundary Condition for
the Elements in the Axial Direction

The boundary condition for the axial elements is to de-
termine the field intensities of the elements on the artificial
boundary by the MEI boundary equations instead of the hybrid
edge/nodal VFEM mesh equations. In order to truncate the
infinite open space, the MEI boundary equations are used to

replace the node boundary elements in the axial direction in
(26), and we get

(28)

The th row of matrix and in (28) contain the
coefficients of a linear equation for calculating the electric field
distribution of the th element. In order to make the boundary
elements in (28) become independent of the propagation
constant, the rows of the boundary elements in the axial
direction are assigned to zeros for matrix The rows of
the boundary elements in the axial direction are replaced by the
finite difference equations from the MEI boundary condition
for matrix The electric field distribution on the bound-
ary nodes is, therefore, determined by the finite difference
equations which are obtained by truncating the infinite space
by an artificial boundary—MEI boundary condition.

B. Applying Vector MEI Boundary Condition for
the Elements in Transverse Direction

In order to truncate the open space for the hybrid edge/nodal
VFEM calculation, we apply the MEI boundary condition for
the edge elements on the boundary in (27) and get

(29)

We call (29) HTMEI equation with HTMEI standing for Hy-
brid edge/nodal FEM with the Three-component MEI Bound-
ary Condition. The rows of the boundary elements in matrix

of (29) are set to zero for
making the boundary condition independent of the propagation
constant, The rows of the boundary elements in matrix
are replaced by the finite difference equations from the MEI
boundary condition.
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Fig. 5. The cross section of a triplate line.

Fig. 6. Calculated and measured transmission loss versus frequency.

C. Eigenvalue Problem

In order to calculate the propagation mode of (27), we
rewrite it as

(30)

with

where is the complex propagation constant. Let
then Substituting by and by

in (30), we get

(31)

Assigning , we get an eigenvalue equation

(32)

Since the matrix is not sparse, we have no choice but to
use a dense-matrix solver (QR decomposition) for calculating
the complex eigenvalue. The solutions for the eigenvalues,

in the eigenvalue equation represent the propaga-
tion modes. By substituting the eigenvalue of the dominant
propagation mode back into (27), we calculate the transverse
electric field distribution on the cross section of the stripline.
The electric field distribution in the axial direction is calculated
by substituting the eigenvalue of the dominant propagation
mode and the transverse electric field distribution, into
(26).

IV. COMPUTATIONAL RESULTS

We coded this method in Fortran and ran it on a Cray-YMP
computer. In order to estimate the transmission loss and the
electric field distribution in the conductor more accurately,
the hybrid edge/nodal VFEM with the three-component MEI
boundary condition is used to calculate the electric field
distribution on the cross section of the transmission line. The
boundary condition truncates the infinite space by a layer of
boundary elements. The calculated results using edge/nodal
VFEM with the three-component MEI boundary condition are
close to the measured data at frequencies below 1 GHz. At
high frequencies ( GHz), the conduction current density is
concentrated in the area close to the conductor surface due to
skin effect. Because the surface roughness of the conductor
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Fig. 7. The perfect conductor boundary condition on the cross section of the triplate line.

Fig. 8. The current density distribution on the cross section of the center
strip of the triplate geometry at 2 GHz.

Fig. 9. The current density distribution on the cross section of the center
strip of the triplate geometry at 4 GHz.

and the transmission loss from the ground are not included
in the calculation, the measured data are somewhat higher
than the calculated results at the higher frequencies. The
calculated results can be used to choose the best structure for
the transmission line to be used in the MCM without the cost
of making samples, and for reducing the turn around time for
improving performance.

A. The Triplate Strip Line

The hybrid edge/nodal VFEM with the three-component
MEI boundary condition is used to calculate the transmission
loss of a triplate strip. The cross section of the line is illustrated

Fig. 10. The current density distribution on the cross section of the center
strip of the triplate geometry at 6 GHz.

Fig. 11. The transmission line with a thin-film inorganic dielectric.

in Fig. 5. In order to compare the calculation results with the
experimental data published by Taguchiet al. [6], the distance
between two grounds, is set to be 910 m, the thickness
of the conducting strip,, 10 m, and the width of the strip,

, 200 m. For the dielectric, the relative dielectric constant,
is set to be 7.55, and the loss tangent, is 0.005. The

conductivity, of the copper (reduction from CuO) is 2.5
10 S/m [6].

The transmission loss is a function of frequency as shown
in Fig. 6. The theoretical values are simulated by HP85150
microwave design system (MDS). The results calculated by
the hybrid edge/nodal VFEM with the three-component MEI
boundary condition are close to the theoretical values which do
not include the loss from the ground, but the results calculated
by the edge/nodal VFEM with a wall of perfect conductor [7]
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Fig. 12. The transmission loss versus frequency for the microstrip coated with a thin-film inorganic.

as its boundary condition are larger than the theoretical results
and measured data. The perfect conductor boundary condition
used in [7] is shown in Fig. 7. The measured data are higher
than our calculated results, because our calculated results do
not include the loss from ground plane. The three-component
MEI boundary condition makes the field distribution in the
dielectric close to the real situation, and improves the accuracy
of the calculation.

In order to know how the current density distribution on the
cross section of the conductor affects the transmission loss,
we plot the current density distributions on the cross section
of the conductor for different frequencies. For 2, 4, and 6
GHz, the current density distributions in the strip conductor are
shown in Figs. 8–10. At high frequency, the current density
distribution concentrates on the area close to the conductor
surface, and the effective cross section area for conduction
current is smaller than the effective cross section area at low
frequency. Therefore, the transmission loss is larger for the
higher frequency wave.

B. The Coated Interconnection Used in an MCM

The MCM manufacturers usually use copper as the con-
ducting metal due to its low resistivity which provides these
MCM technologies a distinct performance advantage at low
cost. Polyimide is chosen as the dielectric material in the MCM
package for its low dielectric loss. In order to eliminate the
reaction between copper and polyimide [8], [9], a diffusion
barrier layer between copper and polyimide is often added by
the manufacturers. There are two barrier layers reported [10]:
a thin film of inorganic dielectric and a thin film of metal. We
used the structures published by Ademaet al. [10] to calculate
the propagation losses of the microstrip transmission lines and
compare the calculated results with the measured data. The
structures in Ademaet al. [10] are: the microstrip clad with
inorganic dielectric and the microstrip coated with chromium.

Fig. 13. The transmission line coated with a thin-film chromium.

For the microstrip structure shown in Fig. 11, the strip
conductor is buried in the polyimide dielectric with a ground
plane under it and the space above strip conductor is filled
with polyimide. The strip conductor is copper clad with a thin
film of inorganic dielectric. The dimensions of the structure
are shown in Fig. 11. The thickness of the thin-film inorganic
dielectric is much smaller than the thickness of the conductor.
Because the transmission loss from the strip conductor is much
larger than the loss from the inorganic dielectric, the electric
properties of the inorganic dielectric are assumed the same as
the electronic properties of polyimide to simplify the numerical
calculation. The loss tangent of inorganic dielectric is assumed
to be zero, and the relative dielectric constant,is 3.0, which
is the same as the relative dielectric constant of polyimide for
the transmission loss calculation. The conductivity of copper
for the strip conductor is 5.8 10 S/m.

The transmission loss of the inorganic dielectric clad mi-
crostrip is a function of frequency as shown in Fig. 12. The
calculated transmission loss is smaller than the measured data
because the transmission loss from the ground and the cladding
dielectric is not included for the numerical calculation. At
low frequency, the skin depth of the conductor is larger than
the thickness of the conductor, the major transmission loss
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Fig. 14. The transmission loss of a transmission line coated with chromium.

comes from the strip conductor. Therefore, the difference of
the transmission loss between the calculated results and the
measured data is smaller at a lower wave frequency.

By using a Balzers BAK 760 electron-beam evaporator [10],
the strip conductor is constructed of Cr/Cu/Cr with the thick-
ness of 100̊A /4 m/100Å as shown in Fig. 13. The thickness
and width of the copper conductor in Fig. 13 are the same as
the copper conductor in Fig. 11 for comparing the transmission
loss between these two microstrips. The conductivity of the
copper is 5.8 10 S/m, but the conductivity of chromium
is only 7.75 10 S/m.

As shown in Fig. 14, the calculated transmission loss is still
lower than the measured data, and the difference between the
calculated results and the measured data in Fig. 14 is smaller
than the difference in Fig. 12. That’s because the loss tangent
of the clad inorganic dielectric in Fig. 11 is larger than the
loss tangent of polyimide.

In order to choose the best transmission line structure for
the system performance, we compare Fig. 14 with Fig. 12.
The skin effect is not significant on the cross section of the
conductor at low frequency, the difference between the trans-
mission loss of the Cr/Cu/Cr microstrip and the transmission
loss of the inorganic dielectric clad microstrip is small. As
the frequency increases, the current density is higher in the
area close to the bottom of the strip conductor. Because the
resistivity of chromium is higher than the resistivity of copper,
the transmission loss of the Cr/Cu/Cr microstrip is higher than
the transmission loss of the inorganic dielectric clad microstrip
for wave propagation at high frequency.

V. CONCLUSION

In this work, we developed the three-component MEI
boundary condition for the hybrid edge/nodal VFEM. This
three-component MEI boundary condition is applied to (27)
formed by the three-dimensional (3-D) vector Helmholtz’s

equation in the transmission line, then a HTMEI (29) is
formulated. By calculating the eigenvector of the lowest-
mode eigenvalue of the HTMEI equation, we obtained the
field distribution on the transverse plane. The square roots
of the eigenvalues are the complex propagation constants.
The real part of the propagation constant is the attenuation
constant and the transmission loss can be calculated by the
attenuation constant.

The boundary condition for the hybrid edge/nodal FEM is an
approximate method for the field distribution calculation. The
infinite space with the effect of the ground plate(s) is truncated
by the three-component MEI cells for the boundary condition.
The boundary condition is not only used to simulate the
wave propagation in the open area, but also applied to hybrid
edge/nodal FEM to calculate all the possible propagation
modes. The finite difference equation of the MEI boundary
condition is used to define the boundary elements for the
calculation. We coded the technique to run on a Cray-YMP
computer. Typical run times were 20 min.

The transmission loss consists of the loss from the strip
conductor, the loss from the dielectric, the loss from the
conductor surface roughness, and the loss from the ground.
The calculated transmission loss of this paper includes the
loss from the strip conductor and the loss from the dielectric.
The trend of the calculated transmission loss is consistent with
the trend of the measured transmission loss. The calculated
transmission loss is 5–10% less than the measured transmis-
sion loss in general. The relatively small difference between
the calculated and measured transmission losses suggests that
the transmission loss is dominated by the loss from the strip
conductor, and the loss from the dielectric.
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