
Technical Report NCSU-ERL-94-18

Performance Prediction for Superscalar Processors

Sanjeev Banerjia Eric Schweitz Mark Vilas

Saurabh Misra

Department of Electrical and Computer Engineering

North Carolina State University

Box 7911

Raleigh, NC 27695-7911

1 Introduction

An e�ort is underway in the Electronics Research Laboratory at N.C. State University to gauge the ad-
vantages of multichip modules in building microprocessors. As the �rst step in this project, a single{chip
superscalar processor is being designed and built. To explore the design space of microarchitectures for the
design, we have run simulations on the proposed design for the ERL chip|named SAND, for Superscalar
Architecture NCSU Design|as well as other contemporary superscalar processors to gauge what the ex-
pected performance would be. The metric we used to evaluate performance is cycles per instruction (CPI) as
de�ned in a text on computer architecture [5]. We measured the performance of the processors as a whole,
but did not perform detailed studies on the e�ects of a very important architectural parameter: caches. A
second study was carried out to separataley analyze caches in detail.

The report is organized as follows. Section 2 details the software simulator used for architecture simulation.
Sections 3 thru 6 present results of the simulations. Section 7 details lists modi�cations to the simulator to
allow greater
exibility. Section 8 presents conclusions and directions for further research.

2 Simulation Framework

The motivation behind the processor subgroup's work was to aid in the development of SAND and also gain
insight into the e�ects of architectural features on superscalar processor performance. We decided to model
the performance of several current commercial chips, to have an idea where SANDwould stand comparatively.
We decided to simulate a total of four chips: SAND , PowerPC 601 from IBM/Apple/Motorola, POWER
from IBM, and Alpha 21064 from DEC.

We decided to use a simulator written at Stanford University, ssim, which stands for Superscalar SIMulator;
ssimwas written primarilyby Mike Johnson. ssim simulates a \dynamically scheduled superscalar processor",
using the pixie program and a user program to be simulated. Details on ssim and using pixie can be found in
documents available from Stanford University [2, 8]; many of the terms used in the description and operation
of ssim are described in Mike Johnson's book on superscalar processors [1]. ssim makes use of two sources
of input to determine the processor organization to be simulated: a machine �le and command{line options.
The machine �le is an input �le that contains a textual description of the processor, with details such as

1

System/Processor CPI

Sun SPARCstation 2/scalar SPARC 1.22{1.93
Sun IPC/scalar SPARC 1.25{2.60
Sun SPARCserver 10/30/SuperSPARC 0.66{1.19
DECstation 5000/240/MIPS R3000 1.02{2.19
Bare SuperSPARC processor 0.625{0.71
(assumes perfect memory)

Table 1: \Uno�cial" CPIs for commercial processors

cache organization, instruction issue and decode width, number and types of functional units, latencies for
functional units (which can vary depending on the precision i.e. single or double), number of reservation
stations if distributed instruction issue is used, and other parameters. ssim's command{line options can
overide certain machine �le speci�cations and can specify additional parameters, such as the level of branch
prediction to be used, number of register ports, whether or not to simulate cache miss e�ects, and many
others. ssim assumes a four stage pipeline with fetch, decode, execute, and writeback stages. Examples of
ssim machine �les are the POWER mpe and POWER mps listings on pages 20 and 22 in Appendix B; a list
of ssim command{line options is on page A in Appendix A.

ssim was developed to model the MIPS instruction set architecture (ISA). Although this is a shortcoming
when faithfully modeling all aspects of a non{MIPS processor, our focus was on organization analysis, not
ISA. Also, the MIPS ISA was chosen for SAND, so we weren't limited by ssim's MIPS bias.

In order to make our benchmarking as \real{world" as possible, we used several programs from the SPEC
suite for integer performance evaluation; the SPEC
oating{point programs were not run due to a lack of
time.

We also attempted to gather performance information from the public domain about commercial processors,
using CPI as the metric. This was di�cult to obtain from \o�cial" sources, as most processors use various
popular benchmark{oriented numbers to illustrate their performance; we were unable to �nd any literature
that quoted CPIs for contemporary superscalar processors. However, using a form of the public domain,
the Usenet news system, we were able to procure some uno�cial numbers. The information we gathered
is summarized in Table 1. The SuperSPARC{based systems are the only superscalar chips for which we
received information. SuperSPARC is a two{issue processor, which means its ideal CPI is 0.50. Its posted
CPIs in the 0.625{1.19 range seem reasonable for such a chip.

3 SAND results

The architecture of SAND is detailed in a variety of documents that are available online at N.C. State
University. Brie
y, SAND is a dynamically scheduled superscalar processor: the hardware supports reorder-
ing of individual instructions. Instructions can be issued and completed out{of{order. The chip decodes 4
instructions per clock cycle, and can issue 4 instructions per cycle also. There are separate instruction and
data caches, the sizes of which are not �xed at this time. A reorder bu�er is used for detecting and handling
hazards (via register renaming) and exception handling. A static branch prediction is employed (backward
branches are predicted taken and forward branches are predicted not taken).

A modi�ed version of ssim, esim (described in Section 7), was used for the simulations of SAND, as it allowed
the simulations to closely match the architecture. Particularly useful were the instruction{to{functional unit
assignments, and the Func Unit de�nitions. However, neither esim nor ssim accurately model some aspects

2

of BTB entries

esim options No BTB 128 256 512 2048

Entries below simulate split 8 kb direct{mapped caches

Simulate I{ and D{caches 1.31

Simulate I{ and D{caches, 0.92

predict branches with I{cache

Simulate I{ and D{caches, 0.95

predict all branches taken

Entries below simulate D{cache and use the BTB for branch prediction

BTB associativity = 4 0.89 0.89 0.89 0.89

BTB associativity = 2 0.89 0.89 0.89 0.89

BTB associativity = 1 0.91 0.90 0.89 0.89

All entries below assume split 8 kb 2{way set associative caches

Simulate I{ and D{caches 1.30

Simulate I{ and D{caches, 0.92

predict branches with I{cache

Simulate I{ and D{caches, 0.95

predict all branches taken

Entries below simulate D{cache and use the BTB for branch prediction

BTB associativity = 4 0.88 0.88 0.88 0.88

BTB associativity = 2 0.88 0.88 0.88 0.87

BTB associativity = 1 0.90 0.89 0.88 0.88

Entries below simulate 16 kb direct{mapped caches

Simulate I{ and D{caches 1.31

Simulate I{ and D{caches, 0.93

predict branches with I{cache

Simulate I{ and D{caches, 0.96

predict all branches taken

Entries below simulate D{cache and use the BTB for branch prediction

BTB associativity = 4 0.88 0.87 0.87 0.87

BTB associativity = 2 0.88 0.87 0.87 0.87

BTB associativity = 1 0.89 0.88 0.87 0.87

Table 2: CPIs for the gcc SPEC benchmark on SAND

of the chip. SAND uses a uni�ed reorder bu�er; ssim/esim models separate reorder bu�ers for integer
and
oating{point operations. SAND uses one set of buses to pass operands to all functional units (both
integer and
oating{point), and one set of result buses also; ssim/esim models separate operand and result
buses for integer and
oating{point operations. SAND also has complex capabilities to pass operands for an
instruction on successive clock cycles, which also isn't modeled by ssim/esim. ssim/esim doesn't model the
static branch prediction scheme or the timing of branch prediction with respect to the pipeline stages when
branch prediction is used.

The SPEC programs gcc, li, eqntott, and li were simulated for SAND. Though the cache organization is
not �xed at this time, the cache design group is examining three organizations: 8 kb direct{mapped, split
I{ and D{caches; 8 kb 2{way set associative, split I{ and D{caches; and 16 kb direct{mapped, split I{ and
D{caches. These three alternatives were examined in the simulation runs. Other architectural features were
also examined. Various levels of branch prediction were modeled, in order to interpolate/estimate what level
is reasonable to expect, since the exact prediction scheme isn't modeled. Use of a branch target bu�er (BTB)
for dynamic branch prediction was also modeled. A sample machine �le for SAND is listed on page B in

3

of BTB entries

esim options No BTB 128 256 512 2048

Entries below simulate 8 kb direct{mapped caches

Simulate I{ and D{caches 1.57

Simulate I{ and D{caches, 1.42

predict branches with I{cache

Simulate I{ and D{caches, 1.47

predict all branches taken

Entries below simulate D{cache and use the BTB for branch prediction

BTB associativity = 4 1.28 1.26 1.25 1.25

BTB associativity = 2 1.29 1.26 1.25 1.25

BTB associativity = 1 1.29 1.26 1.25 1.25

Entries below simulate 8 kb 2{way set associative caches

Simulate I{ and D{caches 1.38

Simulate I{ and D{caches, 1.24

predict branches with I{cache

Simulate I{ and D{caches, 1.30

predict all branches taken

Entries below simulate D{cache and use the BTB for branch prediction

BTB associativity = 4 1.20 1.19 1.18 1.18

BTB associativity = 2 1.22 1.19 1.18 1.18

BTB associativity = 1 1.26 1.23 1.20 1.19

Entries below simulate 16 kb direct{mapped caches

Simulate I{ and D{caches 1.41

Simulate I{ and D{caches, 1.27

predict branches with I{cache

Simulate I{ and D{caches, 1.32

predict all branches taken

Entries below simulate D{cache and use the BTB for branch prediction

BTB associativity = 4 1.14 1.12 1.11 1.11

BTB associativity = 2 1.15 1.12 1.12 1.12

BTB associativity = 1 1.19 1.17 1.13 1.12

Table 3: CPIs for the li SPEC benchmark on SAND

4

of BTB entries

esim options No BTB 128 256 512 2048

Entries below assume 8 kb direct{mapped caches

Simulate I{ and D{caches 1.42

Simulate I{ and D{caches, 1.05

predict branches with I{cache

Simulate I{ and D{caches, 1.04

predict all branches taken

Entries below simulate D{cache and use the BTB for branch prediction

BTB associativity = 4 1.04 1.04 1.04 1.04

BTB associativity = 2 1.05 1.04 1.04 1.04

BTB associativity = 1 1.05 1.05 1.05 1.04

Entries below simulate 8 kb 2{way set associative caches

Simulate I{ and D{caches 1.34

Simulate I{ and D{caches, 0.97

predict branches with I{cache

Simulate I{ and D{caches, 0.99

predict all branches taken

Entries below simulate D{cache and use the BTB for branch prediction

BTB associativity = 4 0.96 0.96 0.96 0.96

BTB associativity = 2 0.97 0.96 0.96 0.96

BTB associativity = 1 0.97 0.97 0.97 0.96

Entries below simulate 16 kb direct{mapped caches

Simulate I{ and D{caches 1.38

Simulate I{ and D{caches, 1.01

predict branches with I{cache

Simulate I{ and D{caches, 1.00

predict all branches taken

Entries below simulate D{cache and use the BTB for branch prediction

BTB associativity = 4 1.01 1.01 1.01 1.01

BTB associativity = 2 1.01 1.01 1.01 1.01

BTB associativity = 1 1.01 1.01 0.98 0.97

Table 4: CPIs for the eqntott SPEC benchmark on SAND

5

of BTB entries

esim options No BTB 128 256 512 2048

Entries below simulate 8 kb direct{mapped caches

Simulate I{ and D{caches 1.02

Simulate I{ and D{caches, 0.98

predict branches with I{cache

Simulate I{ and D{caches, 1.04

predict all branches taken

Entries below simulate D{cache and use the BTB for branch prediction

BTB associativity = 4 0.98 0.98 0.98 0.98

BTB associativity = 2 0.98 0.98 0.98 0.98

BTB associativity = 1 0.98 0.98 0.98 0.98

Entries below simulate 8 kb 2{way set associative caches

Simulate I{ and D{caches 1.02

Simulate I{ and D{caches, 0.98

predict branches with I{cache

Simulate I{ and D{caches, 1.04

predict all branches taken

Entries below simulate D{cache and use the BTB for branch prediction

BTB associativity = 4 0.98 0.98 0.98 0.98

BTB associativity = 2 0.97 0.98 0.98 0.98

Entries below assume 16 kb direct{mapped caches

Simulate I{ and D{caches 0.74

Simulate I{ and D{caches, 0.68

predict branches with I{cache

Simulate I{ and D{caches, 073

predict all branches taken

Entries below simulate D{cache and use the BTB for branch prediction

BTB associativity = 4 0.68 0.68 0.68 0.68

BTB associativity = 2 0.68 0.68 0.68 0.68

BTB associativity = 1 0.68 0.68 0.68 0.68

Table 5: CPIs for the compress SPEC benchmark on SAND

6

Appendix B.

The results of the simulations are presented in Tables 2{5. The largest performance gain for all benchmarks
was accomplished through the use of some sort of branch prediction. For gcc, using ssim's static scheme
yielded about a 27% reduction in CPI and using the I{cache for dynamic prediction [1, pp.71{76] yielded a
29{30% reduction, irrespective of cache size. Use of a BTB reduced the CPI by 33{34%. With gcc, cache size
and BTB associativity did not have a large in
uence on accurately predicting branches and therefore reducing
CPI (that is, although CPI was reduced through the use of hardware branch prediction, using additional

hardware didn't reduce CPI substantially). The opposite was true for the li benchmark. Use of a 2048 entry,
4{way set associative BTB in a 16 kb direct{mapped cache versus a 128 entry, direct{mapped BTB in a 8
kb direct{mapped cache yielded a 14% reduction in CPI. The eqntott benchmark exhibited similar behavior,
but was not as sensitive to cache and BTB size. Compress showed relatively little improvement when using
branch prediction or a larger cache, except when the largest cache size was used, which yielded a 25{31%
improvement.

Simulations were run with gcc to model the e�ects of modifying the SAND architecture, for performance
improvements. For example, with gcc, 82% of the instructions issued to the Shifter unit are delayed for 2 or
more cycles. We added an extra shifter to see if that would increase the throughput, since the delays were
not caused by full reservation stations. This did not have an impact on CPI, though, so it seems as though
there is a limitation in the gcc code of how much instruction level parallelism (ILP) can be achieved, at least
with respect to instructions assigned to the shifter. Additional Load/Store units were also added, without
any positive e�ect.

4 POWER results

POWER, as implemented in the RS/6000 chipset, does not �t into Mike Johnson's superscalar architecture
model very neatly at all. First, POWER's ISA is not a \typical" RISC ISA. It has some aspects of the RISC
philosophy, but has complex instructions such as string operations and the often referred to multiply{add
instruction. Secondly, the chipset borrows some ideas from the DAE architecture, in that the fetch and
decode unit is running ahead of the functional operation units and feeding these unit's input queues with
instructions [7]. The general idea is to bu�er enough instructions in the functional units reservation stations,
so that the functional unit is kept busy while the decoder resolves branches and other instruction stream
discontinuities. With some scheduling, this technique can often eliminate branch penalties. Finally, POWER
uses register renaming in its
oating point unit (FPU), but does not use it in its �xed point (integer) unit
(FXU). This does not �t ssim easily, as there is no way to turn dependency checking on for one functional
unit and o� for another.

POWER was simulated for the eqntott, compress, gcc, li, and espresso benchmark programs. Both the ssim
and esim simulators were used as well as two
avors of ssim machine �le. We chose to use two di�erent
machine �les because di�erent information sources indicated di�erent parameter values. These two machine
�les are known as the machine.power.saurabh (mps) and machine.power.eric (mpe), listed on pages B and
B, respectively, in Appendix B.

The principle benchmarks used were compress and eqntott. ssim was run to completion on compress for
both mps and mpe machine �les without options. This simulation process took over 10 hours per simulation.
Because the simulation time was so long the group decided to use the -s option on the simulator to terminate
the simulation after a few million cycles. Compress was run again with the stop value set to 10,000,000
instructions and eqntott was run with stop set to 5,000,000 instructions. The 5,000,000 instruction simulation
did not take as long to complete, yet seemed to provide reasonable results (Johnson also stated that after
5M instructions, he found most of the transients had died out of the simulation). All subsequent simulations
used a stop value of 5 million instructions.

7

Machine �le

ssim/esim options mps mpe mpee

No options 0.78 0.98

Check for output and anti{ 0.99 1.37

dependencies and issue in order

Simulate I{ and D{caches 1.27

Simulate I{ and D{caches, 1.32

predict all branches taken

Simulate I{ and D{caches, 1.18

predict branches with I{cache

Simulate I{ and D{caches, 1.09

predict branches with I{cache,

two integer writeback buses

Simulate I{ and D{caches, 1.25

predict all branches taken,

two integer writeback buses

Simulate I{ and D{caches, 1.05

predict all branches taken,

16k fully{associative caches

Table 6: CPIs for the compress SPEC benchmark on POWER

To determine the e�ects of dependency checking the eqntott and compress simulations were run with to -da,
-do, and -issue in order options for mps and mpe. These options enforce anti-dependency checking, output
dependency checking, and reservation station issue respectively. Performance decreased by 15{30the �rst
runs.

In order to see the e�ects of the simulated cache, the mps and mpe �les caches parameters were modi�ed
such that their size was 16,384 bytes, words per line was 4, the associativity was 128, and the miss penalty
was kept the same at 12. Three more simulations were then run with the -icache -dcache and -pred take
command line options. Eqntott with the original mps and mpe �les was run with the -icache and -dcache
options for the sake of comparison. The larger cache did show some improvement.

Next the mpe �le was modi�ed for use on esim and several of the default functional units were merged.
This modi�ed mpe �le is the machine.power.eric.esim �le (mpee), listed on page B in Appendix B. The
mpee �le was used to simulate eqntott, compress, gcc, espresso (with 4 di�erent input �les), and also li.
Each benchmark was run three times to determine the performance of the caches and branch prediction
strategies. The �rst run used the -icache and -dcache
ags only, the second used the -icache, -dcache, and
-pred
ags, and the �nal run used -icache, -dcache, and -pred take. The -pred
ag enabled the BTB and
icache branch prediction and -pred take predicted all branches as taken in the simulation. While -pred and
-pred take increased the number of instructions per cycle, the results between the two options were varied.
This suggests that neither prediction method was superior in general, but could be superior given a speci�c
program.

While running simulations, it was observed that performance could be improved by increasing the result
bus width, and thereby increasing the number of results which could be written to the reorder bu�er in a
single clock. Intuitively, this makes sense in that allowing both the load/store unit and the integer unit to
write results concurrently would eliminate latencies introduced by bus arbitration. Again, esim was used to
simulate mpee with �rst with the -icache, -dcache, -pred, and -resbus int2 switches and again with -icache,
-dcache, -pred take, and -resbus int2. The results are shown in the table. While performance was improved,
it was only by 3{7%.

8

Machine �le

ssim/esim options mps mpe mpee

Check for output and anti{ 1.04 1.39

dependencies and issue in order

Simulate I{ and D{caches 1.09 1.37 1.37

Simulate I{ and D{caches, 1.18

predict all branches taken

Simulate I{ and D{caches, 1.11

predict branches with I{cache

Simulate I{ and D{caches, 1.09

predict branches with I{cache,

two integer writeback buses

Simulate I{ and D{caches, 1.12

predict all branches taken,

two integer writeback buses

Simulate I{ and D{caches, 1.04 1.27

predict all branches taken,

16k fully{associative caches

Table 7: CPIs for the eqntott SPEC benchmark on POWER

ssim/esim options mpee machine �le

gcc li

Simulate I{ and D{caches 1.56 1.61

Simulate I{ and D{caches, 1.18 1.49

predict all branches taken

Simulate I{ and D{caches, 1.41 1.52

predict branches with I{cache

Table 8: CPIs for the gcc and li SPEC benchmarks on POWER

mpee machine �le

ssim/esim options espresso input �le

bca cps ti tial

Simulate I{ and D{caches 1.33 1.27 1.35 1.41

Simulate I{ and D{caches, 1.22 1.12 1.18 1.30

predict all branches taken

Simulate I{ and D{caches, 1.23 0.98 1.22 1.33

predict branches with I{cache

Table 9: CPIs for the espresso SPEC benchmark on POWER

9

Entries assume perfect caches and no branch prediction

of BTB entries

128 512 2048

BTB associativity = 4 1.826 1.781 1.778

BTB associativity = 2 1.837 1.785 1.778

BTB associativity = 1 1.870 1.801 1.790

Comparison between # of reservation stations
(Reservation station distribution is uniform among all FUs)

of instructions # of reservation stations

issued & decoded/cycle 2 4 8

2 1.988 1.988 1.988

3 1.982 1.982 1.982

4 1.978 1.978 1.978

Table 10: CPIs for the li SPEC benchmark on the Alpha 21064

Results of the simulations are shown in Tables 6{9.

5 Alpha 21064 results

The Alpha 21064 is the �rst chip in a family of chips fromDEC [3, 6]. In terms of raw benchmark performance,
it is one of the fastest cpu's available. One observation about the implementation is that it is mainlyoptimized
for clock speed, as opposed to CPI. There are 150 and 200 Mhz versions available, which are two to three
times faster than most other current generation microprocessors. The hardware on{chip re
ects this design
approach, as most features are a bit less complex than its counterparts. For example, it is a two{issue
superscalar machine, but, for the most part, instructions begin and complete in order. There is no register
renaming to eliminate anti{ and output{dependencies. This can be seen in the reservation station number
comparisons. CPI does not rise at all with an increased number of reservation stations, because the rigid
issue and completion requirements do not require instructions to be stored at the functional units.

Certain options were used with esim in order to better simulate the Alpha architecture. These options
allowed esim to:

� add 2 additional stages to the decoder,

� allocate an entry in the result bu�er for every instruction,

� issue and complete instructions in{order,

� check for output and anti{dependencies,

� issue a max of 2 instructions per cycle,

� disallow a load to bypass a store,

� prearbitrate results buses during decode, and

� limit the store bu�er to 4 entries.

10

The 21064 has two di�erent branch prediction strategies. It has a 2k by one bit branch history bu�er in
the instruction cache, which is similar to a branch target bu�er, and it can also use a static prediction
scheme. In my simulations, I found that dynamic branch prediction performed only marginally better, 2.9%.
I also found that out{of{order issue and completion with register renaming increased performance by 7.6%.
Implementing a four instruction decoder barely increased performance at all. Johnson [1] suggests that
using only one or two of his recommendations (out- of{order issue/completion, register renaming, dynamic
branch prediction, and four issue decoder) without the rest can hamper the e�ectiveness of those that are
implemented. These simulations support that suggestion, in that the biggest increase is seen when two are
used together: out{of{order issue and completion, and register renaming.

Simulation results for Alpha are shown in Table 10.

6 PowerPC 601 results

The ssim superscalar simulator allows the user to modify several architectural features to observe e�ects
on performance. The ultimate indicator of performance is the CPI, which can be calculated using the
output provided by ssim at the end of a simulation. The machine �le is the interface used by ssim to
de�ne a particular architecture. Among the parameters that the user can de�ne in the machine �le are the
cache con�guration, the BTB, the instruction bus width, number of functional units for integer, branch,
load and store units and latencies for each functional unit. The correct usage of ssim would involve using
output statistics only to compare two di�erent con�gurations of the same architecture. If, for example, we
wish to improve branch prediction then we can change the BTB con�guration and the number of branch
processing units (BPUs) to observe how each a�ects the branch prediction and then make a decision based
on improvement observed and cost of new con�guration. The machine �le does also limit the accuracy with
which one can specify an architecture for simulation. For example, if we have a split cache, we cannot specify
di�erent sizes for the instruction and dataa caches. There are more limitations in accurately describing an
architecture that are inherent in any structured interface format such as the machine �le.

The PowerPC 601 [4] implementation of the PowerPC architecture speci�es up to 3 instruction issues per
cycle, one each to the integer unit, the
oating point unit, and the branch prediction unit. The uni�ed
cache is 32K, and is 8{way associative with 8 words per block. The miss penalty is 9 cycles. The three
execution units can execute instructions of only one type each. The integer unit has a 32 bit data width, and
places results into any one of the writeback buses. The results are then stored in the register �les. Enough
writeback buses are present so as to support the peak issue rate of 3 instructions per cycle.

Three simulations with di�erent machine �les were performed to compare the relative e�ects on performance
that the number of execution units, the depth of the result bu�ers, and branch prediction mechanism provide.

To observe the e�ects of di�erent architecture modi�cations of the PowerPC, I used four of the SPECint
benchmarks to collect CPI �gures using di�erent hardware con�gurations of the PowerPC. I used ssim to
simulate the e�ects of varying the number of integer execution units, the number of integer result buses, the
instruction cache size, the number of instructions decoded and issued per cycle, the Branch Target Bu�er
entry size and the BTB associativity. Simulations results are listed in Table 11. I noticed that for the most
part CPI did not change dramatically between di�erent variations of the same parameter. For example,
in the gcc benchmark, with 3 integer execution units provided CPI remains that same as that of 1 integer
execution unit. With the compress benchmark, which has a high data locality the e�ects of changing the
instruction cache did not make any di�erence in CPI. This is attributed to the fact that the data cache
was assumed in�nite, and the compress benchmark uses a small instruction alogrithm to compress, which is
stored in less than 32K.

11

gcc

Perfect data caches assumed

of integer units # of instructions decoded & issued/cycle

1 2 3
1 1.27 1.02 1.08
2 1.27 1.02 1.08
3 1.27 1.02 1.08

eqntott

Simulate data cache e�ects

BTB associativity # of BTB entries

512 1024 2048
2 0.98 0.98 0.98
4 0.98 0.98 0.98
8 0.98 0.98 0.98

li

Assume perfect data cache, decode/issue 3 instr/cycle

of integer units # of integer results buses

1 2 3
1 0.97 0.92 0.92
2 0.98 0.91 0.91
3 0.98 0.91 0.91

compress

Assume perfect data cache, decode/issue 3 instr/cycle

of integer units Uni�ed cache size

32 kb 64 kb 128 kb
1 0.88 0.88 0.88
2 0.88 0.88 0.88
3 0.88 0.88 0.88

Table 11: CPIs for PowerPC simulations

12

7 SSIM modi�cations: ESIM

As is apparent from the machine �le listings in Appendix B and command{line options in Appendix A, ssim
is highly con�gurable and very
exible. However, ssim's model of superscalar architectures is very di�erent
from the commercial CPUs that we were attempting to simulate. For example, ssim assumes that there are
nine distinct functional units and two distinct reorder bu�ers. Unfortunately, none of the machines we were
interested in modeling had reorder bu�ers of any kind, nor did they have so many functional units. The
typical case was to have some combination of an integer unit, a fp unit, a combination load/store unit, and
a branch unit. ssim also lacked the ability to add new functional units which might not have �t neatly into
ssim's model.

Therefore it became apparent that ssim needed to be altered to meet our needs more directly. (Our initial
attempts to set the number available �eld for a functional unit to 0 caused ssim to crash.) ssim was modi�ed
to add and delete functional units from the simulator to more accurately re
ect the hardware being simulated.
The result of this e�ort was Eric's superscalar SIMulator (esim), so named after the author of the changes
Eric Schweitz.

In simple terms, Johnson's model is that of a instruction fetch/decode unit which is responsible for determin-
ing an instruction's type and then passing it on to the correct functional unit's reservation station. At that
point, the functional unit will execute the instruction when its operands are made available. Thus, certain
instruction types are sent to speci�c functional units in a pre{arranged, hard{coded relationship. Using the
-cN command{line option, it is possible in ssim to combine all the reservation stations into a single central
instruction window. However, this would still allow multiple instructions to be issued to several functional
units which may be the same physical unit in the system being modeled. Using the FIFO central window
would prevent multiple issue in cases where it may in fact be desired. Thus it seemed that the ability to
control the number and type of functional units would be helpful in simulating the commercial processors
we were interested in studying.

The new capability was implemented by making modi�cations to the machine �le language used to specify
the organization of the machine being simulated. Only three changes were necessary to the machine �le
language to support the idea of adding and deleting functional units from the machine description. The
word \Func Unit" was added to the vocabulary so that new functional units could be speci�ed and added
to the machine. The \is" verb was added to remap an existing functional unit to another existing functional
unit. The �nal change was to add the \Instructions" word to the vocabulary. The purpose of this section
of the machine �le is to allow the user to map MIPS instructions directly to existing functional units. The
\is" and \Instructions" mappings modify the same internal table in esim, but with a di�erent level of user
control. This is important to note, because mapping instructions through \is" can be redone (or undone)
by using the \Instructions" command, possibly crashing the simulator. It is best to lay out the machine �le
with existing Func Unit's �rst (both ones that are built-in and additional ones), map MIPS instructions to
the newly added functional units (the pre{existing functional units are mapped by default), and then remove
the unnecessary built-in functional units through the \is" mechanism.

Appendix B contains listings of two machine �les|SAND and the POWER mpee �les|that use esim's
features. In the SAND listing, two new functional units are de�ned, Int Mul and Int Div, and the integer
multiply/divide instructions{MULT, MULTU, DIV, DIVU{are assigned to these new units. This overides
the default instruction{to{functional{ unit mappings, whereby those instructions map to the Float Div
unit. Several move and shift instructions are also reassigned from their default ssim mappings, from the
Integer unit to the Shifter unit. The Store unit has been removed by mapping its functionality to the Load
unit; this is common in many processors, which use a combined load/store unit rather than separate units.
Appendix C lists all of the MIPS instructions and their default mappings, which are customizable through
the \Instructions" command in the machine �le.

The code changes to implement the new features were mostly to the esim.c module in the initialization of the

13

program. Obviously, the routine to read and interpret the machine �le was changed. Decode Instruction()
in esim.c was modi�ed to use the new user{customizable instruction{to{functional{ unit mapping table
rather than hard{coded mappings. (Decode Instruction() is the function that converts MIPS instructions
into the simulator's internal instruction record format.) The �le instname.h was added and includes the
mapping table and some other declarations used for the new features. Only minimal changes were necessary
to fdunit.c and exunit.c, and consisted mostly of making per functional unit calculations compute on newly
added functional units as well as the built-in units. Of course the output routines were enhanced to print
the statistics for user-added functional units as well as the built-in functional units.

8 Conclusion and Future Work

Simulation of the various architectures proved to be an interesting and bene�cial task. We were able to
determine the bene�ts, if any, of adding extra hardware to a given organization. The simulations of SAND
gave a rough idea of how this processor stacks up against current commercial processors, and also highlighted
potential areas for design improvement (for example, the largest cache size was not always a big win).

Future work in this area should concentrate on modifying the ssim/esim source code so that a wider variety
of processor organizations can be modeled. In particular, to accurately model SAND, changes need to be
made to how the reorder bu�ers, results buses, operand buses, and branch prediction strategy are modeled.
Also, benchmarking on the SPECfp suite could be run to optimize
oating{point performance.

References

[1] Mike Johnson. Superscalar Microprocessor Design. Prentice Hall, 1991.

[2] Mike Johnson and Michael D. Smith. ssim: A Superscalar Simulator. Available via ftp from
velox.stanford.edu in pub/ssim/manual.ps.

[3] Edward McLellan. The Alpha AXP Architecture and 21064 Processor. IEEE Micro, 13(3), June 1993.

[4] Motorola. PowerPC 601 { Risc Microprocessor User's Manual. Motorola, 1993.

[5] David A. Patterson and John L. Hennessy. Computer Architecture: A Quantative Approach. Morgan{
Kaufmann, 1990.

[6] Richard L. Sites. Alpha AXP Architecture. Digital Technical Journal, 4(4):19{34, 1993.

[7] J.E. Smith. Decoupled access/execute architectures. ACM Transactions on Computers Systems, 2(4):298{
308, November 1984.

[8] Michael D. Smith. Tracing with pixie. Available via ftp from velox.stanford.edu in
pub/pixie doc/manual.ps.

14

A Command line options for ssim

Command line options to 'ssim'

=============================

Options are:

<funit_descriptor_file_name>

-add_pipeN add N pipeline stages to decoder

-align align instructions in decoder

-arb allocate result buffer for every instruction

-cN centralized window of N locations

-compl_in_order issue and complete instructions in sequential order (default no)

-cs_add use carry-save adders (can issue dependent adds)

-d[a,o] check for [a]:anti-dependencies

[o]:output dependencies

(true dependencies always checked)

-dcache simulate data cache effects (default inf)

-dcache_portsN N ports to data cache (default one)

-decodeN decode N instructions per cycle (default 2)

-depbitsN use N bits of address for memory dependency checking (default 32)

-exact_pred expect exact branch prediction (no don't care for not taken)

-fifo_wind manage central window as fifo

-flsh_mispred flush result buffer on misprediction

-icache simulate instruction cache effects (default inf)

-issue_in_order issue instructions in sequential order (default no)

-lbrnpredN limit outstanding branch predictions to N

-ldep[tN,aN,oN] stall decoder after N[t]:true dependencies

[a]:anti-dependencies

[o]:output dependencies

-ldbrnN limit decode to N branches per cycle

-lamemN limit load/store address logic to N addresses per cycle

-ldmemN limit decode to N loads/stores per cycle

-liN limit issue to N instructions per cycle

-liop limit issue to N operands per cycle

-merge merge instruction runs if predicted OK

-multi_brn execute multiple branches per cycle

-multi_path fetch multiple branch paths if possible

-nobyp_load loads do not bypass stores

-nofwd_store do not forward store data from buffer

-perf perfect branch prediction

-pre_addrN limit pre-address buffer to N locations

-prearb pre-arbitrate result buses during decode (default no)

-pred predict branches with BTB (or icache if enabled)

-pred_take predict all branches take

-pred_rtns predict branches and procedure returns

-pN print current statistics every N cycles

(default print at end only)

-rb_intN use integer result buffer of N entries

(overrides machine configuration)

-rb_floatN use float result buffer of N entries

(overrides machine configuration)

-regsN use N register read ports (default 2*decode width)

-resbus_intN use N integer result buses

-resbus_floatN use N floating-point result buses

-rstnN use uniform reservation stations of N entries each

(overrides machine configuration)

-sN stop at first opportunity after N instructions

-sched_dmiss schedule around dcache misses (default no)

-strbufN limit store buffer to N locations

-sum<fname> append results to summary file fname

-t set test mode (print all instructions traced)

-verbose set verbose mode (more detailed statistics)

15

Remainder of line after -prog keyword is the progam

specification of the pixified program, including

arguments. Input and output files for this program

are specified after '<' and '>' tokens, respectively.

16

B Machine �les used for simulations

Machine �le for SAND

Caches

size_bytes 16384

words_per_block 4

associativity 1

miss_penalty 12

Instruction_Bus_Width 4

Integer_Result_Buffer_Depth 16

Float_Result_Buffer_Depth 8

Integer_Result_Buffer_Width 2

Integer_Writeback_Width 2

Float_Result_Buffer_Width 2

Float_Writeback_Width 2

Func_Unit Integer

number_available 2

issue_latency

single 1

result_latency

single 1

reservation_station_depth 4

Func_Unit Branch

number_available 1

issue_latency

single 1

result_latency

single 1

reservation_station_depth 4

Func_Unit Int_Mul

number_available 1

issue_latency

single 1

result_latency

single 1

reservation_station_depth 4

Func_Unit Int_Div

number_available 1

issue_latency

single 1

result_latency

single 1

reservation_station_depth 4

Func_Unit Shifter

number_available 1

issue_latency

single 1

result_latency

single 1

reservation_station_depth 2

17

Func_Unit Load

number_available 1

issue_latency

single 1

double 2

extended 4

result_latency

single 2

double 3

extended 5

reservation_station_depth 8

Func_Unit Float_Add

number_available 1

issue_latency

single 1

double 1

extended 4

result_latency

single 2

double 2

extended 6

reservation_station_depth 2

Func_Unit Float_Mul

number_available 1

issue_latency

single 1

double 1

extended 4

result_latency

single 4

double 5

reservation_station_depth 2

Func_Unit Float_Div

number_available 1

issue_latency

single 12

double 19

extended 32

result_latency

single 12

double 19

extended 32

reservation_station_depth 2

Func_Unit Float_Conv

number_available 1

issue_latency

single 1

double 1

extended 4

result_latency

single 2

double 2

extended 4

reservation_station_depth 2

Instructions

MULT INT_MUL

MULTU INT_MUL

DIV INT_DIV

18

DIVU INT_DIV

MFHI SHIFTER

MFLO SHIFTER

MTHI SHIFTER

MTLO SHIFTER

SLT SHIFTER

SLTU SHIFTER

Func_Unit Store

is Load

19

Machine �le for POWER: mpe

Caches

size_bytes 8192

words_per_block 16

associativity 2

miss_penalty 12

Branch_Target_Buffer

entries 128

associativity 2

Instruction_Bus_Width 4

Integer_Result_Buffer_Depth 11

Float_Result_Buffer_Depth 18

Integer_Result_Buffer_Width 1

Integer_Writeback_Width 1

Float_Result_Buffer_Width 1

Float_Writeback_Width 1

Integer

number_available 1

issue_latency

single 1

result_latency

single 2

reservation_station_depth 8

Shifter

number_available 1

issue_latency

single 1

result_latency

single 2

reservation_station_depth 8

Branch

number_available 1

issue_latency

single 1

result_latency

single 3

reservation_station_depth 4

Load

number_available 1

issue_latency

single 1

double 1

extended 2

result_latency

single 3

double 3

extended 4

reservation_station_depth 6

Store

number_available 1

20

issue_latency

single 1

double 1

extended 2

result_latency

single 3

double 3

extended 4

reservation_station_depth 4

Float_Add

number_available 1

issue_latency

single 1

double 1

extended 1

result_latency

single 5

double 5

extended 5

reservation_station_depth 10

Float_Mul

number_available 1

issue_latency

single 1

double 1

extended 1

result_latency

single 5

double 5

extended 5

reservation_station_depth 10

Float_Div

number_available 1

issue_latency

single 1

double 1

extended 1

result_latency

single 20

double 20

extended 20

reservation_station_depth 10

Float_Conv

number_available 1

issue_latency

single 1

double 1

extended 1

result_latency

single 5

double 5

extended 5

reservation_station_depth 10

21

Machine �le for POWER: mps

Caches

size_bytes 65536

words_per_block 4

associativity 2

miss_penalty 12

Branch_Target_Buffer

entries 32

associativity 2

Instruction_Bus_Width 4

Integer_Result_Buffer_Depth 16

Float_Result_Buffer_Depth 8

Integer_Result_Buffer_Width 2

Integer_Writeback_Width 2

Float_Result_Buffer_Width 2

Float_Writeback_Width 2

Integer

number_available 1

issue_latency

single 1

result_latency

single 1

reservation_station_depth 5

Shifter

number_available 1

issue_latency

single 1

result_latency

single 1

reservation_station_depth 2

Branch

number_available 1

issue_latency

single 1

result_latency

single 2

reservation_station_depth 4

Load

number_available 1

issue_latency

single 1

double 2

extended 4

result_latency

single 2

double 3

extended 5

reservation_station_depth 8

Store

number_available 1

22

issue_latency

single 1

double 2

extended 4

result_latency

single 2

double 3

extended 5

reservation_station_depth 8

Float_Add

number_available 1

issue_latency

single 2

double 1

extended 4

result_latency

single 2

double 2

extended 6

reservation_station_depth 5

Float_Mul

number_available 1

issue_latency

single 1

double 1

extended 4

result_latency

single 4

double 5

extended 6

reservation_station_depth 5

Float_Div

number_available 1

issue_latency

single 16

double 19

extended 38

result_latency

single 16

double 19

extended 38

reservation_station_depth 5

Float_Conv

number_available 1

issue_latency

single 1

double 1

extended 4

result_latency

single 2

double 2

extended 4

reservation_station_depth 5

23

Machine �le for POWER: mpee

Caches

size_bytes 8192

words_per_block 16

associativity 2

miss_penalty 12

Branch_Target_Buffer

entries 128

associativity 2

Instruction_Bus_Width 4

Integer_Result_Buffer_Depth 11

Float_Result_Buffer_Depth 18

Integer_Result_Buffer_Width 1

Integer_Writeback_Width 1

Float_Result_Buffer_Width 1

Float_Writeback_Width 1

Func_Unit Integer

number_available 1

issue_latency

single 1

result_latency

single 2

reservation_station_depth 8

Func_Unit Shifter

is Integer

Func_Unit Branch

number_available 1

issue_latency

single 1

result_latency

single 3

reservation_station_depth 4

Func_Unit Load

number_available 1

issue_latency

single 1

double 1

extended 2

result_latency

single 3

double 3

extended 4

reservation_station_depth 6

Func_Unit Store

is Load

Func_Unit Float_Add

number_available 1

issue_latency

single 1

24

double 1

extended 1

result_latency

single 5

double 5

extended 5

reservation_station_depth 10

Func_Unit Float_Mul

is Float_Add

Func_Unit Float_Div

number_available 1

issue_latency

single 1

double 1

extended 1

result_latency

single 20

double 20

extended 20

reservation_station_depth 10

Func_Unit Float_Conv

is Float_Add

Instructions

MULT Integer

MULTU Integer

25

Machine �le for PowerPC

Caches

size_bytes 32768

words_per_block 8

associativity 8

miss_penalty 9

Instruction_Bus_Width 8

Integer_Result_Buffer_Depth 1

Float_Result_Buffer_Depth 1

Integer_Result_Buffer_Width 1

Integer_Writeback_Width 1

Float_Result_Buffer_Width 1

Float_Writeback_Width 1

Integer

number_available 2

issue_latency

single 1

result_latency

single 1

reservation_station_depth 4

Shifter

number_available 1

issue_latency

single 1

result_latency

single 1

reservation_station_depth 1

Branch

number_available 1

issue_latency

single 1

result_latency

single 1

reservation_station_depth 1

Load

number_available 1

issue_latency

single 1

double 1

extended 1

result_latency

single 1

double 1

extended 1

reservation_station_depth 1

Store

number_available 1

issue_latency

single 1

double 1

26

extended 1

result_latency

single 1

double 1

extended 1

reservation_station_depth 1

Float_Add

number_available 1

issue_latency

single 1

double 1

extended 1

result_latency

single 1

double 1

extended 1

reservation_station_depth 1

Float_Mul

number_available 1

issue_latency

single 1

double 2

extended 2

result_latency

single 1

double 2

extended 2

reservation_station_depth 1

Float_Div

number_available 1

issue_latency

single 4

double 4

extended 4

result_latency

single 17

double 31

extended 31

reservation_station_depth 1

Float_Conv

number_available 1

issue_latency

single 1

double 1

extended 1

result_latency

single 1

double 1

extended 1

reservation_station_depth 1

27

Machine �le for Alpha

Caches

size_bytes 8192

words_per_block 4

associativity 1

miss_penalty 12

Instruction_Bus_Width 2

Integer_Result_Buffer_Depth 3

Float_Result_Buffer_Depth 6

Integer_Result_Buffer_Width 1

Integer_Writeback_Width 1

Float_Result_Buffer_Width 1

Float_Writeback_Width 1

Func_Unit Integer

number_available 1

issue_latency

single 1

result_latency

single 1

reservation_station_depth 1

Func_Unit Branch

number_available 1

issue_latency

single 1

result_latency

single 1

reservation_station_depth 1

Func_Unit Load

number_available 1

issue_latency

single 1

double 1

extended 1

result_latency

single 3

double 3

extended 3

reservation_station_depth 4

Func_Unit Float_Add

number_available 1

issue_latency

single 1

double 1

extended 1

result_latency

single 6

double 6

extended 6

reservation_station_depth 1

Func_Unit Float_Div

number_available 1

28

issue_latency

single 6

double 6

extended 6

result_latency

single 6

double 6

extended 6

reservation_station_depth 1

Func_Unit Int_Mult

number_available 1

issue_latency

single 2

result_latency

single 2

reservation_station_depth 1

Instructions

SLL SHIFTER

SRL SHIFTER

SRA SHIFTER

SLLV SHIFTER

SRLV SHIFTER

SRAV SHIFTER

SYSCALL BRANCH

BREAK BRANCH

VCALL BRANCH

MULT INT_MULT

MULTU INT_MULT

DIV FLOAT_DIV

DIVU FLOAT_DIV

MFHI INTEGER

MFLO INTEGER

MTHI INTEGER

MTLO INTEGER

JR BRANCH

JALR BRANCH

ADD INTEGER

ADDU INTEGER

AND INTEGER

OR INTEGER

XOR INTEGER

NOR INTEGER

SUB INTEGER

SUBU INTEGER

SLT INTEGER

SLTU INTEGER

J BRANCH

JAL BRANCH

BCOND BRANCH

BEQ BRANCH

BNE BRANCH

BLEZ BRANCH

BGTZ BRANCH

ADDI INTEGER

ADDIU INTEGER

SLTI INTEGER

SLTIU INTEGER

ORI INTEGER

XORI INTEGER

ANDI INTEGER

29

LUI INTEGER

LWC1 LOAD

LDC1 LOAD

LB LOAD

LH LOAD

LW LOAD

LBU LOAD

LHU LOAD

LWL LOAD

LWR LOAD

LD LOAD

SWC1 STORE

SDC1 STORE

SB STORE

SH STORE

SW STORE

SWL STORE

SWR STORE

SD STORE

BC BRANCH

MTC FLOAT_CONV

MFC FLOAT_CONV

CTC FLOAT_CONV

CFC FLOAT_CONV

FADD_S FLOAT_ADD

FSUB_S FLOAT_ADD

FMPY_S FLOAT_MUL

FDIV_S FLOAT_DIV

FABS_S FLOAT_ADD

FMOV_S FLOAT_ADD

FNEG_S FLOAT_ADD

FSQRT_S FLOAT_DIV

FCVTW_S FLOAT_CONV

FCVTS_S FLOAT_CONV

FCVTD_S FLOAT_CONV

FCVTE_S FLOAT_CONV

FCMP_S FLOAT_ADD

FADD_D FLOAT_ADD

FSUB_D FLOAT_ADD

FMPY_D FLOAT_MUL

FDIV_D FLOAT_DIV

FABS_D FLOAT_ADD

FMOV_D FLOAT_ADD

FNEG_D FLOAT_ADD

FSQRT_D FLOAT_DIV

FCVTW_D FLOAT_CONV

FCVTS_D FLOAT_CONV

FCVTD_D FLOAT_CONV

FCVTE_D FLOAT_CONV

FCMP_D FLOAT_ADD

FADD_E FLOAT_ADD

FSUB_E FLOAT_ADD

FMPY_E FLOAT_MUL

FDIV_E FLOAT_DIV

FABS_E FLOAT_ADD

FMOV_E FLOAT_ADD

FNEG_E FLOAT_ADD

FSQRT_E FLOAT_DIV

FCVTW_E FLOAT_CONV

FCVTS_E FLOAT_CONV

FCVTD_E FLOAT_CONV

FCVTE_E FLOAT_CONV

FCMP_E FLOAT_ADD

30

Func_Unit Shifter

is Integer

Func_Unit Store

is Load

Func_Unit Float_Mul

is Float_Add

Func_Unit Float_Conv

is Float_Add

31

C MIPS instruction{to{functional{unit mappings

Instruction Name Built-in Functional Unit

================ ========================

SLL SHIFTER

SRL SHIFTER

SRA SHIFTER

SLLV SHIFTER

SRLV SHIFTER

SRAV SHIFTER

SYSCALL BRANCH

BREAK BRANCH

VCALL BRANCH

J BRANCH

JAL BRANCH

BCOND BRANCH

BEQ BRANCH

BNE BRANCH

BLEZ BRANCH

BGTZ BRANCH

JR BRANCH

JALR BRANCH

BC BRANCH

MFHI INTEGER

MFLO INTEGER

MTHI INTEGER

MTLO INTEGER

ADD INTEGER

ADDU INTEGER

AND INTEGER

OR INTEGER

XOR INTEGER

NOR INTEGER

SUB INTEGER

SUBU INTEGER

SLT INTEGER

SLTU INTEGER

ADDI INTEGER

ADDIU INTEGER

SLTI INTEGER

SLTIU INTEGER

ORI INTEGER

XORI INTEGER

ANDI INTEGER

LUI INTEGER

LWC1 LOAD

LDC1 LOAD

LB LOAD

LH LOAD

LW LOAD

LBU LOAD

LHU LOAD

LWL LOAD

LWR LOAD

LD LOAD

SWC1 STORE

SDC1 STORE

SB STORE

SH STORE

SW STORE

SWL STORE

SWR STORE

SD STORE

32

MULT FLOAT_DIV

MULTU FLOAT_DIV

DIV FLOAT_DIV

DIVU FLOAT_DIV

FSQRT_S FLOAT_DIV

FDIV_S FLOAT_DIV

FDIV_D FLOAT_DIV

FSQRT_D FLOAT_DIV

FDIV_E FLOAT_DIV

FSQRT_E FLOAT_DIV

FADD_S FLOAT_ADD

FSUB_S FLOAT_ADD

FCMP_S FLOAT_ADD

FADD_D FLOAT_ADD

FSUB_D FLOAT_ADD

FABS_D FLOAT_ADD

FMOV_D FLOAT_ADD

FNEG_D FLOAT_ADD

FABS_S FLOAT_ADD

FMOV_S FLOAT_ADD

FNEG_S FLOAT_ADD

FCMP_D FLOAT_ADD

FADD_E FLOAT_ADD

FSUB_E FLOAT_ADD

FABS_E FLOAT_ADD

FMOV_E FLOAT_ADD

FNEG_E FLOAT_ADD

FCMP_E FLOAT_ADD

FMPY_S FLOAT_MUL

FMPY_E FLOAT_MUL

FMPY_D FLOAT_MUL

MTC FLOAT_CONV

MFC FLOAT_CONV

CTC FLOAT_CONV

CFC FLOAT_CONV

FCVTW_S FLOAT_CONV

FCVTS_S FLOAT_CONV

FCVTD_S FLOAT_CONV

FCVTE_S FLOAT_CONV

FCVTW_D FLOAT_CONV

FCVTS_D FLOAT_CONV

FCVTD_D FLOAT_CONV

FCVTE_D FLOAT_CONV

FCVTW_E FLOAT_CONV

FCVTS_E FLOAT_CONV

FCVTD_E FLOAT_CONV

FCVTE_E FLOAT_CONV

33

