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Abstract—in this letter, a modification to the recently proposed previously proposed [9]. Numerical experiments with this
unconditionally stable D-H ADI FDTD method is presented that PML implementation, however, showed that reflection errors
considerably reduces the late-time error induced by the corner originating from the corner cells of the absorbing boundary

cells. The PML boundary is derived from the direct discretization o . . . .
of the modified D-H Maxwell’'s equations rather than the superpo- conditions were not negligible and were increasing with the

sition of uniaxial PML boundaries. An optimal choice of the PML ~ ADI factor. In this letter, we present an extension to the
conductivity profile coefficients is proposed. Results show that the previous PML implementation of the unconditionally stable
reflection error of the PML is limited for increased time step size method with reduced reflection error.

beyond the Courant-Friedrichs-Lewy stability bound, and max-

imum reflection errors are 15 to 20 dB lower than the original for-

mulation. Il. DERIVATION OF THE D-H ADI FDTD FORMULATION
Index Terms—ADI, FDTD methods, PML ABC. For the D — H formulation of the finite-difference time-do-
main method, the normalized Maxwell’'s equations are written
as [8]
|. INTRODUCTION
N A LARGE number of electromagnetic problems, JwD =co V x H )
including bioelectromagnetic problems, the spatial dis- D (w) =&, (w) - E (w) 2
cretization is dominated by very fine geometric details rather jwH = —¢y-V x E. ©)

than the smallest wavelength of interest. When a traditional
explicit finite-difference time-domain (FDTD) scheme is used, The initial equation for theD — H ADI FDTD formulation
fine geometric details dictate a small time step due to thgth PML absorbing boundary conditions was given as [9]
Courant-Friedrichs-Lewy stability bound [1], which in turn
could require an excessively large number of computation o DML () ! oM (y)
steps. JjwDa <1 + 7) T+ ——
JWwWeo JWwWeo

The use of the alternating-direction-implicit (ADI) scheme PAML
was introduced for the time-domain analysis of electromagnetic X (1 + "z—(z)> = co <8Hz _ aHy) 4)
problems to eliminate the courant stability bound of the FDTD Jwéeo dy 0z
method [2]-{5]. The ADI method appears to be of particular Mvhere thesPML (i) denote the PML conductivity profile in the

terest for large bio-electromagnetic problems and problemsl[n v, and z-directions. For the sake of brevity, we show the

which the larger dispersion and phase error of the ADI meth%%rivation of thes-component for the — T ADI FDTD only.

[6], [7]is acceptable. In this class of problems, it is often neqy, o "o bonents follow similarly. Different from the pre-
essary to truncate the model and therefore extend a dielectric P Y- b

- . o vious formulation [9], where the FDTD equations where derived
material into the absorbing boundary conditions. L : .
. . . . as uniaxial PML layers in, y, andz, respectively, and then su-
Using theD — H formulation allows an easy implementation_ ™ . . o : ) .
erimposed in the corners, (4) is discretized directly, without

qf an uns_pll_t field components PML a_bsorbmg bour_ldary CONG rther simplification. First, the modified Maxwell's (4) trans-
tion that is independent of the materials modeled in the FD ﬁ . . :
ormed into the time domain [10] leads to

space [8].
An unconditionally stable finite-difference time-domain ) oy +o. 0,0,
(FDTD) method based on @ — H formulation and the Do \Jwt+ = —+ jwed
alternating-direction-implicit (ADI) marching scheme was oH ’ OH
=co | 1+ Tz z — . (®)
Jweg Jy 0z
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Thus, the discretized equations f0r. using the ADI scheme

[2]-[5] for the first half time-step reduces to

n+1/2 PNlPNl . PNZPNZ n .
Dy PDPD Dy - PD D Z D,
s=1/2 é;
PN3 gHITY?  pN4 9HT =
+ coAt = - == o £
PPPP 0y PPPP 0z o
>
N 2PNs N (oH: OH; @) ﬁ
ppr7D Oy 0z : : ; : :
° s=1/2 . . . . . .
) | : -©- New ADI PML (face center) |
and for the second half time-step to =120pf - -8 New ADIPML (corner) [~ """
=X - ADI PML [9] (face center)
N1pN1 N2 pN2 n+1/2 —% - ADI PML [9] (corner)
Dn+1 P P Dn+1/2 P P Z Ds -140 . . L . I 1 L
—PDPD PDPD 60 80 100 120 140 160 180 200
s=1/2 Time Step
N4 n+1/2 N3 n+1
+ coAt i OH: — Py 8H1/ Fig. 1. Maximum reflection error for the two PML formulations close to the
PPPP 0y PPPP 0z corner and the face center of the PMIFL# = 2, X, max = 0.33.
N5 ntl/2 s s
2P 0H; OH, (8) stepn. To complete the ADI algorithm, the equations for the
pPPPP oy 0z

s=1/2

where PML coefficientd’; are a functions of the conductivity

profiles oML of the ABC layers

second half time-step and the remaining field componenis of
are derived in a similar fashion [9].

In this formulation, additional computations and memory are
necessary for the field sum termslofandH, given in (8) and

(O,PML At) (10). However, these terms are only required on the dihedral cor-
PP =pPM =1+ x2— =1+ X, () ners inside the PML since the products of the coefficightd
151;2) are zero elsewhere. The added complexity is small compared to
PNl _pN4 _q _ (ot AL) =1- X, (i) the summation of the curl terms associated wih®, which is
* ‘ (220) " already required for the original formulation.
pre_pys_ 0 T80y ) (©)
N O [ll. N UMERICAL RESULTS

The finite difference equations for the magnetic field can be To validate the PML termination of th®-H ADI FDTD

derived similarly. For example, the second half time-steg#or
would be

space, a single-cell electric current source radiating in free space
was used [1]. The compact pulse source [11] was placed in the
center of uniform grid with dimensions of 167107 x 107 cells

gt I)a]t\rlP;VIHn—i-l/Z PN2PNZ n+1/2H€ and a uniform discretizationhz = Ay = Az = 0.4 mm. A
z pPPpp "+ pD D Z 16-layer PML was used. For the PML conductivity-profile, a
s=1/2 polynomial grading with
oA | P omT® PN 9Byt :
o _ - D
npm
2PN5 n+1/2 EYor 8E§ P
z z_ 10 ndp = 3w wher = 16 is the number of
PPPP <8y 8:1:) (10) andp 3 was used, wherepml 6 is the number o

s=1/2

Further, a finite difference equation is used to calculate t
electric fieldE from D for a given lossy dielectric material with

relative permittivitye,. and conductivitys, which is given here
for the y-component

PML layers. The fields co-polarized to the source were com-
ared to the reference solution with a sufficiently large grid
589 289x 289).

Fig. 1 illustrates the relative reflection error from the PML
using the proposed new formulation and the previous formu-
lation for the case where the time step was twice that of the

Ay EL/2 Courant stability boundt = 1.54 ps. The observation points
<D§]’+1 ) DI O ) were placed two cells diagonally from the corner of the PML
Ert+l — s=1/2 . (11) (89x 89x 89) and two cells from the face center of the PML
y (Eny N %) (54 x 54 x 89). The figure shows that the reflection error from

the new PML formulation lies well below that of the previous

Equation (11) is substituted into (10) and then into (7), whictormulation.

yields the tridiagonal system of equations that implicitly relates Fig. 2 is a similar plot for the case where the time step was
theD”“/2 along they-axis to the fieldsD, E, andH attime four times that of the Courant stability bourdd = 3.08 ps.
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Fig. 2. Maximum reflection error for the two PML formulations close to thq:ig. 4. OptimalX, and maximum reflection error at the face center of the
corner and the face center of the PMLFL# = 4, X, max = 0.65. new PML formulation as a function of the time step length CFL#.

-3 N IV. CONCLUSIONS ANDFINAL REMARKS
60 b - SN CO S U ] We present an improved anisotropic PML for the uncondi-
: : : : ; : - tionally stableD — H ADI FDTD method. The relative reflec-
] SR SR G TIITTITRE SR L Coo tion error observed from numerical experiments is reduced by
= : ' : ; : : : 15 to 20 dB as compared to the formulation in [9]. The error
§-70 L . QO Ssggmoo e co is bound in late time, even for time step lengths that are larger
© : : : : : : i than the Courant stability limit, which implies that the method
ks 7% D QL ) = S i D is unconditionally stable for late time.
4 ; ; : : :
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